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Diabetic nephropathy is one of themost seriousmicrovascular complications of

diabetes mellitus, with increasing prevalence and mortality. Currently, renal

function is assessed clinically using albumin excretion rate and glomerular

filtration rate. But before the appearance of micro-albumin, the glomerular

structure has been severely damaged. Glomerular filtration rate based on serum

creatinine is a certain underestimate of renal status. Early diagnosis of diabetic

nephropathy has an important role in improving kidney function and delaying

disease progression with drugs. There is an urgent need for biomarkers that can

characterize the structural changes associated with the kidney. In this review,

we focus on the early glomerular and tubular structural alterations, with a

detailed description of the glomerular injury markers SMAD1 and Podocalyxin,

and the tubular injury markers NGAL, Netrin-1, and L-FABP in the context of

diabetic nephropathy. We have summarized the currently studied protein

markers and performed bioprocess analysis. Also, a brief review of

proteomic and scRNA-seq method in the search of diabetic nephropathy.
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Introduction

In 2021, the International Diabetes Federation counted adults (20–79 years) with

diabetes mellitus (DM) up to 537 million, accounting for 10%, and it is estimated that the

number of patients will reach 643 million by 2030 and 783 million by 2045 (IDF, 2021).

Diabetic nephropathy (DN) is one of the most common and serious microvascular

complications of DM and is associated with increased morbidity and mortality in diabetic

patients (Valencia and Florez, 2017). DN accounts for 30%–50% of the incidence of end-

stage renal disease, it is estimated that about 40% of patients require renal replacement

therapy (Umanath and Lewis, 2018). DN puts great stress on the lives of patients, not only

physically and financially but also psychologically.

Currently, the diagnosis and prognosis of DN rely on the albumin excretion rate

(AER) and glomerular filtration rate (GFR). Although renal biopsy is the gold standard for

the diagnosis of renal disease, it is an invasive test and is made in the presence of

significant renal impairment. However, recent evidence challenges this view, Joslin’s study
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of the natural history of microalbuminuria suggests that the

likelihood of regression from microalbuminuria to normal

urinary albumin excretion is greater than the likelihood of

developing significant proteinuria (Perkins et al., 2003).

Likewise, in the presence of significant proteinuria, serious

damage to the glomerulus has occurred, some diabetic

patients with normoproteinuria have progressive renal

insufficiency, called normoproteinuric diabetes (Chen et al.,

2017). Therefore, urinary albumin is not sufficient and

accurate as an early biomarker of DN. The use of the

Schwartz formula to calculate an estimated glomerular

filtration rate based on serum creatinine avoids these

difficulties but underestimates the actual renal status (Salem

et al., 2020).

Therefore, new biomarkers are needed to better assess the

renal status of patients with DN with less influence by factors

such as gender and age. Also, new biomarkers can characterize

the effect of drug therapy in time to achieve the optimal dose and

type of drug.

Glomerular and tubular lesions and
classification of injury

DN is accompanied by a continuous and unstoppable process

of glomerular damage. It is characterized by diffuse and nodular

mesangial expansion, thickening of the glomerular basement

membrane, excessive accumulation of extracellular matrix, and

loss of podocytes, which affect the glomerular capillaries and

disrupt the structural integrity of the glomerulus (Mazzucco

et al., 2002; Zheng et al., 2004). These eventually lead to an

increase in proteinuria and impaired kidney function

(Pourshabanan et al., 2019). Recent reports have shown that

the renal tubule and interstitium play an integral role in the

pathogenesis of DN and are closely associated with the

progressive decline in renal function (Hills and Squires, 2011).

Proximal tubular cell damage in DN includes basement

membrane thickening, tubular lesions, tubular hypertrophy,

tubular fibrosis (Jenkin et al., 2012).

Degree of glomerular damage

The first obvious structural change in the kidney in response to

multiple factors is the thickening of the glomerular basement

membrane (GBM), even though diabetic patients have normal

urinary albumin levels, as demonstrated in patients with type 1 and

type 2 diabetes (T1D and T2D) (Tyagi et al., 2008; Najafian and

Mauer, 2012). GBM width is a strong predictor of DN risk in

patients with normoproteinuric T1D (Caramori et al., 2013). The

podocyte performs an important role in maintaining the structure

and filtration function of the glomerulus. Glomerular structural

changes correlated with podocyte-specific injury in an animal

model of diabetes mellitus (Tyagi et al., 2008). Before the

appearance of proteinuria, structural and functional damage to

the podocytes has occurred, such as loss of foot processes,

hypertrophy, shedding, and apoptosis (Herbach et al., 2009; He

et al., 2022). The reduction in GFR is associated with a reduction in

glomerular filtration surface area, and these reflect early mesangial

expansion (Moriya et al., 2019). Nodular mesangial sclerosis and

diffuse mesangial expansion are specific lesions in DN, and more

detailed studies have shown a close correlation between these two

types of mesangial expansion (Kriz et al., 2017).

In 2010, Tervaert et al. (2010) classified the DN into four stages

based on the type and degree of lesion in the glomerulus. The classes

and lesions are briefly described below. Ⅰ) GBM thickening; Ⅱ)
mesangial expansion; Ⅲ) nodular sclerosis (Kimmelstiel–Wilson

lesions); Ⅳ) advanced diabetic glomerulosclerosis.

Renal tubular injury

Some markers of proximal tubular cell injury can be detected

in the urine of early diabetic patients, when there is no obvious

glomerular injury, indicating that proximal tubular injury is also

an early lesion and not completely secondary to glomerular injury

(Chen et al., 2020). In addition to the increase in GBM thickness,

tubular basement membrane (TBM) thickness is also predictive of

early DN (Tyagi et al., 2008). The study confirmed that TBM

thickness combined with GBM thickness providedmore predictive

value for patients progressing to end-stage renal disease (Zhao

et al., 2021). Accompanied by inflammation, oxidative stress, and

altered hemodynamics, renal tubular epithelial cells undergo cell

proliferation and subsequent cell hypertrophy, cell death (Thomas,

2021; Liu et al., 2022; Uehara-Watanabe et al., 2022). In 2005,

Thomas et al. described the tubular changes in early DN. Four

major structural alterations of the renal tubules are highlighted,

which are tubular hypertrophy and hyperplasia; tubular atrophy

and dilatation; thickening of the TBM; tubular Epithelial-

Mesenchymal Transition (Thomas et al., 2005).

Glomerular and tubular injury
biomarkers

The natural course of DN is characterized by lesion

development and progression during a prolonged period of

clinical silence, and the lesion may have developed for a long

time before the AER increases and/or the GFR decreases (Parving

et al., 2004). There is increasing evidence that regression of

microalbuminuria is common in patients with T1D and that a

significant proportion of non-albuminuric patients also develop

progressive impairment of renal function (Krolewski, 2015).

Therefore, the diagnosis of DN may be more accurate by

looking for markers that can characterize structural

alterations. We therefore reviewed the literature based on 1)
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FIGURE 1
Presentation of biomarkers in the nephron (upper) and protein interaction networks and biological processes (below). Abbreviation: NGAL:
Neutrophil gelatinase associated lipocalin, B2M: Beta-2-microglobulin, AGT: Angiotensinogen, KIM-1: Kidney injury molecule-1, RBP: Retinol-
binding protein, L-FABP: Liver type fatty acid binding protein, COLIV: Collagen IV, NAG: N-Acetyl-B-D-glycosaminidase, ANGPT2: Angiopoietin-2,
AQP: Aquaporin, DBP: Vitamin D binding protein, L-PGDS: Lipocalin-type prostaglandinD2-synthase, VEGF: Vascular endothelial growth factor,
MCP-1: Monocyte chemoattractant protein-1, TNF-α: Tumour necrosis factor-alpha.
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the association with specific renal structural alterations in

patients with DN and 2) the fact that in clinical studies,

alterations in protein expression appear early in DN and have

the potential to predict renal function. In this review, we present a

detailed description of some of the proteins that have obtained

adequate studies and are considered to have great potential to

become markers of DN, but the association between other

proteins and structural alterations cannot be denied.

Markers of renal glomerular injury

The degree of mesangial expansion, one of the structural

abnormalities of the glomerulus, is associated with the

development of DN. In the absence of elevated blood pressure

or reduced creatinine (Cre) clearance, extensive studies of

glomerular structure in diabetic patients with or without

microalbuminuria have found significant differences in

glomerular structural changes (e. g. mesangial matrix

expansion). In the Streptozotocin (STZ)-induced DN model in

rats, urinary SMAD1 excretion was strongly correlated with the

severity of expansion of the mesangial matrix (Matsubara et al.,

2006)and can be used to predict the effect of angiotensin II type

1 receptor blocker treatment on the expansion of the mesangial

matrix in DN (Mima et al., 2008). During the glomerular

hyperfiltration phase, urinary SMAD1 levels were significantly

elevated, indicating that mesangial expansion had occurred (Fu

et al., 2013). Therefore, the role of urinary SMAD1 levels in early

DN needs to be further investigated.

Podocalyxin (PCX) is a podocyte membrane protein and it is a

major component of the GBM charge barrier. Glomerular

filtration barrier permeability correlates with PCX integrity

(Hara et al., 1994). As a marker protein of podocyte injury,

podocyte injury can result in decreased levels and increased

excretion of PCX in the glomerulus (Akankwasa et al., 2018).

In diabetic patients, PCX protein concentration of urine

supernatant is higher than the critical value in 53.8% of

patients in the normal proteinuric phase, although urinary PCX

levels were maintained at around 65% in the microproteinuric and

massive proteinuric phases (Hara et al., 2012). Moreover,

compared with the glomerular high PCX expression group, DN

patients in the low expression group had a longer duration of

diabetes, and the kidney survival rate in the high expression group

was significantly higher than that in the low expression group

(Wang et al., 2020). It indicates that PCX has some value in

characterizing the onset stage of DN patients (Ye et al., 2014).

Markers of renal tubular injury

Recent literature reports that tubular damage appears in the

early stages of DN and promotes the progression of renal disease

(Guo et al., 2012; Zeni et al., 2017).

In children and adolescents with T1D, NGAL fractions were

detected in the extracellular vesicles of urine at higher levels

than in urine from T1D patients without exosomes and in

normal controls. In addition, NGAL has been present in

patients without microalbuminuria or with a normal

albumin-to-creatinine ratio, suggests that tubular damage

occurred before the onset of classic DN symptoms (Ugarte

et al., 2021). NGAL has also been shown to be a marker of early

nephropathy injury in patients with T2DN (Żyłka et al., 2018;

Tang et al., 2019). A lack of independent correlation between

tubular injury markers and glomerular filtration rate has been

reported and cannot be used to improve the management of

DN, suggesting that NGAL is specific as a marker of tubular

injury (Kuwabara et al., 2009; Nielsen et al., 2011). Therefore,

further studies are needed for the predictive value of NGAL in

early DN injury.

Netrin-1 is secreted protein highly induced after chronic

and acute kidney injury. It can be detected in urine in both mice

and human, and can be used as a marker for acute kidney injury

(Levey et al., 2005; Reeves et al., 2008). Netrin-1 has also been

reported in DN. Using a case-control study, Ay et al. showed

that plasma Netrin-1 levels were significantly higher in

microalbuminuric diabetic patients than in

normoalbuminuric diabetic patients and controls, but there

was no significant difference between normoproteinuric

patients and controls (Ay et al., 2016). However, a recent

study showed that Netrin-1 estimation in urine has higher

accuracy than Netrin-1 estimation in serum and is a

potential marker for early diagnosis of DN (Jayakumar et al.,

2014). In type I diabetic animals, Netrin-1 expression was

increased in proximal renal tubular epithelial cells and

Netrin-1 was significantly elevated in the early phase without

microalbuminuria and the late phase of all diabetic

nephropathies compared to controls (White et al., 2013).

However, whether Netrin-1 is affected by short-term blood

glucose fluctuations requires further study (Uçaktürk et al.,

2019).

Fatty acid binding protein 1 (FABP1 or L-FABP) is a small

14 kDa molecule protein expressed in the human proximal

renal tubule. The circulating portion of FABP1 is filtered by

the glomerulus and then reabsorbed by the proximal tubule,

which explains its increased concentration in the urine when

proximal tubular cells are injured (Pelsers et al., 2003). Staging

of T2D patients by eGFR and urinary albumin and assessing

urinary L-FABP levels in patients with different albumin levels

showed that urinary L-FABP levels were significantly higher in

diabetic patients with normal urinary albumin than in normal

controls in the presence of renal impairment, suggesting that

urinary L-FABP detects renal disease in diabetic patients earlier

than urinary albumin (Thi et al., 2020). Although L-FABP levels

were significantly negatively correlated with eGFR and

increased with proteinuria severity, markers of tubular

damage do not appear to be predictors of decreased GER in
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patients with T2D (Kamijo-Ikemori et al., 2011; Chou et al.,

2013; Fiseha, 2015). Studies in T1D patients, suggesting that

urinary L-FABP is an independent predictor of tubular damage

in DN and remains useful in the early stages of DN (Panduru

et al., 2013; Suh et al., 2016).

Other protein biomarkers

In addition to the biomarkers mentioned above, there are a

large number of proteins that characterize tubular injury,

glomerular filtration, mesangial dilation, vascular injury, and

renal inflammation (Figure 1 upper). These proteins have been

extensively studied and tested in the urine or blood of diabetic

patients, and experiments have confirmed that these proteins are

associated with specific structural damage and are able to

characterize the development of the disease.

The pathophysiology of DN is complex and includes

hemodynamic changes, oxidative stress, activation of the

renin-angiotensin system, metabolic changes and various

intracellular signaling (Roointan et al., 2021). Altered protein

expression levels are associated with the progression of DN, and

as a systemic metabolic disease, the disease may not seem to be

fully characterized based on a specific protein (Zürbig et al.,

2012). The above proteins are linked to specific structural

damage, and bioinformatic methods can be used to better

understand the linkage of proteins and the biological

processes involved (Geng et al., 2019).

The protein interactions were examined using the Protein

Interaction Online Analysis tool (https://cn.string-db.org/), and

the results showed that these experimentally validated proteins

do not exist in isolation and that there is an interrelationship

between them. These proteins were also analyzed for enrichment

by biological processes, and the results indicate that they are

mainly enriched in extracellular matrix organization, iron ion

transport, kidney development, regulation of angiogenesis,

regulation of cell motility, and response oxygen-containing

compounds (Figure 1 below). Oxidative stress, disturbances in

lipid metabolism play a continuous role in the early stages of DN,

resulting in elevated levels of kidney inflammation and increased

cell death. (Wellen and Hotamisligil, 2005). Processes closely

associated with the persistent early elevation of blood glucose,

such as increased ion transport-related proteins transferrin and

ceruloplasmin, reflect endothelial cell dysfunction and increased

intra-glomerular pressure (Narita et al., 2006; Sánchez-Hidalgo

et al., 2021), and upregulated expression of VEGF promotes

angiogenesis (Aly et al., 2019), as well as increased collagen IV are

also closely associated with the fibrotic process (Kotajima et al.,

2000). A recent study showed a detailed interpretation of the

progression of DN by combining proteomics and peptidomics in

the urine of diabetic subjects, and the results of our analysis have

similarities to this study (Van et al., 2017).

The role of proteomics and scRNA-
seq in DN research

To better understand the pathological features of DN and to

search for potential biomarkers with higher specificity and

accuracy, several proteomic studies have been carried out in

the last years. Comparisons between diabetic subjects at

different stages of renal dysfunction and controls showed

differences in the expression of multiple proteins. Seven

proteins were progressively upregulated with increasing

proteinuria, and the transporter protein VDBP was reported

for the first time in the urine of patients with DN (Rao et al.,

2007). In another study, proteomic analysis identified

haptoglobin as a candidate biomarker for predicting early

decline in renal function, and the ratio of haptoglobin to

creatinine has the ability to predict renal function in diabetic

patients who have not yet exhibited significant renal disease

(Bhensdadia et al., 2013). Urine has an irreplaceable role in

detecting kidney status. Characterizing the urinary proteomics

of patients with different stages of DN helps to understand the

state of the kidney and is important for finding potential

biomarkers (Papale et al., 2010). This is useful in

understanding the condition of patients with DN and in

finding promising treatment pathways. In addition to

changes in protein levels, alterations in metabolites are also

present in diabetic nephropathy, lactic acid, hippuric acid,

allantoin in the urine and glutamine in the blood are the

most important early diagnostic biomarkers in the

pathogenesis of DN. (Roointan et al., 2021). The effects of

metabolic memory on DN may be long-lasting, profoundly

affecting disease development and treatment through

epigenetic modifications. (Kushwaha et al., 2020).

The development of DN is a complex process, such as GBM

thickening in the early stages and glomerulosclerosis and

interstitial fibrosis in the later stages, involving different cell

types at different stages. The application of single-cell RNA

sequencing (scRNA-seq) in kidney disease has allowed us to

identify cell types in tissues and provide insight into cellular

damage and gene expression patterns in different stages of DN.

(Latt et al., 2021). Wilson et al. (2019) analyzed a single nucleus

RNA sequencing dataset from human DN and showed that the

kidneys had developed mild to moderate glomerulosclerosis and

interstitial fibrosis when eGFR was in the normal range. This is in

addition to strong pro-angiogenic features, adaptive changes in

the major cell types that promote Ki+ secretion, and infiltration of

immune cells. Additional, scRNA-seq was used to analyze the

response of DN mouse models to five common treatment

regimens and found that different drugs had significantly

different effects on cell types, even with combination therapy.

(Wu et al., 2022). The existence of computational cell trajectory

analysis methods allows to simulate the process of the kidney

from a normal state to the onset of lesions, thus avoiding
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experimental errors. (Fu et al., 2019). scRNA-seq technology

provides a more precise means for us to diagnose and treat DN.

Conclusion

DN is one of the microvascular complications of diabetes

mellitus, but the development and progression of the disease are

not only caused by hyperglycemia and hypertension; genetic

factors, lifestyle habits, and other coexisting diseases can all have

an impact on DN. Inflammation and oxidative stress play an

extremely important role in diabetes as well as in renal disease,

and therefore the detection of relevant biomarkers can be used to

predict, diagnose and treat DN. However, it is worth noting that

some of these tests are already present during diabetes and may

not be suitable as biomarkers for DN. Tubular and glomerular-

related biomarkers are of immediate value in indicating kidney

injury, but some of them have a lag.

The advent of new technologies has greatly helped in

understanding the pathology of DN and in finding

appropriate biomarkers. Combining multiple indicators to

evaluate DN may have better results.
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