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Background: Cardiac fibrosis has been identified as a major factor in

conduction alterations leading to atrial arrhythmias and modification of drug

treatment response.

Objective: To perform an in silico proof-of-concept study of Artificial

Intelligence (AI) ability to identify susceptibility for conduction blocks in

simulations on a population of models with diffused fibrotic atrial tissue and

anti-arrhythmic drugs.

Methods: Activity in 2D cardiac tissue planes were simulated on a population of

variable electrophysiological and anatomical profiles using the Koivumaki

model for the atrial cardiomyocytes and the Maleckar model for the diffused

fibroblasts (0%, 5% and 10% fibrosis area). Tissue sheets were of 2 cm side and

the effect of amiodarone, dofetilide and sotalol was simulated to assess the

conduction of the electrical impulse across the planes. Four different AI

algorithms (Quadratic Support Vector Machine, QSVM, Cubic Support Vector

Machine, CSVM, decision trees, DT, and K-Nearest Neighbors, KNN) were

evaluated in predicting conduction of a stimulated electrical impulse.

Results: Overall, fibrosis implementation lowered conduction velocity (CV) for

the conducting profiles (0% fibrosis: 67.52 ± 7.3 cm/s; 5%: 58.81 ± 14.04 cm/s;

10%: 57.56 ± 14.78 cm/s; p < 0.001) in combination with a reduced 90% action

potential duration (0% fibrosis: 187.77 ± 37.62 ms; 5%: 93.29 ± 82.69 ms; 10%:

106.37 ± 85.15 ms; p < 0.001) and peak membrane potential (0% fibrosis:

89.16 ± 16.01 mV; 5%: 70.06 ± 17.08 mV; 10%: 82.21 ± 19.90 mV; p <
0.001). When the antiarrhythmic drugs were present, a total block was

observed in most of the profiles. In those profiles in which electrical

conduction was preserved, a decrease in CV was observed when simulations

were performed in the 0% fibrosis tissue patch (Amiodarone ΔCV: −3.59 ±

1.52 cm/s; Dofetilide ΔCV: −13.43 ± 4.07 cm/s; Sotalol ΔCV: −0.023 ± 0.24 cm/

s). This effect was preserved for amiodarone in the 5% fibrosis patch

(Amiodarone ΔCV: −4.96 ± 2.15 cm/s; Dofetilide ΔCV: 0.14 ± 1.87 cm/s;
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Sotalol ΔCV: 0.30 ± 4.69 cm/s). 10% fibrosis simulations showed that part of the

profiles increased CV while others showed a decrease in this variable

(Amiodarone ΔCV: 0.62 ± 9.56 cm/s; Dofetilide ΔCV: 0.05 ± 1.16 cm/s;

Sotalol ΔCV: 0.22 ± 1.39 cm/s). Finally, when the AI algorithms were tested

for predicting conduction on input of variables from the population of

modelled, Cubic SVM showed the best performance with AUC = 0.95.

Conclusion: In silico proof-of-concept study demonstrates that fibrosis can

alter the expected behavior of antiarrhythmic drugs in a minority of atrial

population models and AI can assist in revealing the profiles that will

respond differently.

KEYWORDS

atrial fibrillation, cardiac fibrosis, machine learning, population of models, support
vector machines

Introduction

Cardiac fibrosis has been identified as a major pro-

arrhythmic factor associated with impaired electrical

conductance and reentries. Two different mechanisms have

been proposed to underlie the possible reentrant patterns:

reentry due to an anatomical obstacle or functional reentry

(Yeo et al., 2017). Contrary to cardiomyocytes, fibroblasts are

non-excitable cells. Therefore, the increased presence of cardiac

fibrosis or fibroblasts can form areas of reduced conduction

velocity in the anatomy of the cardiac tissue that increase the

susceptibility to initiation and maintenance of cardiac

arrhythmias (Krul et al., 2015). Overall, the combination of

cardiac fibrosis in the presence of atrial fibrillation (AF),

represents a synergetic proarrhythmic framework relative to

patients suffering AF without cardiac fibrosis (Marrouche

et al., 2014). As the fibrotic AF scenario is biologically and

electrophysiologically more complex than AF alone, the effects

of therapies such as antiarrhythmic drugs (AADs) would benefit

from evaluation on relevant population models.

AADs are a group of pharmacological compounds that

modify the rhythm of the heart by blocking one or several

ionic channels controlling the electrical activation of the

excitable cells of the heart (Sanguinetti and Bennett, 2003).

While AADs may be particularly helpful in the treatment of

AF caused by functional reentries or reentries caused by hyper-

excitability of the cardiac tissue, in the presence of fibrosis and

low conduction velocity of the cardiac tissue, AADs may cause

undesired effects and actually exacerbate proarrhythmic factors.

Among the most common AADs used for AF treatment in

clinical practice we can find amiodarone, dofetilide, sotalol,

flecainide or verapamil (Zimetbaum, 2012). The use of

antiarrhythmic drugs in scenarios with fibrosis has been

previously described (Zimetbaum, 2012; Saljic and Heijman,

2022) as proarrhythmic due to heterogeneous conduction

(Cox et al., 1995), however a systematic evaluation of

arrhythmogenicity produced by the many possible

combinations of electrophysiological and fibrosis factors in AF

is lacking.

Artificial Intelligence (AI), on the other hand, has been

rapidly incorporated in biomedical applications to analyze and

detect possible patterns or associations in large datasets that

enable identification of mechanistic relationships and predict

outcomes (Sánchez de la Nava et al., 2021b). Previous studies

using population of models have underscored the importance of

different ionic profiles on drug effect (Sanchez de la Nava et al.,

2021a) and the potential proarrhythmic role of fibrosis

(Kazbanov et al., 2016). Therefore, in this study we explore

the effects of different AADs on the electrical impulse

propagation using a population of different atrial models with

diffused fibrosis distribution, and test the ability of AI algorithms

to predict conduction patterns relevant to initiation and

maintenance of AF.

Materials and methods

Cellular models and tissue connection

Two different models were implemented to simulate cardiac

tissue with different levels of fibrosis. The cardiomyocyte model

was the Koivumaki Model with Skibsbye modifications that

mimick AF remodelling (Skibsbye et al., 2016) and described

the electrophysiological behavior of human atrial cardiomyocyte,

as previously presented by our group (Sanchez de la Nava et al.,

2021a). The fibroblast model implemented in this study

corresponded to the Maleckar model (Maleckar et al., 2009)

that emulates the behavior of active fibroblasts along the atrial

tissue based on the model developed by MacCannell

(MacCannell et al., 2007). In total, four different currents

were modeled, including the time and voltage dependent

fibroblast K+ current (Ikv), the time-independent inward-

rectifier current (IK1), the fibroblast Na+-K+ pump current

(INaK) and the fibroblast background Na+ current (INa-b) and
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adapted to atrial electrophysiology. Then, heterogeneous

coupling was simulated through Na+ and K+ movement

through gap junctions (IGap), which assumed these two species

as independent. This IGap current depends on the

transmembrane voltage difference between the cardiomyocyte

and the neighboring fibroblast, and on the gap conductance

which was fixed (Ggap = 0.5 nS, taking into account both Ggap-Na

and Ggap-K). This IGap current contributed to the term Iion in the

equation below, when a communication among a cardiomyocyte

and a fibroblast was simulated. Initial conditions were applied

according to the stablished protocol as follows: resting membrane

potential (RMP) was set to -47.75 mV for fibroblasts and

-79.83 mV for cardiomyocytes, the capacitance of the cell

membrane (Cm) was set to 6.3 pF for fibroblasts and 66 pF for

cardiomyocytes, [K+]i and [Na+]i were set to 129.43 mM and

8.5547 mM, respectively. Main parameters used for the

cardiomyocyte and the fibroblast model are shown in

Supplementary Tables S1,2.

Diffused fibrosis was modeled using planes of the same size

where the fibroblasts were randomly located considering two

different distributions that differed in the percentage: 0%, 5% and

10% of fibrotic cells, percentages similar to those in other studies

(Kazbanov et al., 2016; Palacio et al., 2021). Simulation protocols

were performed on 2D planes mimicking a sheet of cardiac tissue

of 200 x 200 nodes (2 cm side plane) that constitute around

20–25% of the total area of a human atria (Sachse, 2004). No-flux

boundary condition was implemented at the edges. To connect

the cells within the plane, the monodomain reaction-diffusion

equation was implemented, assuming that tissue behaves as a

functional syncytium where membrane voltage is propagated

smoothly (Clayton and Panfilov, 2008):

zVm

zt
� ∇ · (D∇Vm) − Iion + Iapplied

Cm

Where Vm is the transmembrane potential, t is the time, ∇

corresponds to the gradient operator andD a diffusion coefficient

with units distance2 time−1, Iion is the sum of all modeled

transmembrane ionic currents, Iapplied is the externally applied

stimulus current, and Cm is the capacitance of the cell membrane.

By using this monodomain simplification, the tissue is

considered to have an unlimited extracellular medium, so the

extracellular resistivity can be neglected. The extracellular

medium is isopotential and equal to zero for simplicity.

Consequently, the membrane potential is the same as the

intracellular potential. Planes were fully connected not

including structures such as the pulmonary veins.

Electrophysiological variability:
Population of models approach

The equations included in the aforementioned cellular

models depend on constants such as channel conductivities,

ionic concentrations and diffusion factors. A population of

models allows mathematical computations to consider

variations of the initial variables introduced in the model to

account for the genetic variability present in real patients. In this

case, a population of 127 ionic profiles was used including the

variability present in a set of human data (Liberos et al., 2016;

Simon et al., 2017).

Briefly, experimental data to calibrate the population was

obtained by patch clamp techniques on myocardium atrial tissue

of 149 AF patients (Sánchez et al., 2014). From these

experiments, nine specific electrophysiological variables were

measured to account for variation: gNa, INaK, gK1, gCaL, gKur,

IKCa, diffusion (D), extracellular potassium concentration and

extracellular sodium concentration. Action potential biomarkers

were measured (Sánchez et al., 2014) and later used as reference

(Supplementary Tables S3) to ensure that simulations were

within physiological ranges. From the electrophysiological

variables measured, Latin Hypercubic Sampling (LHS) was

run to amplify the set of combinations to a final number of

500. These 500 combinations were included in an in silico tissue

model of 8x256 cells in which electrophysiological properties

were measured (Simon et al., 2017), Action potential biomarkers

were evaluated to ensure that simulations were within

physiological ranges and only the combinations within these

ranges (Supplementary Tables S3) were included in the final

population. A complete description of the calibration of this

population can be consulted in previous publications of the

group (Simon et al., 2017; Sanchez de la Nava et al., 2021a).

The modification of the values (in percentage with respect to the

baseline cardiomyocyte model) for each parameter in the

different profiles in the population of models is shown in

Supplementary Table S1, and the distribution of the range of

parameter variation (-50% to +100%) is shown in Supplementary

Figure S1.

Drug implementation

All antiarrhythmic drugs were evaluated in the

electrophysiological population of models in order to

characterize the effect according to the fibrosis percentage.

The Single Pore Channel Model was implemented to analyze

the effect of three different drugs (amiodarone, dofetilide and

sotalol). This model inhibits the current by decreasing the

conductance of the channel as described in the following

equation:

Gi � G0 · 1

1 + [Cd]i
IC50

Where G0 corresponds to the initial conductance of the

channel, Gi corresponds to the final conductance of the

channel, [Cd]i is the concentration of the drug and IC50 is the
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concentration of the drug that reduces by 50% the channel

current. The values of IC50 and drug concentration can be

observed in Table 1, and were obtained from (Patel et al., 2019).

Simulation protocols

Simulations were performed by implementing partial

differential equations for the transmembrane potential models

of all cells computed with a time step of 1 µs in the forward Euler

scheme using in-house C++ code with CUDA parallelization

solved on an NVIDIA TESLA C2057 GPU (NVIDIA

Corporation, Santa Clara, CA). The Rush-Larsen scheme

(Rush and Larsen, 1978) was used for gating variables in cell

models of the form

dwi

dt
� αwi(1 − wi) − βwi

wi

where w is the corresponding gating variable and αwi = αwi(V)
and βwi

= βwi
(V) are the voltage dependent rate constants. The

Rush-Larsen method provides a stable temporal solution for the

gating variables by relaying on the exact exponential solution

implemented in the following expression (Perego and Veneziani,

2009) for each cell:

wj
i+1 � eawi(V)h(wj

i + bwi(V)
awi(V)) − bwi(V)

awi(V)

where awi � −(αwi + βwi
), bi � αwi, j corresponds to each

individual cell, and h is the time step for the forward time

index i integration.

Planes were simulated for a total of four impulses (S1) of

magnitude 4000 pA/pF and duration 3 ms applied at the left edge

of the planes in 200 cells at a frequency of 1 Hz. From the

complete set of simulations, four different biomarkers were

evaluated considering the last two S1 pulses: the Action

Potential Duration at 90% repolarization (APD90, measured

in ms), the conduction velocity (CV, measured in cm/s), the

resting membrane potential (RMP, measured in mV) and peak

voltage value (Peak, measured in mV). APD90, RMP and Peak

were calculated by averaging the values of all the cardiomyocytes

present in the plane. Cell activation time was marked at the time

of highest voltage time derivative (Simon et al., 2017). For CV

propagation measurements, the distance between two points at

coordinates (0.5 mm, 10 mm) and (19.5 mm, 10 mm) in the 2D

plane was divided by the activation time differences between

these points. Absence of conduction was considered when the cell

in the second coordinate (right side of the plane) did not activate

(depolarize and repolarize) after the application of the last

stimulus in the left side of the plane. This included some

profiles that failed to repolarize, some profiles that failed to

conduct and some profiles that failed to be stimulated. All

measurements reported in this study are the average value of

each biomarker during the last two S1 pulses. To evaluate the

effect of a drug, the difference in value of the aforementioned

biomarkers was computed to quantify and increase or decrease

relative to a basal value as:

ΔBiomarker � BiomarkerDrug − BiomarkerBasal

Artificial intelligence algorithm: Pattern
recognition for non-conducting and
conducting profiles

A total of 1032 simulations were computed in this study

corresponding to all different combinations of the population of

models with different fibrosis degree (0% fibrosis, 5% fibrosis and

10% fibrosis) under the effect of different antiarrhythmic drugs

(amiodarone, dofetilide and sotalol), simulated in sheets of

cardiac tissue.

Several supervised models were trained to evaluate the

algorithm that better described the behavior of the population

including Quadratic Support Vector Machine (QSVM), Cubic

Support Vector Machine (CSVM), decision trees (DT),

K-Nearest Neighbors (KNN) with 10k-fold cross validation.

The input of the algorithms corresponded to a combination of

the variables from the population of models: gNa, INaK, gK1, gCaL,

gKur, IKCa, diffusion (D), extracellular potassium concentration

([K]o) and extracellular sodium concentration ([Na]o), including

the variation induced in the final conductance of the channel (Gi)

by the different antiarrhythmic drugs tested (amiodarone,

dofetilide or sotalol), and the percentage of fibrosis (0, 5% or

10%). AI algorithms were trained to predict a binary outcome:

conduction along the plane (labeled as 1) or absence of

conduction (labeled as 0). An example of a conducting and

non-conducting profile both with 10% fibrosis and in the

absence of drugs are shown in Figure 1. Figure 1A shows how

two consecutive impulses propagate in each profile across the

TABLE 1 Constants for drug modelling.

Drug [Cd]i (µM) IC50 IKr (µM) IC50 ICaL (µM) IC50 INa (µM)

Amiodarone 0.8 0.9 1.3 4.6

Dofetilide 0.005 0.002 0.006 0.006

Sotalol 86.3 2100 2100 2.1
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simulated tissue and Figure 1B the time-space plot along the

propagation direction. While at 10% fibrosis the combination of

variables in the cardiomyocytes of the first profile allow to

conduct both impulses, in the second profile, the different

combination of variables produces a conduction block for the

second stimulus. The cardiomyocyte variables in the conducting

profile shown in Figure 1 correspond to the baseline reference

Koivumaki Model with Skibsbye modifications (Skibsbye et al.,

2016), and the variables in the non-conducting profile are:

gNa=+73.13%, INaK=+76.95%, gK1=-38.37%, gCaL=+92.17%, gKur=+77.18%,

IKCa=-47.2%, D=-30.64%, [K]o=+94.93% and [Na]o=+89.34% relative to

the baseline cardiomyocyte model. Algorithms were trained

FIGURE 1
Example of conducting and non-conducting profiles both with 10% of fibrosis, in the absence of the effect of any antiarrhythmic drug. (A)
Propagation of two stimuli in each profile across the simulated tissue (2 cm × 2 cm) from left to right, with no-flux boundary conditions. While the
second impulse propagates in the first profile, it does not in the second profile as the simulated tissue is failing to repolarize to initial membrane
potential. (B) Time-space plot along the propagation direction in both profiles, showing effective propagation in the first profile and the
blockade in the second profile.
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using the variable parameters for the population of models while

the output for prediction was if propagation was possible along

the plane or not. Training testing ratio was set 80:20 as in

previous experiments by the group (Sanchez de la Nava et al.,

2021a).

The algorithms were evaluated by means of specificity,

sensitivity, positive predictive value, negative predictive value

and accuracy, as follows:

Sensitivity � Number of true positives

Number of true positives +Number offalse negatives

Specificity � Number of true negatives

Number offalse positives +Number of true negatives

Positive PredictiveValue � Number of true positives

Number of true positives +Number offalse positives

Negative PredictiveValue � Number of true negatives

Number of true negatives +Number offalse negatives

Accuracy � Number of correct predictions

Total number ofpredictions

Variability on the simulated models:
Validation of the protocol

In order to evaluate the potential applicability of this

technology into different fields, and specially for translating

the results into the clinic, we evaluated small variations on the

population of models to quantify changes in propagation of the

electrical impulse.

Statistical analysis

The t-test was used to evaluate the statistical significance

between continuous paired or unpaired variables. One-way

ANOVA, Kruskal Wallis test calculator and Chi Square test

were calculated to evaluate differences among the three

studied groups (0% fibrosis, 5% fibrosis and 10% fibrosis) in

continuous and binary variables, respectively. Statistical

significance was considered for p <0.05 in all cases.

Results

Construction and calibration of the model
population

From the complete population consisting on 127 different

electrophysiological profiles that conducted the electrical impulse

along the plane in 0% fibrosis conditions, 58 profiles conducted

for the 5% condition and 32 for the 10% fibrosis (Figure 2). In

addition, when the drugs were added, the number of conductive

profiles diminished for all cases due to the antiarrhythmic effect

of the compound (Figure 2). The distribution of the variables of

the population of models that present propagation during

simulations at three different fibrosis concentrations in basal

conditions (no drugs) presented no significant differences and

are shown in Supplementary Figure S1. All the subsequent results

are presented for the profiles that did conduct the electrical

impulse at 5% or at 10% fibrosis level.

The effects of fibrosis on the electrophysiological

measurements in the simulations are shown in Figure 3. At

the electrophysiological level, the presence of fibrosis

produced a shortening of the APD90 (0% fibrosis: 187.77 ±

37.62 ms; 5% fibrosis: 93.29 ± 82.69 ms; 10% fibrosis: 106.37 ±

85.15 ms; p-value<0.001) on the simulated cardiomyocytes.

Conduction velocity was significantly reduced for higher

presence of fibrosis (0% fibrosis: 67.52 ± 7.3 cm/s; 5%

fibrosis: 58.81 ± 14.04 cm/s; 10% fibrosis: 57.56 ± 14.78 cm/

s; p-value<0.001). Both RMP (0% fibrosis: −78.63 ± 4.63 mV;

5% fibrosis: −79.46 ± 5.46 mV; 10% fibrosis: −77.35 ± 5.43 mV;

p-value: >0.1) and peak membrane potential value in the

cardiomyocytes (0% fibrosis: 89.16 ± 16.01 mV; 5% fibrosis:

70.06 ± 17.08 mV; 10% fibrosis: 82.21 ± 19.90 mV;

p-value<0.001) presented a decrease for 5% fibrosis and an

increase for 10% fibrosis planes (Figure 3).

Drug implementation on the stable ionic
profiles

All drugs were studied at two different levels on the

conducting profiles at basal conditions: first, regarding the

variations on the ionic conductances present at the population

FIGURE 2
Distribution of the profiles in which propagation was
observed depending on the fibrosis degree and the effect of the
drug. * <0.05 for ANOVA statistical test.

Frontiers in Physiology frontiersin.org06

Sánchez de la Nava et al. 10.3389/fphys.2022.1025430

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1025430


of models and secondly, based on the clinical biomarkers

extracted from the simulations.

Figure 2 shows the distribution of the profiles conducting the

electrical impulse for each scenario and Table 2 contains the

proportion of profiles with conduction velocity modifications in

the population with respect to the corresponding control

population (0%, 5% or 10% fibrosis without drug). An

example of a conducting profile and non-conducting profile

for 10% fibrosis can be consulted in Figure 1. Interestingly, in

the absence of fibrosis (0% fibrosis simulations), all the profiles

presented a decrease in conduction velocity under the effect of all

drugs, in accordance to what is described and expected for AADs.

FIGURE 3
Mean values for the electrophysiological characterization of simulations conducting for the different fibroblast concentrations. (A) Action
Potential Duration at 90% repolarization (APD90) (B)Conduction velocity (C) RestingMembrane Potential (RMP) and (D) Peak Transmembrane Value.
As the number of profiles conducting in each group (0%, 5% and 10% fibrosis) differ, each group is compared against the basal (0% fibrosis)
electrophysiological values of the same profiles.* <.05 for t-test statistical test.

TABLE 2 Change in conduction velocity for the studied antiarrhythmic drugs under the effect of fibrosis (number of profiles and percentage).

0% Fibrosis 5% Fibrosis 10% Fibrosis

Increase in CV Decrease in CV Increase in CV Decrease in CV Increase in CV Decrease in CV

Amiodarone 0 124 (100%) 0 28 (100%) 5 (31.25%) 11 (68.75%)

Dofetilide 0 124 (100%) 7 (28%) 13 (52%) 6 (37.5%) 3 (18.8%)

Sotalol 0 124 (100%) 15 (65.21%) 6 (26.08%) 7 (43.75%) 2 (12.5%)
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However, the simulations with fibrosis showed a different effect

of some drugs: dofetilide and sotalol simulations exhibited part of

the profiles in which the conduction velocity was increased

(dofetilide: 28% of profiles; sotalol: 65.21%). Finally, when

simulations were repeated with a higher percentage of fibrosis

(i.e. 10% fibrosis) a dispersed effect on the conduction velocity

was observed under the effect of all the tested drugs (increased

conduction velocity of 31.25% for amiodarone profiles, 37.5% for

dofetilide profiles and 43.75% for sotalol profiles).

In addition, the electrophysiological characterization of the

simulations can be observed in Table 3, where the variation of

four electrophysiological biomarkers (change in CV, APD90, RMP

and peak value) induced by the different drugs is shown. Regarding

the electrophysiological characterization, an average decrease or

maintenance in CV was observed with respect to the

corresponding control population, but the effect was more

variable when fibrosis was present. The effect or drugs tended to

reduce APD90 in most cases when measuring the variables in the

cardiomyocytes except for the 5% fibrosis simulations. However,

high variability in APD90 changes was observed among the different

profiles. In the case of RMP, an average increase was observed on the

0% fibrosis under the effects of drugs, however, drugs tended to have

the opposite effect and reduce RMP in the different profiles in the

presence of fibrosis. The effect on RMP was highly variable for the

different profiles, and in particular in the presence of dofetilide.

Finally, the peak value tended to reduce in all cases except for the

10% fibrosis under the effect of dofetilide and sotalol.

In Silico models and artificial intelligence

Comparing the prediction accuracy of the different AI

methods tested in this work, Cubic SVM showed the best

performance for the tested dataset. As it can be observed from

Table 4; Figure 4, the Area Under the Curve (AUC) was 0.95, the

accuracy of the algorithmwas 90.4% (C.I. 88.83%–91.85%) with a

sensitivity of 90.43% (C.I. 88.20%–92.36%), specificity 90.41%

(88.00%–92.48%), positive predictive value of 91.55% (C.I.

89.62%–93.15%) and negative predictive value of 89.15% (C.I.

86.92%–91.04%). All the other tested methods (QSVM, DT and

KNN) showed an accuracy above 80% and an AUC larger than

0.89, but lower in comparison with CSVM.

The CSVM algorithm (Cristianini and Shawe-Taylor, 2000)

includes an analysis to evaluate how important are the input

features in outcome prediction. In particular, Sequential Minimal

Optimization (Platt, 1998) that was implemented to solve the

nonlinear problem during the algorithm training, enabled the

identification and posterior optimization of the variables

included in the final CSVM prediction algorithm. Once the

problem has been solved, the kernel calculated for the support

vector machines can reveal the relative importance of

contributions during calibration by each of the input

parameters. That is, their contribution to minimizing the

error when predicting the outcome can be ranked based on

quantifying their support vector magnitude. Utilizing such

approach the CSVM algorithm revealed that the most

important features for evaluating the block or conduction of

the action potential in the tissue were in decreasing order: (i) the

type of drug added, (ii) the values of the sodium currents (INak

and gNa) and (iii) the values of the potassium currents (gK1 and

gKur).

Discussion

In this study, we present a new methodology to identify and

predict the propagation of the electrical impulse in the presence

of electrophysiological variability, the presence of different

TABLE 3 Change in conduction velocity for the studied antiarrhythmic drugs under the effect of fibrosis.

ΔCV
(cm/s)

p-value ΔAPD90
(ms)

p-value ΔRMP
(mV)

p-value ΔPeak
value
(mV)

p-value

Amiodarone 0% fibrosis −3.59 ± 1.52 0.24 −49.42 ± 96.72 0.06 0.14 ± 0.43 <0.01 −4.76 ± 0.98 0.01

5% fibrosis −4.96 ± 2.15 −16.32 ± 93.05 −1.97 ± 3.15 −7.34 ± 3.61

10% fibrosis 0.62 ± 9.56 −28.79 ± 142.98 −5.39 ± 7.29 −1.97 ± 22.96

Dofetilide 0% fibrosis −13.43 ± 4.07 <0.01 −29.51 ± 71.67 0.92 1.78 ± 9.83 0.04 −18.85 ± 9.47 <0.01
5% fibrosis 0.14 ± 1.87 5.73 ± 136.26 4.75 ± 27.58 −0.96 ± 3.83

10% fibrosis 0.05 ± 1.16 −18.92 ± 129.98 −1.94 ± 4.29 3.59 ± 11.31

Sotalol 0% fibrosis −0.023 ± 0.24 <0.01 −15.83 ± 43.76 0.06 0.18 ± 0.16 <0.01 −0.04 ± 0.16 <0.01
5% fibrosis 0.30 ± 4.69 3.80 ± 135.56 −0.46 ± 3.34 −0.41 ± 3.12

10% fibrosis 0.22 ± 1.39 −40.28 ± 106.18 −1.93 ± 4.28 3.49 ± 11.49
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degrees of fibrosis and the effect of antiarrhythmic drugs. Several

algorithms were trained and cubic SVM showed the best

performance using the in silico data from the simulations.

These simulations included: (i) electrophysiological variability

using a population of models, (ii) substrate variability using

different percentages of fibrosis, and (iii) drug effect

variability, introduced by the implementation of the effect of

three different antiarrhythmic drugs used in the clinical practice

for AF treatment. The main result of the study showed that,

depending on the percentage of fibrosis and the effect of the drug,

the modifications of the conduction velocity of the substrate

could lead to proarrhythmic scenarios in specific subgroups.

Electrical conduction in 2D cardiac tissue:
Effect of ionic profile and fibrosis presence

To our knowledge, this study is the first one that explores 2D

tissue simulations combining a population of atrial

cardiomyocytes with different percentages of diffused fibrosis.

Previous studies have shown the effect of diffused fibrosis on the

electrophysiological properties of the tissue, in line with the

results presented in this publication (King et al., 2013; Palacio

et al., 2021; Rios-Munoz et al., 2021). Our results are in

agreement with studies that evaluated the effect of fibrosis in

the electrophysiological characteristics of cardiac tissue showing

a decrease in conduction velocity (Spencer et al., 2017).

Drug effect on fibrotic tissue behaviour:
Electrophysiological implications

Populations of models have been implemented in the

cardiac scenario for the prediction of drug effect on cardiac

tissue (Britton et al., 2013; Muszkiewicz et al., 2016; Sanchez de

la Nava et al., 2021a; Peirlinck et al., 2021). Here, the 2D fibrotic

tissue simulations were not only evaluated at basal conditions

but also under the effect of different antiarrhythmic drugs,

including amiodarone, dofetilide and sotalol. Overall, these

antiarrhythmic drugs showed a total block in the majority of

the profiles. In those in which electrical conduction was

preserved, a decrease on conduction velocity was observed

when simulations were performed in the 0% fibrosis tissue

patch. This effect was preserved for amiodarone in the 5%

TABLE 4 Evaluation metrics for the different AI algorithms trained including sensitivity, specificity and accuracy expressed in percentage and
respective confidence interval in brackets, and Area Under the Curve (AUC).

Sensitivity Specificity Accuracy AUC

QSVM 84.67% [82.14%–86.96%] 93.11% [90.83%–94.97%] 88.12% [86.39%–89.71%] 0.94

CSVM 90.43% [88.20%–92.36%] 90.41% [88.00%–92.48%] 90.40% [88.83%–91.85%] 0.95

DT 79.85% [77.17%–82.35%] 92.93% [90.50%–94.90%] 84.71% [82.81%–86.48%] 0.89

KNN 78.65% [75.91%–81.22%] 90.05% [87.30%–92.38%] 82.94% [80.96%–84.80%] 0.92

FIGURE 4
(A) ROC curves and (B) confusion matrix for the Cubic SVM trained algorithm.
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fibrosis patch. Finally, 10% fibrosis simulations showed that

part of the profiles increased CV while others showed a decrease

in this variable.

This confirms our hypothesis that the expected effect of the

drug can be altered due to the presence of fibrosis and that, for

higher percentage of fibrosis, the effect is less predictable and more

frequent to present unexpected effects. Furthermore, we observed

that the antiarrhythmic drug that showed less variability of the

effect among the different profiles was amiodarone, causing a

decrease in the conduction velocity (CV) in most of the profiles

with and without fibrosis. In contrast, the long-term use of

amiodarone in porcine animal models with myocardial fibrosis

showed no adverse effects (Zagorianou et al., 2016).

Reduced and more heterogeneous CV in the myocardium

increases the probability of arrhythmia and can be caused by a

single or combined effect of structural changes, alterations in

electrical coupling in the tissue, or the effect of different drugs.

In our study, the different profiles showed variability in the ionic

current values and action potential morphology, leading to

modifications of fibroblasts conduction velocity and

arrhythmogenicity. Our results may help to further interpret the

drug-induced modifications of CV in prior studies. Angiotensin

converting enzyme inhibitors, angiotensin II type 1 receptor

antagonists and pirfenidone have been shown to be effective in

attenuating arrhythmogenic atrial remodeling, resulting in amarked

reduction in atrial fibrosis, with reduced conduction heterogeneity

and AF vulnerability (Li et al., 2001; Kumagai et al., 2003; Lee et al.,

2006). On the other hand, the effects of drugs designed to enhance

gap-junctional coupling on cardiac CVmay depend on the presence

of fibrotic changes. Rotigaptide showed that in the absence of

fibroblasts, CV increases monotonically with gap junctional

coupling (Lin et al., 2008). However, the presence of fibroblasts,

resulted in a biphasic effect on CV, as showed in both experimental

and computational studies (Miragoli et al., 2006; Zlochiver et al.,

2008; Tveito et al., 2012). Additionally, the relative expression of

Cx40 and Cx43 may either increase or decrease CV in experiments

and humans (Bagwe et al., 2005; Dhillon et al., 2014). Finally, while

acetylcholine induced APD shortening was able to induce an spiral

wave AF episode in healthy canine hearts (Schuessler et al., 1992),

shortening the APD using pinacidil induced AF was driven by

intramural reentry anchored to atrial bundles insulated by fibrosis

(Hansen et al., 2015). Therefore, we expect that using mathematical

models such as used here may help to improve the understanding of

the complex relationship of cardiac electrical substrate, electrical

conduction and drugs effects on propagation and

arrhythmogenicity.

Artificial intelligence for the evaluation of
tissue conduction

In silico simulations allow to produce a significant number of

scenarios that is suitable for the application of AI algorithms that

enable to better analyze and extract patterns. The use of this

technology has increased exponentially in the last years with the

aim of better predicting and identifying new biomarkers.

In this case, these algorithms were implemented with the main

objective of identifying the capabilities of the tissue to conduct the

electrical signal. Lack of conduction of a small patch in the heart

has been proved to cause arrhythmia, described as anatomical

reentry, where the anatomical pathway is fixed (Arenal et al.,

2012). Among the algorithms explored in this study, all showed an

accuracy above 80%. However, Cubic SVM showed the best

performance compared to QSVM, DT and KNN, with an

accuracy of 90.4% and an AUC of 0.95. This high accuracy

highlights the potential of these techniques as collaborative and

predictive tools in the clinic. Using this methodology in more

patient-specific complex scenarios is more likely to predict the

potential benefit of an antiarrhythmic drug on a specific patient by

avoiding the occurrence of conduction blocks. For example, after

further validation, using patient specific 3D geometry and fibrosis

distribution obtained by MRI and combining it with this in silico

model, the CSVM algorithm could be applied to help in the

decision of which antiarrhythmic drug may be more appropriate.

Limitations

The main limitations of this study include the high

computational cost associated to obtain a broad number of

profiles. In the same line, simulations were performed in 2D

planes to reduce the overall computational cost, but the study will

benefit to include more complex structures in the model such as

the pulmonary veins, different CV areas (Sánchez et al., 2019) or

a 3D configuration.

Although we considered the variability of the cardiomyocyte

population, new approaches should explore the possibility of

developing a population for human fibroblasts to be included in

the model, as for this study variability was only introduced in the

cardiomyocyte model.

Finally, regarding the diffused fibrosis that has been studied,

the percentage of fibroblasts was varied from 0% to 5% and 10%,

but the distribution of the fibroblast was determined randomly

for each percentage and kept constant for all the profiles.

Running the different profiles with the same percentage of

fibrosis, but different distributions should be further tested in

order to corroborate the obtained results.

Clinical implications

The identification of specific scenarios and combination of

variables that present proarrhythmic effects can be of great

importance in the understanding and development of new

tools for future pharmacological treatments in the concepts of

personalized medicine and optimizing treatment efficacy.
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Conclusion

Cardiac fibrosis can alter the expected behavior of

antiarrhythmic drugs in a minority of the population and data

analysis using artificial intelligence can reveal the profiles that

will respond differently.
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