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Cardiotocography (CTG) monitoring is an important medical diagnostic tool

for fetal well-being evaluation in late pregnancy. In this regard, intelligent

CTG classification based on Fetal Heart Rate (FHR) signals is a challenging

research area that can assist obstetricians in making clinical decisions,

thereby improving the efficiency and accuracy of pregnancy

management. Most existing methods focus on one specific modality, that

is, they only detect one type of modality and inevitably have limitations such

as incomplete or redundant source domain feature extraction, and poor

repeatability. This study focuses on modeling multimodal learning for Fetal

Distress Diagnosis (FDD); however, exists three major challenges: unaligned

multimodalities; failure to learn and fuse the causality and inclusion between

multimodal biomedical data; modality sensitivity, that is, difficulty in

implementing a task in the absence of modalities. To address these three

issues, we propose a Multimodal Medical Information Fusion framework

named MMIF, where the Category Constrained-Parallel ViT model (CCPViT)

was first proposed to explore multimodal learning tasks and address the

misalignment between multimodalities. Based on CCPViT, a cross-

attention-based image-text joint component is introduced to establish a

Multimodal Representation Alignment Network model (MRAN), explore the

deep-level interactive representation between cross-modal data, and assist

multimodal learning. Furthermore, we designed a simple-structured FDD

test model based on the highly modal alignment MMIF, realizing task

delegation from multimodal model training (image and text) to unimodal

pathological diagnosis (image). Extensive experiments, including model

parameter sensitivity analysis, cross-modal alignment assessment, and

pathological diagnostic accuracy evaluation, were conducted to show

our models’ superior performance and effectiveness.
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Introduction

Electronic fetal monitoring is a commonly used technique by

obstetricians and gynecologists to assess fetal well-being during

pregnancy as well as labor periods (Saleem and Naqvi, 2019). In

this regard, cardiotocography (CTG) records changes in Fetal

Heart Rate (FHR) signals and their temporal relationship with

uterine contractions, which can be applied noninvasively and

plays a critical role in Fetal Distress Diagnosis (FDD) (Santo

et al., 2017). Among this, FHR can provide the main information

about the relationship between sympathetic and parasympathetic

nervous systems and their balance, and is an important

parameter for the clinical evaluation of fetal well-welling

(Black et al., 2004). Therefore, developing a high-precision

Intelligent CTG (ICTG) classification model based on the

FHR for prompt FDD is crucial for pregnancy management.

The relevant literature has shown that the incidence of fetal

distress in prenatal fetal monitoring is approximately 3%–39%,

which further indicates the significance of antenatal fetal

monitoring (Zhang and Yan, 2019).

Artificial Intelligence (AI) has witnessed many significant

advances in the FDD community, where One-Dimensional (1D)

original FHR signals (Fergus et al., 2021), various feature

indicators (Hussain et al., 2022), and transformed Two-

Dimensional (2D) images (Liu M. et al., 2021) are mainly

used to explore the physiological and pathological information

about pregnant women and fetuses. These methods have

demonstrated great potential in accurately detecting fetal well-

being, however, still have some challenges. For example, one

major limitation of feature engineering is that it is subjective, and

feature indicators depend on the experience of clinical experts

and are not completely independent and objective, which has

poor repeatability (Comert and Kocamaz, 2019; Fergus et al.,

2021). Furthermore, unimodal input data or insufficient feature

indicators is easy to cause incomplete source domain feature

extraction. In contrast, too many feature indicators will bring

about redundancy (Gao et al., 2013; Hu and Marc, 2018).

Therefore, it is difficult to realize an accurate diagnosis in the

clinic even with repeatedly trained and high-performance

classifiers. Due to the complementarity among different

modals, the joint representation can overcome the limitations

of local features in the original signal or image feature

representation (Kong et al., 2020; Rahate et al., 2022). This

raises important questions: Can we integrate representations

from these multimodalities to exploit their complementary

advantages for FDD? To what extent should we process the

different modalities independently, and what kind of fusion

mechanism should be employed for maximum performance

gain?

Data fusion is the combination of data from different

modalities and sources that provide separate perspectives on a

common phenomenon and is performed differently to predict a

precise and proper outcome, which is also known as multimodal

fusion (Tadas et al., 2018). This has the potential to solve

problems with fewer errors than unimodal approaches would

(Richard et al., 2022). In recent years, multimodal AI methods

have been increasingly studied and used in various fields (Li et al.,

2018; Baltrusaitis et al., 2019), and multimodal Deep Learning

(DL) provides advantages over shallow methods for data fusion.

Specifically, it can model nonlinearity and cross-modality

relationships, which has expanded its range of applications

from Computer Vision (CV) to Natural Language Processing

(NLP) to the biomedical field (Ramachandram and Taylor, 2017;

Bichindaritz et al., 2021). However, it faces specific challenges in

biomedical applications, particularly as multimodal biomedical

data typically have misaligned properties or labels, which raises

the problem of studying more complex models and analyzing

biomedical data.

Recently, Transformer-based multimodal fusion framework

has been developed to address numerous typical issues using the

multi-head attention mechanism. It is a typical encoder-decoder

architecture that not only revolutionized the NLP field but also

led to some pioneering work in the field of CV. By introducing

the standard Transformer (Vaswani et al., 2017) and Vision

Transformer (ViT) (Dosovitskiy et al., 2021) as the basis, Wang

et al. (2020), Tsai et al. (2019), and Prakash et al. (2021) all

proposed different variants to adapt streams from one modality

to another, allowing us to explore the correlation between

multimodal knowledge effectively. However, the acquisition of

multimodal biomedical data is typically non-synchronous in

clinical settings, particularly health data involving patients’

personal information and privacy, but these approaches

require all modalities as input. As a result, they are rather

sensitive and difficult to implement in the absence of modalities.

In this study, we focus on modeling multimodal learning for

FDD. To solve the above problems in principle, we propose a

Multimodal Medical Information Fusion (MMIF) framework

that combines two backbones of the Category Constrained-

Parallel ViT framework (CCPViT) and the Multimodal

Representation Alignment Network (MRAN), allowing the

modeling of both image- and text-based unimodal features

and cross-modality fusion features. Compared with most

existing FHR-based unimodal classification models, MMIF is

an image-text foundation model that could contribute to a much

higher-precision model. The main contributions of this study can

be summarized as follows:

1) CCPViT is first proposed and used to learn key features of

different modalities and solve the unaligned multimodal task.

We use an image encoder to extract the encoding features of

2D images based on the Gramian Angular Field (GAF). Then,

all labels are treated simply as unimodal text-only

representations and decoded using a Unimodal Text

Decoder to align the image features. Simultaneously, it is

regarded as a constraint and controls the entire multimodal

learning task.
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2) MRAN is further proposed. It is a multimodal text decoder.

There is a strong causality and inclusion between the above

two modalities. We introduced cross-attention to establish an

image-text joint component that cascades the encoded

unimodal image features and the decoded unimodal text

features to further explore the deep-level interactive

representation between cross-modal data, thereby assisting

the modal alignment, and further identifying abnormal

behaviors.

3) Based on the learned MMIF, we designed a simple-structured

FDD test model to enable it to satisfy downstream tasks and

realize the FHR-based FDD task with an image-only modality

as input. For evaluation, MMIF was verified on a public

clinical database. The experiments demonstrate that MMIF

can achieve state-of-the-art or even better performance than

baseline models.

Related work

In this section, a review of off-the-shelf ICTG methods based

on the FHR, as well as basic information about multimodal

fusion methods, is presented.

FHR-based ICTG approaches

Computerized CTGs
They are mainly based on a programmatic calculation of

authoritative guidelines here and abroad. To achieve consistent

detection, several international authoritative guidelines,

including SOGC (Moshe et al., 2015), FIGO (Black et al.,

2004), and Chinese expert consensus (Yang et al., 2015), have

proposed many evaluation indicators based on CTG. Then,

numerous software were developed on the basis of these

guidelines to perform CTG analysis automatically. 2CTG2

(Magenes et al., 2007), SisPorto (Ayres-de-Campos et al.,

2017), CTG Analyzer (Sbrollini et al., 2017) and CTG-OAS

(Comert and Kocamaz., 2018) are some of them. Since these

software mostly uses the indicators inside guidelines as

regulations, it causes high sensitivity and low specificity in

practical applications, particularly when CTG cases are less

than 40 min, false positives are more likely to occur, which

will lead to excessive intervention.

Feature engineering-based ICTGs
These approaches focus on the analysis of basic feature

engineering by mimicking the diagnosis of clinical obstetrics

and gynecology experts and combining it with AI algorithms,

thereby identifying the fetal status. Feature engineering primarily

includes time-domain and frequency-domain feature

engineering in this context. The former relates to

morphological, linear, nonlinear, and high-order statistical

features (Zhang Y. et al., 2019; Signorini et al., 2020; Chen

et al., 2021), and the latter includes various classical frequency

spectra (Zhang Y. et al., 2019; Zeng and Lu, 2021). For example,

Zeng and Lu. (2021) explored CTG signal’s non-stationarity and

class imbalance by adopting linear, time-domain and frequency-

domain features for training an Ensemble Cost-sensitive Support

Vector Machine (ECSVM) classifier. Hussain et al. (2022)

proposed an AlexNet-SVM model to explore pathological

information from numerous feature indicators of FHR signals.

As seen from Table 1, both the studies of Chen et al. (2021) and

Hussain et al. (2022) achieved good diagnostic accuracy, which is

partly because their experimental database consists of numerous

feature indicators calibrated by clinical experts. That is, they

depend on the experience of clinical experts and are not

completely independent and objective.

1D signal/2D image-based ICTGs
Contrary to complex feature engineering, original FHR

signals can also be used as input directly to achieve the same

purpose. By introducing the standard Convolutional Neural

Network (CNN) as the basis, both Fergus et al. (2021) and

Liu M. et al. (2021) achieved FDD by exploring pathological

information from the original FHR. Meanwhile, various

transformations, such as Continuous and Discrete Wavelet

Transforms (CWT, DWT) (Comert et al., 2017; Zhao et al.,

2019), Short Time Fourier Transform (STFT) (Comert and

Kocamaz., 2019) and Complete Ensemble Empirical Mode

Decomposition (CEEMD) (Fuentealba et al., 2019), have also

been used in ICTG. These time–frequency-domain signal

processing techniques are typically combined with DL models.

Among these, Liu M. achieved ICTG by capturing pathological

information with the combination of 1D FHR signals and DWT-

based 2D images (Liu M. et al., 2021). Table 1 provides a detailed

review of these FDDmodels. Compared with feature engineering,

1D signal/2D image-based ICTGs have improved in accuracy on

some specific datasets. Therefore, the application of these

algorithms in different clinical settings is worthy of further

exploration.

Multimodal fusion approaches

Considering different fusion positions, conventional fusion

is generally divided into early, intermediate, late, and hybrid

fusion techniques (shown in Figure 1). Among those, early

fusion is also known as feature-based fusion, which focuses on

learning cross-modal relationships from low-level features

(Mello and Kory, 2015). In intermediate fusion, marginal

representations as feature vectors are learned and fused

instead of the original multimodal data (Lee and Mihaela,

2021). In contrast, late fusion performs integration at the

decision level by voting among the model results; thus, it is

also known as decision-based fusion (Torres et al., 2022). In
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hybrid fusion, the output comes from a combination of the first

three fusion strategies (Tsai et al., 2020). Inspired by the success

of the Transformer model, the standard Transformer and ViT

structures, as well as various variants based on them, have been

widely used in multimodal data learning (Tsai et al., 2019;

Wang et al., 2020; Prakash et al., 2021). ViT has achieved

excellent performance on multiple benchmarks, such as

ImageNet, COCO, and ADE20k, compared to CNNs.

Methodology

In this section, we first present the input representation,

which is a simple image and text modality. Then, we elaborated

on the MMIF framework (Figure 2), which includes CCPViT

(Figure 3) and MRAN (Figure 4) Finally, we presented an FDD

test model (Figure 5), which is used to satisfy the constraints of

data from different source domains in clinical practice.

TABLE 1 A review and comparison of the existing ICTG classification models.

Authors Dateset (normal/
pathological)

Algorithm Performance

Feature engineering-based
ICTG

Zhang Y. et al. (2019) CTU-UHB (509/43) LS-SVM + GA ACC = 0.910, AUC = 0.920

Signorini et al. (2020) Private (60/60) Random Forest ACC = 0.911, Sen = 0.902

Chen et al. (2021) UCI (1655/176) Deep Forest ACC = 0.951, F1 = 0.920

Zeng and Lu. (2021) CTU-UHB (442/27) ECSVM Sen = 0.852, Spe = 0.661

Hussain et al. (2022) UCI (Total: 2126) AlexNet-SVM ACC = 0.993, Sen = 0.967

1D signal/2D image-based
ICTG

Comert et al. (2017) Private (272/44) DWT + kNN + ANN ACC = 0.905 (Normal)

= 0.902 (Pathological)

Comert and Kocamaz.,
(2019)

CTU-UHB STFT + DCNN-TL ACC = 0.933

Fuentealba et al. (2019) CTU-UHB (354 + 18) CEEMD + SVM ACC = 0.817

Zhao et al. (2019) CTU-UHB (447 + 105) CWT + CNN ACC = 0.983, AUC = 0.978

Fergus et al. (2021) CTU-UHB (506/46) 1D FHR + CNN AUC = 0.860

Liu M. et al. (2021) CTU-UHB (439/113) 1D FHR + DWT + CNN-
BiLSTM

ACC = 0.717, Sen = 0.752

Note: LS-SVM + GA: Genetic Algorithm and Least Square SVM; kNN: k-Nearest Neighbor; ANN: artificial neural network; TL: transfer learning; BiLSTM: Bidirectional Long Short-Term

Memory.

FIGURE 1
DL-based fusion strategies. Layers marked in red are shared between modalities and learned joint representations. (A) Early fusion takes
concatenated vectors as input; (B) Intermediate fusion first learnsmarginal representations and fuses them later inside the network. This can occur in
one layer or gradually. (C) Late fusion combines decisions by submodels for each modality.

Frontiers in Physiology frontiersin.org04

Zhang et al. 10.3389/fphys.2022.1021400

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1021400


Preliminaries

Given the length of an original FHR signal as L, we use

Xs ∈ R1×L to represent a series of collected FHR signals. The

inputs of the backbone consist of two modalities, image (I)

and text (T), and can be denoted as Xi ∈ Rni×di and Xt ∈ Rnt×dt ,

respectively. Here, ni and nt represent the number of tokens,

i.e., image and word numbers, respectively. di represents the

image size, and dt represents the dimension of text features.

Then, the output feature representations of I and T are

denoted as X′
i and X′

t, i.e., [img_embeds] and

[text_embeds], respectively. Imgi and Txtj denote the

outcome label of the ith pair of image and text modalities,

respectively, i.e., [class_img] and [class_text] tokens.

Meanwhile, this study denotes image–text multimodality

as M; thus, the outputs of M can be denoted as X′
m

(cross-modality fusion features, i.e., [mul_embeds]) and

Muli (the ith pair of multimodal prediction results,

i.e., [class_mul] tokens).

Multi-head self-attention mechanism
This study follows the standard mechanism of multi-

head self-attention. For simplicity, we consider the

unimodality representation Xi ∈ Rni×di as an example of the

translation process. First, Xt ∈ Rnt×dt is delivered to a densely

connected layer for linear projection to obtain the

updated X′
i ∈ Rni×Li , where Li represents the output

dimension of the linear layer. Thus, the corresponding

query matrix, key matrix and value matrix are denoted as

Qi � XiWQi ∈ Rni×Li , Ki � XiWKi ∈ Rni×Li , and

Vi � XiWVi ∈ Rni×Li , where WQi , WKi , and WVi represents

weight matrices. Then, we compute the scaled dot

products between Qi and Ki, divide each by the scale

coefficient
��
Li

√
, and use a softmax function to obtain the

attention weights with Vi.

head � Attention(Qi, Ki, Vi) � softmax(QiKT
i��

Li

√ )Vi (1)

Note that the Transformer applies the attention mechanism

several times throughout the architecture, resulting in multiple

attention layers, with each layer in a standard transformer having

multiple parallel attention heads:

Multi − head � Concat(head1, ..., headh)WO (2)

Input representation

Image modality-2D images based on Gramian
Angular Difference Fields (GADF)

GAF is a time series encoding method based on the inner

product and the Gram matrix proposed by Zhiguang Wang and

Tim Oates in 2015 that allows each group of FHR series to

generate only one polar coordinate system-based mapping map

(Wang and Oates, 2015). First, the FHR is scaled in the Cartesian

coordinate system to [−1, 1]. Then, it is converted into a polar

coordinate system time series. Specifically, take the time axis as

the radius and the FHR value as the cosine angle. Finally, GADF

images can be obtained by angle difference-based trigonometric

function transformation (Eq. 3). Because the sequence length will

extensively affect the calculation efficiency, we introduced the

piecewise aggregation approximation to obtain the dimension

value. Experimentally, set the initial dimension as L � 7200 (the

original FHR length) and the fixed difference as 180, then

decrease the dimension from 7200 to 180 in turn, and a total

of 40 sets of parameters can be obtained, i.e., [7200, 7020, ..., 180].
Thus, 40 GADF-based 2D images with an image size of 224 ×

224 are obtained, each of which can be marked as Xi ∈ R40×224.

GADF � [sin(φi − φj)] � ������
I − ~X

2

s

√
′ · ~Xs − ~X

′
s ·

������
I − ~X

2

s

√
(3)

FIGURE 2
Detailed illustration of MMIF during the training period. CCPViT is utilized to learn the unimodal text and image features. MRAN is applied to
explore the deep-level interactive representation between cross-modal data. Multimodal fusing embeddings are input to the MMIF model to
generate text-only representations.
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where I represents a standard row vector, and ~Xs is the scaled

time series.

Text modality-description of pathological
diagnosis

Sample labels were introduced to construct unimodal text-

only data and used as a constraint of MMIF. For the training and

validation sets with known pathological status, the description

criteria adopted are as follows: if the current sample is normal,

obtain its text modality as “This object is normal”; otherwise, an

abnormal FHR can be described as “This object is pathological”.

Set the model dimension to 224; thus, the text modality can be

quantized as Xi ∈ R4×224.

The MMIF model

The goal of this work is to achieve a high-precision

intelligent FDD. To achieve this, an MMIF framework has

been elaborately devised, as shown in Figure 2. It mainly

consists of two backbones: CCPViT and MRAN. The former

is applied to feature encoding in the case of unaligned

multimodalities, and the latter is capable of exploring the

deep-level interactive representation among cross-modal data

and further assisting modal alignment.

Category constrained-parallel ViT
The backbone of CCPViT is a simple encoder–decoder

architecture with multiple standard ViT Encoders and

Transformer Decoders, as shown in Figure 3. Our key idea is

to exploit the multi-head self-attention mechanism to model

from two unimodality representations, Xi and Xt.

First, we focused on learning the encoding features of GADF

images and constructed an image encoder with ViT-B/16 as the

backbone. Inspired by the success of the Transformer in NLP,

ViT was originally developed by Google Research in 2020 to

apply the Transformer to image classification (Dosovitskiy et al.,

2021). ViT-B/16 is the model variant of the standard ViT, which

means the Base variant with an input patch size of 16 × 16.

Compared with the traditional convolution architecture, the

most significant advantage of ViT-B/16 is that it has a great

vision in both shallow and deep structures, which ensures that it

can not only obtain global feature information in the shallow

layer but can also learn high-quality intermediate features in the

middle layer and retain more comprehensive spatial information

in the deep layer, resulting in excellent classification

performance. In this study, our proposed image encoder

consists of three stages: In the input stage, we split an image

into patches and sequentially sort them to form a linear

embedding sequence named patch embeddings, which are

then fed to the Transformer to realize the application of the

standard Transformer in CV tasks. Meanwhile, position

embeddings were added to remember the positional

relationship between these patches. In the second stage, the

Transformer Encoder block was used as the basic network

module, with each primarily including LayerNorm, multi-head

attention, dropout, and MLP Block structure. We repeatedly

stacked it six times to continuously deepen the network structure

andmine typical features of the input data. A standardMLP head

was introduced in the final stage to output the encoded unimodal

FIGURE 3
CCPViT: Xi and Xt refer to the features of image modality and text modality, respectively. The input image is a 224×224 RGB image. The
backbones of the image encoder and unimodal text decoder are shown in the blue and yellow boxes, respectively.
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image features X′
i and a learnable image query qimg ∈ R1×di from

query matrix Qi. It is worth noting that qimg was mainly used for

cross-modal learning in MRAN.

Subsequently, we studied the sample label-based unimodal

text data. Specifically, an independent unimodal text decoder was

established in this study that does not interact with the image

side’s information. It uses the Transformer Decoder as the

decoding block, which is an efficient and adaptive method for

retrieving the long-range interplay along the temporal domain.

Similarly, we divide the unimodal text decoder into three stages.

The first is a standard embedding layer to obtain text tokens.

Then, the decoder block is stacked by six decoders, each of which

is composed of masked multi-head attention, multi-head

attention, and a feed-forward network structure. Finally, we

can obtain the decoded unimodal text features X′
t and its

[class_text] token Txt with a linear transformation structure.

Note that there is no cross-attention between the

Unimodal Text Decoder and Image Encoder, which are two

parallel feature representation models. Hence, it is difficult to

align the decoded text features with the global image

information. This study addresses this misalignment from

two aspects: On the one hand, similar to ALBEF’s [class]

token (Li and Selvaraju, 2021), we inserted a [class_text]

token into the patch embeddings in the unimodal text

decoder, which combines a constraint term loss with the

encoded features on the image side for comparison

learning. Note that the [class_text] token in this stage is a

trainable parameter, whose output state at the third stage

serves as the outcome label of the text modality; Another

auxiliary alignment is primarily reflected in MRAN, which will

be specified in the following part.

Multimodal representation alignment network
The backbone of MRAN is a multimodal text decoder, which is

located above the image encoder and unimodal text decoder. It

cascades with the output of image encoding through a cross-

attention network to learn the multimodal image–text

representation, generates interactive information about them, and

then decodes the information to restore the corresponding text,

that is, the text-only representation of the pathological diagnosis

results.

An overview of the backbone architecture is shown in Figure 4.

The input of MRAN is the output of CCPViT, including the

encoded unimodal image features X′
i and its image query qimg,

FIGURE 4
MRAN: The input data are the outcome of CCPViT, i.e., the encoded unimodal image features X′

i and its image query qimg , and the decoded
unimodal text features X′

t and its [class_text] token Txt . The multimodal text decoder is used to exploit the local and explicit interplay between cross-
modality translations. (A) The network structure of MRAN; (B) The network structure of CAB.
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the decoded unimodal text featuresX′
t and its [class_text] tokenTxt.

The entire process of MRAN consists of three stages: Stage 1, update

the information on the image side. X′
i and qimg are input into a

Cross-Attention Block (CAB) structure to capture local information,

which is then normalized through a LayerNorm layer to smooth the

size relationship between different samples and retain it between

different features. Therefore, the updated information on the image

side was obtained, and then the updated image features

Xinew
′ (columns 1st to (di − 1)th) and its [class_img] token Img

(the last column) can be obtained. Stage 2, cross-modal learning.

The structure of the multimodal text decoder primarily

includes decoder blocks and CAB modules. In this stage, X′
t

first went through the decoder block once and then was

cascaded with Xinew
′ .Next, they were jointly input into a

CAB structure for cross-modal learning. Repeatedly stack

six times and combine constraint term loss and captioning

loss to evaluate the performance of cross-modal learning to

achieve a deep-level of interaction and optimization. Stage 3,

standardized processing and output the joint representation of

image–text information X′
m and the text-only representation

of pathological diagnosis results Mul.

The structure and calculation process of the CAB are

shown in Figure 4B, which primarily includes two Inner

Patch Self-Attentions (IPSAs) and one Cross Patch Self-

Attention (CPSA). It is a new attention mechanism that

does not calculate the global attention directly but controls

the attention calculation inside the patch to capture local

information and then applies attention to the patches between

single-channel feature maps to capture global information.

Based on the CAB, a stronger backbone can be constructed to

explore the causality and inclusion between image and text

modalities and generate multiscale feature maps, satisfying the

requirements of downstream tasks for features with different

dimensions.

Modeling alignment of cross-modal
Throughout the training process of MMIF, decoded

unimodal text features were combined with encoded

unimodal image features for multimodal learning and

pathological diagnosis. The text modality acts as a hard

constraint to restrict the entire cross-modal learning.

Specifically, we divided the modal alignment task into two

parts: unimodal alignment between image and text labels,

and multimodal alignment between multimodal and text

labels, and defined two indicators to measure their alignment

degree.

1) Constraint term loss: This is the training loss ofCCPViT,marked as

Lcon. We use an exponential loss function to comparatively learn

the difference betweenTxt and Img, as shown in Eqs 4–6. Notably,

the contrastive learning from I to T and T to I are marked as

TransI→T and TransT→I, respectively; thus, LI→T and LT→I

denote the training losses of TransI→T and TransT→I, respectively.

LI→T � − 1
N

∑
i

log
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ exp(ITmgi ·Txti

τ )
∑N

j exp(ITmgi ·Txtj

τ )
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4)

LT→I � − 1
N

∑
i

log
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ exp(TT

xti ·Imgi

τ )
∑N

j exp(TT
xti ·Imgj

τ )
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5)

Lcon � LI→T + LT→I (6)
where Imgi and Txtj denote the outcome label of the ith pair of

image modalities and the jth pair of text modalities. N refers to

the batch size, and τ is the temperature to scale the logits.

2) Captioning loss: This is the training loss of MRAN, marked as

Lcap. It calculates the cross-entropy loss of Txt and Mul,

assisting the alignment of multimodal data.

Lcap � 1
N

∑
i

li

�
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∑
i

∑C
c�1
Mul ic · log(pic), if multi classif ication

− 1
N

∑
i

[Mul i · log(pi) + (1 −Mul i) · log(1 − pi)], if binary classif ication
(7)

where Muli denotes the label of the ith multimodal prediction

results, the positive (i.e., normal) and negative (i.e., pathological)

FHRs are labeled as 0 and 1, respectively; and pi denotes

the probability that the ith multimodal sample is classified as

normal.

Therefore, the calculation of the loss function throughout the

training process can be obtained (Eq. 8), where α and β refer to

the loss coefficient weights of constraint term loss and captioning

loss, respectively, and α + β � 1. In subsequent experiments, α

and β are important hyperparameters to be optimized.

L � α · Lcon + β · Lcap (8)

MMIF for FDD task

In clinical practice, the acquisition of multimodal biomedical data

is typically non-synchronous, especially health data containing

patients’ personal information and privacy. Thus, an optimal

solution is to develop a diagnostic model to satisfy the constraints

of data from different source domains in clinical tasks. Based on the

goal of this study, we cannot obtain the text modality in advance in

actual clinical diagnosis. In contrast, obtaining pathological diagnosis

results (i.e., text modality) is our eventual goal. Therefore, we designed

an FDD test model shown in Figure 5 to implement the FHR-based

FDD task, using image-only modalities as input.

Specifically, we first convert the 1DFHR signal of the object being

diagnosed to GADF-based 2D images and feed each image into the

trained image encoder separately. For the trained image encoder,
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freeze its feature layers, i.e., freeze the last layer of the 6th Transformer

Encoder block and that before the MLP head. Then, cascade a CAB

with a LayerNorm layer on top of the feature tokens and its single

image query token, then feed to a softmax cross-entropy loss, thereby

completing the FDD task applicable to image-only modalities and

realizing effective diagnosis of fetal health status.

In principle, the fundamental reason why the proposed

MMIF can be adapted to different types of downstream tasks

(that is, with different modalities as input data) by sharing the

backbone encoder is that it is a parallel model in which the

unimodal text decoder and image encoder are independent of

each other, and the trained model is highly modal alignment.

The powerful performance of the trained encoder is based on

the joint learning of local-level text and global image

modalities.

Experiments and discussion

In this section, we extensively evaluate the capabilities of

MMIF as a trained model in downstream tasks. We focus on

three categories of tasks: 1) parameter sensitivity analysis, 2) cross-

modal alignment of image, text and multimodal understanding

capabilities, and 3) pathological diagnosis of the FDD test model.

Since MMIF achieves both unimodal representations and fused

multimodal embeddings simultaneously, it is easily transferable to

all three tasks. The results verified that the proposed MMIF

achieves state-of-the-art diagnosis accuracy (0.963).

Experimental setup

Datasets
A publicly available intrapartumCTG dataset, which is available

on Physionet (Goldberger andAmaral, 2000), was used in this study.

It initially contained 552 recordings collected from the obstetrics

ward of the Czech Technical University-University Hospital in Brno

(CTU-UHB), Czech Republic, between April 2010 and August 2012

(Václav et al., 2014). Clinically, the pH value of the neonatal

umbilical artery and Apgar score at 5 and 10 min (Apgar 5/10)

are gold standards to assess fetal health (Romagnoli and Sbrollini,

2020). The inclusion and exclusion criteria were as follows: 1)

Rejected unqualified signals: The degree of the missing sample

was greater than 10%. The missing beats increase during this

period, and it is difficult to assess the FHR with increasing

irregularity. 2) Signal length: L = 7200. Since the major fetal

distress occurs before delivery, we focus on the last 30 min of the

samples in the experiment (sampling frequency: 4 Hz). 3) Data

partitioning: Normal FHR: pH≥ 7.15 and Apgar 5/10 ∈ [9, 10];
Abnormal/pathological FHR: pH< 7.05. 4) Label the sample: label

the normal and pathological FHRs as 0 and 1, respectively.

According to this criterion, we collected a total of 40 pathological

and 386 normal samples, fromwhich 80 normal and 40 pathological

samples were randomly selected, respectively.

Data preprocessing
The selected FHR signals were filled in using the mini-batch-

based minimized sparse dictionary learning method (Zhang Y. et al.,

2022). Subsequently, 40 pathological samples were augmented using

the category constraint-based Wasserstein GANmodel with gradient

penalty to generate 40 simulated pathological signals, totaling

80 pathological samples. It is a small sample generation technology

that is used to balance samples between positive and negative

categories, as proposed in our previous study (Zhang Y.F. et al.,

2022). Therefore, the structured database includes 80 normal and

80 pathological samples. Stratified random sampling was used to

divide the samples into training and test sets in a 1:1 ratio. Then in the

training process, 5-fold Cross Validation (5-CV) was used to further

divide the training and validation sets. Specifically, since each sample

contains 40 pairs of images and text data, 640 and 2560 data were used

as validation and training sets respectively in each model training

session.

Baseline methods
To demonstrate the effectiveness of our proposed MMIF, we

compared it to two types of baseline methods, namely, feature

engineering-based ICTGs and 1D signal/2D image-based ICTGs.

· LS-SVM + GA (Zhang Y. et al., 2019): Belongs to the first

type. It combines a genetic algorithm and least square SVM

for FDD, where 67 time–frequency-domain and nonlinear

features are extracted.

· LocalCNN (Zhao et al., 2019): Belongs to the second type. It

is a simple CNN model with an 8-layer CNN network, with

2D images obtained with the CWT as input data.

· VGGNet16: Belongs to the second type. It is a deep CNN

model that uses VGGNet16 as a backbone and GADF-based

2D images as input data.

FIGURE 5
Application of the trained MMIF to the FDD task. MMIF is
composed of a frozen Transformer Encoder and a CAB structure
for aggregating features and producing pathological diagnosis
results.
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· ViT (Dosovitskiy et al., 2021): Belongs to the second type.

Different from the above two traditional CNN architectures,

we introduced ViT-B/16 for FDD, which uses GADF-based

2D images as unimodal input data.

Evaluation metrics
In our experiments, accuracy (ACC), F1-score (F1) and

Area Under the Curve (AUC) were used as evaluation metrics.

ACC measures how many objects were correctly classified.

F1 balances the traditional precision and recall. AUC

interprets the authenticity of the algorithm. Higher values

of these three indicators indicate better link prediction

performance. Furthermore, the coefficient of determination

R-square (R2), as shown in Eq. 9, was introduced to measure

the ability of cross-modal alignment.

R2 � 1 −
∑N
i�1
(ŷ*

i − Txti)2
∑N
i�1
(Txti − T̂xt)2

(9)

where ŷ* represents the outcome label of the image modality or

multimodal prediction results, and T̂xt denotes the mean of the

outcome label of all text modalities.

Basic parameter settings
In the training process, set the batch size and the epoch to

32 and 10, respectively, and all training samples are trained on

the combined loss function in Eq. 9. The loss is then

backpropagated to update the parameters using AdaGrad,

with exponential attenuation rates β1 � 0.9 and β2 � 0.999

and a decoupled weight decay rate of 1e−4. The learning rate

α is set to 1e−3. In addition, the best value of temperature τ is

empirically set as 0.07. For optimal accuracy, the two weight

parameters α and β were set according to the model training

results. In addition, the model structure was as follows: image

encoder: depth is 6, and the number of multi-heads is 16;

unimodal text decoder and MRAN: depth is 6, and the

numbers of multi-heads is 8.

Parameter sensitivity analysis

In this part, we focus on the effect of different weight

parameters and decoder/encoder layers on the performance of

MMIF to obtain an optimal model parameter combination.

First, we analyzed the combination of α and β with the

training and test sets in Figures 6, 7. The higher α is, the more

important the constraint term loss. That is, MMIF focuses more

on unimodal image encoding, and the performance of the image

encoder plays a more important role in FDD diagnosis.

Otherwise, MMIF pays more attention to multimodal

image–text decoding. These figures show the changes in

diagnostic ACC and F1 with various α. In this scope, we

experimented with different ViT structures of CCPViT. As the

weight of the constraint term loss (α) decreased, the prediction

ability of each ViT model improved to varying degrees; however,

when it was reduced below 0.3, the training performance of the

fourmodel structures was no longer improved, but the ViT-B/16-

based model could still maintain high performance on the

validation and test sets. The other three model structures, by

contrast, show a significantly larger downward trend on both the

validation and test sets. Thus, it is valid to consider that ViT-B/

16 shows the most stable increase and the highest classification

ACC and F1 in the FDD task. As shown in Figures 6, 7, ACC and

F1 are maximized when the weight of the constraint term loss is

set to α � 0.3 and the weight of the captioning loss is β � 0.7.

We then tested the effect of different numbers of encoder and

decoder blocks on the performance of the multimodal model, as

shown in subgraphs (a)-(c) in Figure 8. Since each CCPViT and

MRAN comprises several sequential encoder blocks and/or

decoder blocks, we are skeptical that the final feature

representation of a specific layer may affect the performance

of the proposed model. According to the curves, as each network

structure increases, the diagnostic accuracy of MMIF is

significantly improved. In sub-graph (a), it is interesting to

note that the model reaches the peak value at layer 6 on both

the training and test sets, which means that the output of the 6th

layer embraces the most discriminative fusion message. In

comparison, the model is relatively less affected by unimodal

decoder layers, which may imply that the lower layer can capture

the joint representation for the simple case. The curve of sub-

graph (c) shows a similar trend to that of (a) and achieves the

optimal results at the 6th block of MRAN. In conclusion, the

lower encoder and multimodal decoder blocks may involve low-

level characteristics of interplay, whereas the higher encoder and

multimodal decoder layers may embrace explicit messages.

Comparing image-text modalities, text modality is the

relatively simple case; thus, the lower unimodal decoder layer

may be sufficient to demonstrate the interaction. By studying

Figures 6–8, we can see that:

- ViT-B/16 shows the most stable increase and the highest

classification ACC and F1.

- There is a sweet spot for the value of loss coefficient weights

not significantly affected by ViT structures; thus, set α � 0.3

and β � 0.7.

- There is a point of optimal balance in the encoder and

decoder blocks; thus, set the encoder block in CCPViT,

unimodal decoder in CCPViT, and multimodal decoder in

MRAN to 6.

Performance of cross-modal alignment

Cross-modal alignment is particularly important in

multimodal learning. In the proposed MMIF, although both
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FIGURE 6
ACC score of link prediction on four different ViT structures, where red, blue, orange, and green refer to ViT-B/16, ViT-B/32, ViT-L/16, and ViT-
L/32, respectively (set all blocks to six).

FIGURE 7
F1 score of link prediction on four different ViT structures, where red, blue, orange, and green refer to ViT-B/16, ViT-B/32, ViT-L/16, and ViT-L/
32, respectively (set all blocks to six).

FIGURE 8
Effects of the encoder and decoder blocks on model prediction. The red, green, and blue curves refer to the training, validation, and test sets,
respectively. Multimodal decoder blocks contain multi-head attention and CAB (select ViT-B/16 and set α � 0.3; β � 0.7). (A) Encoder blocks of
CCPViT; (B) Unimodal Decoder blocks of CCPViT; (C) Multimodal Decoder blocks of MRAN.
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loss values are computed for the same final task, there is no

explicit constraint being imposed on the consistency between

their outcomes. Therefore, we must provide effective evidence

and evaluation of the multimodal alignment of multimodal

models.

In this part, we first examine the category output of two

independent networks in the training set, that is, the output label

of unimodal encoder Img and multimodal decoder Mul, taking the

category of unimodal decoder Txt as a contrast constraint. The

results are listed in Table 2. First, the alignment of normal samples is

slightly better than those of pathological cases in both scenarios of

I → T and M → T. One possible explanation is that the main

clinical manifestations of normal samples are highly similar and

perform stably. Second, the value of R2(I → T) (the alignment

between Img andTxt) is slightly lower than that ofR2(M → T) (the
alignment betweenMul andTxt), which, to some extent, proves that

multimodal data fusion can reduce the shortcomings of local

features in original signals or image feature representation to

achieve a high-precision diagnosis. Finally, a high R2 is achieved

for both the unimodal encoder and multimodal decoder. Therefore,

we believe that the diagnosis of our MMIF is sufficient to achieve

high multimodal alignment attributes and is comparable to that of

humans.

We then compared the alignment between the outcome of the

FDD test model and its label category, as shown in the last row of

Table 2. It can be found that it performs on par with MMIF on

both normal samples and pathological cases. This finding suggests

that the trained FDD classification model subsumes a strong

learning property of MMIF. The effect of a softmax cross-

entropy loss is equal to that of the two losses of MMIF when

we use image-only modalities as input. Thus, our proposedMMIF

can be interpreted as an effective unification of the three

paradigms. This explains why the FDD test model in Figure 5

does not need a pretrained text decoder to perform well.

Performance of pathological diagnosis

Over the years, several studies on FHR-based ICTG approaches

have been conducted. To perform amore objective and comparative

performance evaluation, we reproduced four baseline methods

proposed in Experimental Setup Section and made a comparison

with three evaluation metrics.

As shown in Table 3, our method has the best performance

among all baseline methods. In particular, in terms of

diagnostic ACC, MMIF-1 exceeds the previous best ViT

method by a margin of 5%. One possible explanation is that

MMIF performs well in the process of information interaction

and feature learning for cross-modal data, which partly verifies

the necessity of having a multimodal approach. Furthermore, in

terms of F1, the empirical improvement of MMIF-1 is up to

8.4%. It is interesting to note that the improvement of DL

methods, whether the CNN structure or models with ViT as a

backbone, is more significant than LS-SVM + GA, a topical 1D

feature engineering-based ICTG model. This implies that the

1D signal/2D image-based ICTG method is capable of

improving the accuracy of pathological feature extraction,

and furthermore, MMIF-1 can effectively utilize auxiliary

features (text modality) to achieve deep-level interactive

representations of data and self-learning of pathological

features. The AUC is highly consistent with the other two

indicators. We may reasonably conclude that although ICTG

is a challenging task, DL-based diagnosis schemes are effective

and our method is correct.

TABLE 2 Training result of cross-modal alignment (R2).

Normal samples Pathological cases The entire set

Training set I→T 0.950 (0.939, 0.961) 0.935 (0.910, 0.959) 0.943

M→T 0.967 (0.954, 0.980) 0.955 (0.941, 0.969) 0.961

Test set - 0.968 (0.959, 0.978) 0.961 (0.944, 0.978) 0.965

Notes: I→T and M→T denote the alignment of encoded unimodal image features and text labels and the alignment of multimodal decoding features and text labels, respectively.The bold

values means the best performance of the current experiments.

TABLE 3 Test results of our methods and baseline methods for FDD
pathological diagnosis analysis.

Method ACC F1 AUC

LS-SVM + GA 0.863 0.879 0.863

LocalCNN 0.888 0.894 0.887

VGGNet16 0.900 0.894 0.900

ViT 0.913 0.916 0.912

MMIF-1 (Ours, ViT-B/16) 0.963 0.963 0.962

MMIF-2 (Ours, ViT-B/32) 0.850 0.857 0.850

MMIF-3 (Ours, ViT-L/16) 0.938 0.940 0.937

MMIF-4 (Ours, ViT-L/32) 0.850 0.860 0.847

Notes: The experiment is based on 40 normal and 40 pathological samples in the test set.

The FDD, test model only employs unimodality (GADF-based 2D images) to perform

the multimodal fusion task, as shown in Figure 5. The criteria to output the diagnostic

classification result: for each object, the proportion of 40 images labeled as normal/

pathological exceeds 50%.
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Conclusion and future work

In this study, we propose MMIF that fuses image and text

modalities, models multimodal data information, generates

encoded unimodal image features, decoded unimodal text

features, and multimodal decoding features, and finally

diagnoses fetal well-being. The following key points were

identified in our study:

1) Initially, our proposed MMIF combines two important network

modules of CCPViT andMRAN to explore multimodal learning

tasks and solve the misalignment problem. Specifically, sample

labels were introduced first to construct unimodal text-only data.

Then, we designed a constraint term loss for comparison learning

with the image modality of CCPViT, and a captioning loss for

auxiliary aligning with the multimodal fusion features of MRAN.

Structurally, CCPViT takes ViT and Transformer as backbones

and calculates the unimodal information of image and text

modalities in parallel. Based on CCPViT, a cross-attention-

based image–text joint component was further established to

explore the deep-level causality and inclusion between cross-

modal data and realize multimodal learning.

2) Furthermore, we designed a simple-structured FDD test

model based on the highly modal alignment MMIF,

realizing the task delegation from multimodal model

training (image and text) to unimodal pathological

diagnosis (image) and satisfying the constraints of data

from different source domains in clinical tasks.

3) The proposed MMIF and its downstream model, i.e., the FDD

test model, were verified on a public clinical database. Extensive

experiments, including parameter sensitivity analysis, cross-

modal alignment assessment, and pathological diagnostic

accuracy evaluation, were conducted to show their superior

performance and effectiveness.

Some interesting points in this study can be expanded. The

first and most important problem is how to rigidly constrain the

MMIF’s cross-modal alignment and evaluate its alignment effect

in real time during multimodal learning. Another problem is

insufficient model interpretability. A qualified medical diagnosis

system must be transparent, understandable, and explainable.

Thus, for future work, we will explore explainable AI models.
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