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Introduction: Direct quantification of hemodynamic factors applied to a

cerebral aneurysm (CA) remains inaccessible due to the lack of technologies

to measure the flow field within an aneurysm precisely. This study aimed to

develop an in vitro validated 3D in silico patient-specific internal carotid artery

sidewall aneurysm (ICASA) model which can be used to investigate

hemodynamic factors on the CA pathophysiology.

Methods: The validated ICASA model was developed by quantifying and

comparing the flow field using particle image velocimetry (PIV)

measurements and computational fluid dynamics (CFD) simulations.

Specifically, the flow field characteristics, i.e., blood flowrates, normalized

velocity profiles, flow streamlines, and vortex locations, have been

compared at representative time instants in a cardiac pulsatile period in two

designated regions of the ICASA model, respectively. One region is in the

internal carotid artery (ICA) inlet close to the aneurysm sac, the other is across

the middle of the aneurysmal sac.

Results and Discussion: The results indicated that the developed

computational fluid dynamics model presents good agreements with the

results from the parallel particle image velocimetry and flowrate

measurements, with relative differences smaller than 0.33% in volumetric

flow rate in the ICA and relative errors smaller than 9.52% in averaged

velocities in the complex aneurysmal sac. However, small differences

between CFD and PIV in the near wall regions were observed due to the

factors of slight differences in the 3D printed model, light reflection and

refraction near arterial walls, and flow waveform uncertainties. The validated

model not only can be further employed to investigate hemodynamic factors

on the cerebral aneurysm pathophysiology statistically, but also provides a

typical model and guidance for other professionals to evaluate the

hemodynamic effects on cerebral aneurysms.
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1 Introduction

Arterial walls involved with the bifurcated arteries within the

circle of Willis have potential risks to form cerebral/intracranial

aneurysms by abnormal focal enlargements, which may cause

severe consequences due to intracranial hemorrhage into the

subarachnoid space once the aneurysm sac is ruptured (Linn

et al., 1996; Winn et al., 2002; Kaminogo et al., 2003; Jabbarli

et al., 2016). Nearly 5% of the population in the United States

have at least one cerebral aneurysm, and about 0.2% of them

rupture annually (de Rooij et al., 2007; Sadasivan et al., 2013).

However, there is an inadequate understanding of rupture risks

when evaluating unruptured brain aneurysm discovered

incidentally. How aneurysms grow and when aneurysm sac(s)

will rupture is still ambiguous, due to the lack of fundamental

studies on the pathophysiology of cerebral aneurysms (CAs)

(Meng et al., 2014). Thus, to offer effective treatments more

responsibly for intracranial aneurysms and improve patient

experience, a systematic understanding of the pathophysiology

of CAs is extremely important for clinicians.

Over past decades, many review publications summarized

the efforts in studying hemodynamic factors on the

pathophysiology of CAs, including varying risks associated

with aneurysmal sac locations, high risk aneurysm

morphologies, pre- and post-treatment states, and arterial

blood flow conditions in vivo, in vitro, and in silico (Sforza

et al., 2009b; Nieuwkamp et al., 2009; Nixon et al., 2010; Aoki

and Nishimura, 2011; Jeong and Rhee, 2012; Fennell et al., 2016;

Sheikh et al., 2020; Yu et al., 2021; Yi et al., 2022a). Although

transcranial Doppler velocimetry (TDV), as a non-invasive in

vivo manner, can be used to assess cerebral mean blood flow

velocity in the cerebral arteries (Aaslid et al., 1982; Hart and

Haluszkiewicz, 2000; Conde-Agudelo et al., 2015), this approach

can only obtain values in limited local regions of the cerebral

arteries rather than a thorough blood flow distribution in the

arteries. Another in vivo method, phase-contrast magnetic

resonance imaging (PC-MRI) has been used for blood velocity

measurements, but it suffers from the relatively poor resolution,

which can be an important limitation with respect to the small

dimensions commonly encountered within CAs.

Alternatively, with the advantages of high image resolutions

and in a time-resolved manner, particle image velocimetry (PIV)

methods and their derivatives are increasingly used to measure

blood flow patterns for in vitro CAs (Adrian, 1991; Kosugi et al.,

2004; Nishino et al., 2004; Bouillot et al., 2014; Brindise et al.,

2016; Hosseini et al., 2021). Yagi (2007) (Yagi et al., 2011; Yagi

et al., 2013) employed the fluorescent scanning stereoscopic PIV

to study flow impingement in a patient-specific internal carotid

artery sidewall aneurysm (ICASA) from a transient flow regime

and found the hydrodynamic instability of shear layer should not

be neglected even at a low Reynolds number. Medero et al. (2020)

found tomographic PIV has the feasibility to assess 4D flow MRI

with high repeatability in the measurements of time-resolved and

time-averaged velocity flow fields in a patient-specific

intracranial aneurysm model. However, it also has limitations

in measuring blood flow distributions in CAs using PIV, which

are due to: 1) the known/unknown differences between the

in vitro setups and in vivo patient-specific conditions, 2)

unavoidable interpolation discrepancies and relatively low

operational flexibilities, and 3) insufficient ability to capture

the blood flow patterns near arterial wall, which is essential

for wall shear stress (WSS) estimations. To address the above-

mentioned deficiencies, computational fluid dynamics (CFD)

based in silico methods in an accessible and non-invasive

manner have been employed widely to predict the blood flow

patterns in CAs, with the advantages of using physiologically

based reconstructed models and initial/boundary conditions

which can aid in identifying major translational knowledge

gaps and provide a platform for implementing and evaluating

potential solutions (Burleson et al., 1995; Kerber et al., 1999;

Hongo et al., 2001; Jou et al., 2003; Steinman et al., 2003; Shojima

et al., 2004; Alastruey et al., 2007; Sforza et al., 2009b; a; Botti

et al., 2018; Soldozy et al., 2019; Rayz and Cohen-Gadol, 2020).

However, to the best of our knowledge, the majority of these

studies solely used CFD without in vivo and/or in vitro

verification and validation, influencing the acceptance of such

simulations results. This technology remains limited within the

clinical community, as they employed strong modeling

assumptions (i.e., non-patient-specific assumptions) as well as

varying solution strategies. More specifically, CFD results can be

varied significantly among different research groups, although

geometry, initial and boundary conditions, and blood properties

were similar and only the solution strategies had to be

individually adapted. Thus, the validation is one mandatory

step for CFD modeling blood flow patterns in CAs. Several

CFD studies have investigated the pathophysiology of CAs, in

collaboration with the experimental tests (Ford et al., 2008;

Raschi et al., 2012; Brindise et al., 2019). However, the above-

mentioned studies considered the blood flow as a fully viscous

laminar regime or a non-pulsatile flow condition, which may

cause significant errors to estimate essential parameters

within CAs.

To partially address the above-mentioned concerns, the

objective of this study was to develop an in vitro validated in

silico model (see Figure 1), which can be further employed to

investigate hemodynamic characteristics such as WSS and

oscillatory shear index (OSI) which have a significant impact

on the CA pathobiology with statistical techniques. Specifically,

the experimental validated CFD model was built by comparing

the agreements of flow characteristics (i.e., blood flow rate,

normalized magnitude of velocity, vectors distributions, flow

streamlines, and vortex’s location) between PIV measurements

and CFD simulations under the cardiac pulsatile flow conditions

in an ICASA model. In addition, this study provided a

benchmarked pathway for other researchers to design PIV

experiments and conduct CFD simulations which are
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associated to the pathobiology of cardiovascular and

neurovascular diseases.

2 Experimental settings

2.1 Aneurysmal replica

A physical aneurysmal model (i.e., 70–80 years old, female,

consent form was not required for de-identified patient data for

the current research as approved by the Institutional Review

Board (IRB) of Wright State University) was produced with a

scaling factor of 3 to allow high-quality PIVmeasurements on the

flow field inside (see Figure 1), with a minimum and maximum

diameter of ~6.4 and ~15.5 mm of the arteries, respectively.

Specifically, the aneurysm model was based on non-invasive

3D rotational angiographic images using Artis Zee systems

(Siemens Medical Solutions USA, Inc., PA, United States),

which were provided through a long-term collaboration with

a hospital in Dayton (OH, United States). The physical hard

plastic ICASA model was printed with WaterShed XC

11122 materials using a prototype machine at Proto Labs, Inc.

(MN, United States) (see Figure 1 and Label 3 in Figure 2), in

which the layer line was removed, and clear coat was applied on

the interior surfaces. The exterior surfaces were finished with grit

blasting. The WaterShed XC 11122 material is a translucent

colorless stereolithography plastic that behaves similarly to

acrylonitrile butadiene styrene to facilitate PIV investigations.

The tolerance in the X/Y direction is ±0.05 mm and in the Z

direction is ±0.125 mm, where X/Y are in-plane coordinates and

Z is the out-plane coordinate associated with the printing

process.

2.2 In vitro cerebral artery circulation

In accordance with the identical Reynolds number in the

cerebral artery system with the real size, the mean volumetric

flowrate in the PIVmeasurements is set as ~ 2,084 ml/min, based

on the findings in a previous study that the mean volumetric

blood flow rate in the human ICA is about 306 ± 396 ml/min,

with assumed 99.7% confidence interval (Oktar et al., 2006). As

shown in Figure 2, a phantom circulation network was

constructed to mimic cerebral arteries using artificial

FIGURE 1
The framework of in vitro validated in silico study in the ICASA model.
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components, i.e., a Harvard Apparatus Pulsatile Blood Pump

(Harvard Bioscience, Inc., MA, United States) (see Label 1 in

Figure 2), a laboratory-made reservoir (see Label 4 in Figure 2),

the plastic ICASA model (see Label 3 in Figure 2), and compliant

plastic tubing. A heart rate was set as 60 ± 0.5 beats per minute in

the Harvard Apparatus Pulsatile Blood Pump. The patient-

specific transient pulsatile blood flow rates at the ICA

(i.e., flow inlet) and ICA distal (i.e., one of flow outlets) were

measured by the real time ultrasound flowmeter system

(TS410 module and ME10 PXN inline sensors, Transonic

Systems, Inc., NY, United States) (see Label 5, 6, and 7 in

Figure 2). The flowmeter system has an absolute uncertainty

of ±4% of the reading, with an ultrasound frequency of 1.8 MHz.

Integrating with the user defined LabVIEW code (National

Instruments Crop., TX, United States), one set of

multifunction I/O device (USB-6218, National Instruments

Crop., TX, United States) (see Label 11 in Figure 2) was

employed to ensure that the inlet and outlet flow rates can be

recorded simultaneously. The working fluid, i.e., water, was

seeded with fluorescent polymer particles (PFFs) (10–45 μm)

for PIV measurements.

2.3 PIV technique

A digital PIV system, including a Nd: Yag laser system

(NewWave Gemini 120, New Wave Research, Inc., CA,

United States) (see Label 15 and 16 in Figure 2), a high-

resolution charge-coupled device (CCD) camera (PCO1600,

PCO-TECH, Inc., Germany) (see Label 13 and 14 in Figure 2),

the digital delay generator A (DG535, Stanford Research

Systems, Inc., CA, United States) (see Label 9 in Figure 2),

and the digital delay generator B (Model 575, Berkeley

Nucleonics Crop., CA, United States) (see Label 10 in

Figure 2), was used to accomplish the detailed flow field

measurements. Two pulses of 120 mJ at the wavelength of

532 nm of the laser (12 Hz) were shaped into a sheet by a

set of optics to illuminate the flow field. The camera was

synchronized to capture two particle images corresponding

to the two laser pulses. The laser sheet had a measured

thickness of ~2 mm through the region of interest to

mitigate error associated with the out-of-plane movement.

Seeding of the flow was accomplished with red-fluorescent

micro-spheres of diameters between 10 and 45 μm. The test

rig has the capability to make “phase-locked” measurements,

which is important to capture the temporal feature of the

intravascular flow. A laser tachometer (PLT200, Monarch

Instruments, NH, United States) (see Label 8 in Figure 2)

was used to detect the position of the pulsatile pump piston,

which is directly related to the timing of the heart cycle. The

pulse signal generated in the tachometer is used to trigger the

whole PIV system. By adding a time delay into the pulse signal

through the digital delay generator A, the pulsatile flow feature

was “frozen” at the designated time instants. Therefore, the

FIGURE 2
Experimental setup for PIV measurements.
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phase-averaged flow measurements can be obtained at different

time instants within a cycle to quantify the temporal flow

behaviors. The measurement was conducted under the well-

controlled pulse rate (i.e., 60 ± 0.5 Hz) and volumetric flow rate.

The water bath (see Label 2 in Figure 2) was used to enhance the

visibility and control the fluid temperature to be the ambient

room temperature (i.e., 295 ± 0.5 K).

2.4 PIV measurements

Two representative cut-planes, i.e., plane A and plane B

(see Label 17 in Figures 2, 3) were designated for the PIV

measurements, i.e., plane A located in the ICA just upstream

of the aneurysm sac, and plane B across the aneurysm sac in

the middle. Prior to PIV tests, the camera was inspected to

FIGURE 3
PIV measurements in the two selected planes: (A) plane X = 0.0726 m, and (B) plane Y = −0.5390 m.
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confirm it was facing perpendicularly to the designated cut-

plane (see Figure 2). Also, an in situ calibration was conducted

in the index-matching fluid. Matching the refractive index of

the liquid with the plastic was key to minimize optical

distortions due to wall curvature, and to obtain clear

particle images for PIV post-processing. All particle images

were dewarped into physical XY coordinates, which can not

only correct varying magnifications in the field of view,

ensuring a spatially coinciding interrogation volume from

both views, but also verify the accuracy of calibration and

compensate for possible errors associated with the

misalignment of laser light sheet to the target slices. In

addition, the transient pulsatile flow rates were measured

and compared right before and after the PIV tests to

ensure the stability of the flow system.

For PIV measurements in the ICA (see Figure 3A), three

representative time instants (e.g., t = 0.03775, 0.11225, and

0.27530 s) were selected, and a total of 1,388 pairs of images

were recorded for each time instant to calculate velocity

vectors and blood flow rate, respectively. Similarly, for the

tests in the ICASA sac (see Figure 3B), three designated time

instants (i.e., t = 0.0722, 0.1901, and 0.3102 s) were

employed, and the same number of images were obtained,

separately. The Direct Correlator scheme in Insight 4G™
(TSI Inc., MN, United States) was employed for the post-

processing of PIV images. Vectors were calculated within

multiple window-screenings from 32 × 32-pixel with a 50%

overlap to 16 × 16-pixel with a 50% overlap adaptively. The

finial spatial resolution is ~5 vector/mm. Subsequently,

velocity vectors were phase-averaged over the collected

1,388 cycles to produce velocity vector distributions for

each acquired phase of the cardiac cycle using an in-house

C++ code. The uncertainty in the velocity measurements is

estimated to be less than 2% of the magnitude. To quantify

fluctuations at each phase, the normalized velocity

magnitude at each point was calculated, from which the

phase-averaged velocity and relative errors were calculated.

3 Numerical methodology

3.1 Geometry and mesh

One patient-specific cerebral aneurysm model (see Figure 4)

was built based on medical data (70–80 years old, female)

provided by a hospital (Dayton, Ohio, United States). In the

ICASA model, the blood flows in through the ICA and flows out

from the bifurcated distal arteries, i.e., ICA distal and posterior

communicating artery (PComA). Poly-hexcore meshing

strategies were adopted to generate meshes for the ICASA

model using ANSYS Fluent Meshing 2021 R2 (Ansys Inc.,

Canonsburg, PA, United States), and the mesh independence

sensitivity was investigated and reported in the previous

publication (Yi et al., 2022a). The final mesh has

2,741,603 elements with 25 prism layers, 3 peel layers, and

size growth rate 1.05. Moreover, 25 near-wall prism layers in

the finally selected mesh were generated and refined to guarantee

the thickness of the first prism layer satisfying y+ < 1 using the

flat plate boundary layer theory, where y+ is the dimensionless

wall distance (Menter, 1994; Gomez-Miguel, 2005; Menter et al.,

2006).

3.2 Governing equations

Due to the sensitivity to initial conditions and global

hydrodynamic instability, it has been found that the

physiologic pulsatile blood flow is turbulent even under a

relatively small mean Reynolds number in both studies

in vitro and in silico (Valen-Sendstad et al., 2011; Yagi et al.,

FIGURE 4
Schematic of the computational domain with hybrid mesh details in the ICASA model.
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2013; Jain et al., 2016; Saqr et al., 2020; Tupin et al., 2020; Yi et al.,

2022b). Thus, the continuity and momentum equations can be

written in tensor form, i.e.,

zui

zxi
� 0, (1)

ρ
zui

zt
+ ρ

z ujui( )
zxj

� − zp
zxi

+ z

zxj
μ + μt( ) zui

zxj
+ zuj

zxi
( )[ ] + ρgi,

(2)
where uj represents the blood flow velocity, p is the pressure, gj is

the gravity, μ is the blood dynamic viscosity which was set as

2.0 × 10−3 Pa · s in accordance with the PIV tests, and μt is the

turbulent viscosity. With the transient pulsatile flow, the blood

flow regime in the ICASA model is laminar-to-turbulence

transitional flow. Therefore, the k − ω shear stress transport

(SST) turbulence model (Menter, 1994) was adapted for this

study, predicting the “laminar-to-turbulent” transition onset. In

this study, the flow regime is assumed as incompressible and

Newtonian, which has been widely employed in the previous

study (Yu et al., 2019; Yi et al., 2022a).

3.3 Boundary and initial conditions

To validate CFD simulation results with in vitro PIV

measurements, two transient pulsatile flow waveforms (see

red colored curve in Figure 3) for the ICA inlet and another

two corresponding waveforms (see blue colored curve in

Figure 3) for the ICA distal outlet were employed for the

CFD simulations, respectively, which were in accordance with

the PIV settings. Additionally, the arterial walls are assumed

to be stationary and non-slip, and the backflow direction at the

ICA distal and PComA outlets were determined based on the

known flow direction in the cell layer adjacent to ICA distal

and PComA outlet.

3.4 Numerical settings

CFD modeling was proceeded using ANSYS Fluent 2021 R2

(Ansys Inc., Canonsburg, PA, United States). Simulation tasks

were performed on a local HP Z840 workstation (Intel® Xeon®

Processor E5-2687W v4 with dual processors, 24 cores,

48 threads, and 128 GB RAM). Under the designated time

step size 5 × 10−4 s, it required ~25 and ~28 h to finish the

simulation for one pulsatile period, i.e., T = 0.969 s and T =

0.995 s, respectively. Three cardiac periods were simulated for

each modeling, and the results were analyzed based on the third

period. The Semi-Implicit Method for Pressure Linked Equations

(SIMPLE) algorithm was employed for the pressure-velocity

coupling, and the least-squares cell-based scheme was applied

to calculate the cell gradient. The second order scheme was used

for pressure discretization. In addition, the second-order upwind

scheme was applied for the discretization of momentum,

turbulent kinetic energy, and specific dissipation rate.

Convergence is registered for computing continuity,

momentum, and supplementary equations when residuals are

lower than 1.0 × 10−3.

4 Results and discussion

To validate the CFD model, the blood flow patterns

(i.e., magnitude of velocity, normalized magnitude of

velocity, velocity vector distribution, volumetric flow rate,

and flow streamlines) were compared between in vitro PIV

measurements and in silico CFD simulations for selected time

instants within a cardiac cycle in ICASA model. Specifically,

two designated planes, i.e., plane A and plane B (see Label

17 in Figures 2, 3A, B) in ICASA were employed to visualize

the comparisons between PIV and CFD, respectively. One

TABLE 1 Volumetric flowrate V (m3/s) comparisons among flowmeter, CFD and PIV under selected time instants.

Flowmeter CFD PIV Relative difference (%) between

Flowmeter and CFD Flowmeter and PIV

ICA diameter DICA (m) Not applicable 1.034e-2 1.037e-2 Not applicable Not applicable

t = 0.038 s 3.04548e-5 3.05550e-5 2.82509e-5 0.33 7.24

t = 0.112 s 8.24484e-5 8.25486e-5 7.62372e-5 0.12 7.53

t = 0.275 s 6.23122e-5 6.24123e-5 5.92066e-5 0.16 4.98

TABLE 2 Comparisons in averaged V* between PIV measurements and CFD
simulations under selected time instants.

CFD PIV Relative errors (%)

Length of Line d’ (m) 8.62e-3 8.13e-3 6.03

t = 0.072 s 0.69 0.63 9.52

t = 0.190 s 0.63 0.62 1.59

t = 0.310 s 0.69 0.68 1.47
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slice, i.e., plane A at X = 0.0726 m (according to coordinates in

CFD model) crossing the ICA with three representative time

instants (e.g., t = 0.03775, 0.11225, and 0.27530 s) were

subtracted to investigate the flow characteristics near the

aneurysmal sac, which aims to inspect flow field and

volumetric flowrates approaching the aneurysmal sac. With

three preferred time instants (i.e., t = 0.0722, 0.1901, and

0.3102 s), another slice, plane B, located at Y ≈ −0.5390 m

(according to coordinates in CFD model) across the aneurysm

sac in the middle was used to compare the flow features

between CFD and PIV. In accordance with the

experimental settings (see Figure 3), the periodic pulsatile

flowrate waveforms with T = 0.969 s and T = 0.995 s were used

in the in silico simulations for model validation, respectively.

The two transitional pulsatile blood waveforms were

generated by averaging 70 cardiac cycles periodically in

experiments (see Figure 3).

Dependent variables employed in the model validation (see

Tables 1, 2; Figures 5–9) were defined as follows. In the PIV tests,

the ICA diameter close to the aneurysm is defined by

DICA � la + lb + lc
3

, (3)

where la, lb, and lc are the lengths of line a, b, and c, respectively.

The blood volumetric flow rate V in PIV tests is calculated

using

V � Va + Vb + Vc

3
, (4)

FIGURE 5
Comparisons at plane A at X = 0.0726 m (according to the coordinates in CFD) between PIV measurements and CFD simulations at designated
time instants: (A) t = 0.03775 s, (B) t = 0.11225 s, and (C) t = 0.27530 s.
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Va � ∮ vads, (5)

Vb � ∮ vbds, (6)

Vc � ∮ vcds, (7)

where Va, Vb, and Vc are the volumetric flowrates in the cross-

section through line a, b, and c in plane A, respectively. va, vb, and

vc are velocity magnitudes in line a, b, and c, respectively. s is the

differential area perpendicularly across plane A with

corresponded local velocities (i.e., va, vb, and vc). In contrast,

the blood flow rate V in the CFD simulations is obtained directly

from the periodic pulsatile flowrate profiles (see Figure 3) at the

corresponding instants. The normalized blood velocity V* in

CFD at plane A is defined as

V* � v2y + v2z( )1/2
v2y + v2z( )1/2

Max .

, (8)

where vy and vz are the blood velocity magnitudes in CFD

simulations in the Y and Z directions, respectively.

(vy2 + vz2)1/2Max . is the maximum magnitude of velocity at

plane A. Also, the normalized blood velocity V* in CFD at

plane B is defined as

V* � v2x + v2z( )1/2
v2x + v2z( )1/2Max .

, (9)

where vx and vz are the blood velocity magnitudes of CFD

simulations in the directions of X and Z, respectively.

(v2x + v2z)1/2Max . is the maximum magnitude of velocity at plane

B. It needs to mention that Cartesian YZ/XZ coordinate system

in CFD corresponds to Cartesian XY coordinate system in two

separate PIVmeasurements. Thus, the normalized blood velocity

V* in PIV can be defined as

V* � v′2x + v′2y( )1/2
v′2x + v′2y( )1/2

Max .

, (10)

where v′x and v′y are the flow velocity magnitudes in PIV

measurements in X direction and Y direction, respectively.

(v′2x + v′ 2y )
1/2

Max .
is the maximum magnitude of velocity in the

PIV measured flow field.

FIGURE 6
Comparisons of flow streamlines andmagnitudes of velocity at the extracted plane B (i.e., plane Y ≈ −0.5390 m according to the coordinates in
CFD) between PIV measurements and CFD simulations at the time instant t = 0.078 s: (A) Schematic planes for the comparisons between PIV and
CFD. (B) Distributions of flow streamlines and magnitudes of velocity in PIV. (C) Distributions of flow streamlines and magnitudes of velocity in CFD.
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In PIV measurements, the velocity is estimated between two

instants within a short time duration. To eliminate the errors

from the time delay between the two images (image A and

image B) in PIV, the CFD results extracted from two

neighboring instants with a time gap of 0.005 s were

employed to evaluate the agreements with the corresponding

PIV data at a specific time instant. For example, for the PIV

tests at t = 0.03775 s, the results at t = 0.035 s and t = 0.040 s

were extracted from the CFD simulations. From the visualized

velocity vectors and normalized magnitude of velocity V* on

the line a, b, c, a’, b’, and c’ of plane A at all three representative

time instants (i.e., t = 0.03775 s, t = 0.11225 s, and t = 0.27530 s)

(see Figure 5), it can be found that blood flow patterns

approaching the aneurysmal sac match well in the

comparison of PIV measurements and CFD simulations

when L* ranges from 0.1 to 0.9. A good agreement can also

be observed from the comparisons in volumetric flowrates

between flowmeter and CFD, with relative differences

smaller than 0.33% at t = 0.038 s (see Table 1). Similar

comparisons can be found between the flowmeter and PIV,

following a relative difference smaller than 7.53% at t = 0.112 s

(see Table 1). It is interesting to discover that such comparable

results of blood volumetric flow rates indicate that the

flowmeter system (see Section 2.2) performs well in

measuring the transient pulsatile flows.

To further consolidate the model validation, the locations of

flow vortex in the aneurysmal sac which was visualized by flow

streamlines have been compared between CFD simulations and

PIV measurements in the extracted plane B (i.e., Y ≈ −0.5390 m)

at three representative time instants (e.g., t = 0.0722 s, t =

0.1901 s, and t = 0.3102 s) during a cardiac cycle, shown in

Figures 6–8. It is worth mentioning that the simulation results at

three neighboring time instants with a time gap of 0.005 s were

extracted and compared to corresponding visualized flow

streamlines in PIV tests at a specific time instant (see Figures

6–8), which is similar to the comparisons of flow patterns in the

ICA between CFD and PIV. Additionally, the influences by the

laser thickness (i.e., 2 mm) on the designated slice position and

duration-based nature of the PIV system (e.g., the time delay

between image A and image B) need to be evaluated to eliminate

the errors. Thus, three extracted slices in the ICASA model (e.g.,

plane Y = −0.5380 m, −0.5390 m, −0.5400 m) in CFD simulations

were adopted to compare PIV tests in the extracted plane B.

Figures 6–8 present that CFD simulations can predict the vortex

FIGURE 7
Comparisons of flow streamlines andmagnitudes of velocity at the extracted plane B (i.e., plane Y ≈ −0.5390 m according to the coordinates in
CFD) between PIV measurements and CFD simulations at the time instant t = 0.1901 s: (A) Schematic planes for the comparisons between PIV and
CFD. (B) Distributions of flow streamlines and magnitudes of velocity in PIV. (C) Distributions of flow streamlines and magnitudes of velocity in CFD.
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locations to match the PIV results essentially at all studied time

instants. In both in vitro and in silico studies, the vortex travels

from aneurysmal sac center at t = 0.0722 s to the upper right

corner of the aneurysmal sac at t = 0.3102 s in the extracted plane

B of the ICASA model. The comparisons between CFD and PIV

in normalized velocity magnitude V* on the in-plane line d’ were

shown in Figure 9, in which the velocity profile values on the line

d’ were extracted from the in-model plane Y = -0.5390 m. It can

be observed that the small relative errors (<9.52%) of averagedV*

(see Table 2) also proved that CFD simulation can capture the

flow patterns as presented in the experimental investigations.

However, there are small differences between CFD

simulations and PIV measurements in some local regions,

mainly in the near wall regions (i.e., 0 < L* < 0.1 and 0.9 <
L* < 1.0), which were also mentioned in previous studies (Raschi

et al., 2012). Such differences can be caused by several factors,

i.e., 1) the final physical in vitro model produced from the STL

data using SolidWorks (Dassault Systèmes, Vélizy-Villacoublay,

France) can have slight geometric differences with the original

STL data that has the potential to influence the flow results

significantly (see Section 2.1) as the CFD simulation is sensitive

to the wall configurations; 2) the light reflection and refraction

effects from the internal wall of the physical model contribute to

image noises that can affect the identifications of fluorescent

polyethylene particles trajectory especially near the boundary; 3)

the complicated curvature of the wall of the ICASA model

disturbs the lights into the camera and then generate blurring

spots on the PIV images; 4) the cycle-to-cycle fluctuations in the

pulsatile flow affect the accuracy of phase averaged results in the

PIV tests, and then contribute to the differences when comparing

to the CFD simulations; 5) a heart rate mimicked by pulsatile

blood pump with a confidence interval of 60 ± 0.5 beats per

minute may cause the difference between CFD and PIV when

deciding the numerical modeling boundary conditions (see

Figure 2); and 6) the minor error in the perspective angle

(e.g., ~90°) between the laser sheet and the camera axis, the

thickness of laser sheet (e.g., ~2 mm), could affect the location of

the extracted slice in the ICASA model, which are more

apparent in the velocity profile comparisons at line d’ (see

Figure 9).

The current study still has limitations in the clinical analysis

of hemodynamic characteristic in the CAs. Specifically, the

employed in vitro ICASA model with the scaling factor of

3.0 and the studied blood analogue fluid (i.e., water with

FIGURE 8
Comparisons of flow streamlines andmagnitudes of velocity at the extracted plane B (i.e., plane Y ≈ −0.5390 m according to the coordinates in
CFD) between PIV measurements and CFD simulations at the time instant t = 0.3102 s: (A) Schematic planes for the comparisons between PIV and
CFD. (B) Distributions of flow streamlines and magnitudes of velocity in PIV. (C) Distributions of flow streamlines and magnitudes of velocity in CFD.
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seeded fluorescent polyethylene particles) in the experiments

may provide a more qualitative analysis rather than a

quantitative hemodynamic investigation in our current work.

Blood is a non-Newtonian fluid with shear-thinning features that

was also not considered in this study, as well as that deforming

interactions between blood and arterial walls still need be

identified explicitly. Our following research will model the

hemodynamic characteristics in the cerebral aneurysm model

in vitro and in silico, integrating with interactions between the

deformations of arterial walls and cardiac pulsatile blood flow

field, by using a two-way fluid-structure interaction manner

(Samaee et al., 2022).

5 Conclusion

Using both experimental PIV measurements and CFD

simulations, an in vitro validated in silico ICASA model for

the simplified Newtonian flow was developed which can be

used to investigate the hemodynamic factors such as WSS

and OSI that could influence the initiation, progression, and

rupture of CAs, by integrating CFD with statistical analysis

for a large amount of patient-specific cases in the future.

Despite those tremendous efforts have been spent on

optimizing the simulation and the PIV experiment to

eliminate possible errors, it is almost impossible to reach

a perfect alignment between the PIV and CFD simulation

results. Decent agreements were found between in vitro PIV

tests and in silico CFD investigations in the blood flow rate,

normalized velocity profiles, flow streamlines, and vortex

locations, which enables the developed CFD model to

investigate hemodynamic factors on the pathophysiology

of CAs. Also, the employed PIV measurements and CFD

modeling in this study provide a pathway for other

researchers to build an experimentally validated numerical

model, which has the capability to accurately investigate

hemodynamics associated with cardiovascular and

neurovascular diseases.

FIGURE 9
Velocity profile comparisons at line d’ of the plane B (i.e., plane Y ≈ −0.5390 m according to the coordinates in CFD) between PIVmeasurements
and CFD simulations at different time instants: (A) schematic line d’ for comparisons, (B) t = 0.0722 s, (C) t = 0.1901 s, and (D) t = 0.3102 s.
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