
EEG diagnosis of depression
based on multi-channel data
fusion and clipping
augmentation and convolutional
neural network

Baiyang Wang1, Yuyun Kang2*, Dongyue Huo1,
Guifang Feng3,4*, Jiawei Zhang5 and Jiadong Li2

1School of Information Science and Engineering, Linyi University, Linyi, China, 2School of Logistics,
Linyi University, Linyi, China, 3School of Life Science, Linyi University, Linyi, China, 4International
College, Philippine Christian University, Manila, Philippines, 5Linyi Trade Logistics Science and
Technology Industry Research Institute, Linyi, China

Depression is an undetectable mental disease. Most of the patients with

depressive symptoms do not know that they are suffering from depression.

Since the novel Coronavirus pandemic 2019, the number of patients with

depression has increased rapidly. There are two kinds of traditional

depression diagnosis. One is that professional psychiatrists make diagnosis

results for patients, but it is not conducive to large-scale depression

detection. Another is to use electroencephalography (EEG) to record

neuronal activity. Then, the features of the EEG are extracted using manual

or traditional machine learning methods to diagnose the state and type of

depression. Although this method achieves good results, it does not fully utilize

themulti-channel information of EEG. Aiming at this problem, an EEG diagnosis

method for depression based on multi-channel data fusion cropping

enhancement and convolutional neural network is proposed. First, the

multi-channel EEG data are transformed into 2D images after multi-channel

fusion (MCF) and multi-scale clipping (MSC) augmentation. Second, it is trained

by a multi-channel convolutional neural network (MCNN). Finally, the trained

model is loaded into the detection device to classify the input EEG signals. The

experimental results show that the combination of MCF and MSC can make full

use of the information contained in the single sensor records, and significantly

improve the classification accuracy and clustering effect of depression

diagnosis. The method has the advantages of low complexity and good

robustness in signal processing and feature extraction, which is beneficial to

the wide application of detection systems.
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1 Introduction

1.1 Motivation

With the development of society, the pace of life is getting

faster and faster, followed by more and more mental

pressure, depression has become a relatively common

mental disease. According to the report released by the

World Health Organization in 2014, depression has so far

affected 350 million people, distributed in different age

groups. The proportion of young people suffering from

depression is increasing year by year due to the pressure

from life, study and employment in many aspects. In recent

years, the trend of depression is getting younger

(Organization, 2004; Steiger and Pawlowski, 2019; Laacke

et al., 2021). Depression is manifested by low mood, lack of

confidence and decline in quality of life in the early stage. If

not paid attention to and timely treatment, it is likely to

develop into major depression, which will lead to suicide

attempts of patients and is a very harmful mental disease

(Ionescu et al., 2013; Goldberg, 2014). The diagnosis of

depression in traditional methods requires professional

psychiatrists to make detailed consultation and use the

depression self-assessment table to assist diagnosis. This

diagnosis method has high accuracy and is the main

diagnostic method at present (Neto and Rosa, 2019).

However, on the one hand, due to the need for

professional psychiatrists, patients need to take the

initiative to go to the hospital for diagnosis, which not

only requires a high cost of diagnosis, and most of the

patients with depression have the psychological rejection

of such diagnosis, it is difficult to effectively diagnose

patients with depression in the early stage; On the other

hand, the recurrence rate of depression after cure is very

high, and it is not convenient for patients to conduct

effective self-testing to prevent the recurrence of

depression (Bilello, 2016; Chan et al., 2018; Roy et al.,

2019; Aravena et al., 2020; Ming et al., 2020; Greco et al.,

2021).

1.2 Related work

In recent years, many researchers have used EEG to

automatically recognize human emotions and obtained high

recognition accuracy (Kurniawan et al., 2013; Luo et al., 2018;

Qing et al., 2019; Torres et al., 2020; Gao et al., 2021; Huang,

2021; Liu et al., 2021; Sharma et al., 2021; Yedukondalu and

Sharma, 2022). In Table 1, the methods and accuracy rates of

researchers using EEG to diagnose depression are shown.

Lakhan et al. (Sharma et al., 2022) used whale optimization

algorithm and support vector machine to identify short-time

EEG with an accuracy of 97.2559%. Dongkoo et al. (Shon et al.,

2018) used the features selected by the genetic algorithm as the

input of the KNN classifier to distinguish the states

represented by each EEG data. Akbari et al. (Akbari et al.,

2021) extracted geometric features from EEG, used genetic

algorithm to reduce the number of feature vector array, and

finally used support vector machine to diagnose EEG. Cai et al.

(2018a) used a three-electrode EEG system to collect EEG

signals from Fp1 (left frontal pole), Fp2 (right frontal pole)

and Fpz (mid-frontal pole) electrode positions of subjects. The

linear and nonlinear characteristics of EEG were extracted by

denoising with kalman derivation formula and discrete

wavelet transform.Cai et al. (2020) further fused EEG data

of different modes with feature-level fusion technology to

establish a more accurate depression recognition model.Chen

et al. (2020) analyzed the EEG law of depression by using fuzzy

measure entropy. The above methods have been implemented

and proved to be effective, but there are still some

shortcomings. Firstly, it requires some experience to extract

features from EEG. Secondly, the diagnosis process of

depression is cumbersome, and it is easy to lose

characteristic information, resulting in low classification

accuracy and weak generalization ability (Faust et al., 2014;

Acharya et al., 2015; Cai et al., 2018b; Sharma et al., 2018; Zhu

et al., 2019; Zhu et al., 2020; Sadiq et al., 2021).

Deep learning (DL) algorithm is a new branch of machine

learning. It forms more abstract high-level features by

combining low-level features, and has the advantages of

high precision, automatic feature extraction and selection

(Mu and Zeng, 2019). In recent years, deep learning has

begun to be used in the diagnosis of depression to classify

the EEG of depression (Li et al., 2019; Mumtaz and Qayyum,

2019; Thoduparambil et al., 2020; Dsbah et al., 2021; Seal et al.,

2021; Uyulan et al., 2022).Acharya et al. (2018) used the

classification method proposed by convolutional neural

network for classification, which can conduct automatic

and adaptive learning of the input EEG signals to

distinguish the EEG of depressed and normal subjects.Ay

et al. (2019) used CNN and LSTM architecture to detect

depression based on EEG signals. These methods all use

EEG signals as the input of CNN directly. Although CNN

can produce satisfactory performance in the depression

TABLE 1 Comparison with other diagnostic methods for depression.

Reference Processing ACC (%)

Cai et al. (2018a) 2018 KNN 79.27

Shon et al. (2018) 2018 GA + KNN 71.76

Acharya et al. (2018) 2018 CNN 96.0

Ay et al. (2019) 2019 CNN + LSTM 99.12

Sharma et al. (2022) 2020 Whale + SVM 97.2559

Akbari et al. (2021) 2021 GA + KNN 99.3

Shon et al. (2018) 2021 CNN + +LSTM 99.1

Proposed work CNN + +MCF + +MSC 99.63
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diagnosis, classification accuracy compared with the

traditional machine learning methods have made a lot of

ascension, however the network training requires a lot of

samples to avoid the occurrence of a fitting. In cases where

EEG samples for depression are not rich enough, data

augmentation techniques are needed to effectively utilize

the limited dataset. On the other hand, CNN has unique

advantages in image processing. One-dimensional(1D) EEG

signals are fused into two-dimensional(2D) images so as to

achieve higher recognition accuracy by taking advantage of

CNN’s advantages in image processing (Lashgari et al., 2020).

On the basis of existing studies, an EEG diagnosis method

for depression based 83 on multi-channel data fusion and clipp

augmentation and convolutional neural network is proposed,

and gives full play to the role of CNN in depression diagnosis

when the data set is small. The specific method is as follows.

Firstly, the EEG of healthy and depressed patients was collected,

and the original EEG was subjected to multi-scale clipping.

Then, the multi-signal and multi-channel fusion method was

used to obtain the training data augmented by multi-scale

clipping fusion data. Finally, the training data are fed into

the multi-channel convolutional neural network training.

Compared with the traditional method, the feature

extraction process is simplified in the proposed method, and

the original EEG signal is converted directly to a two-

dimensional image, then the two-dimensional image is used

as the input of the neural network for training. The selected

depression dataset is described in Section 2. It is introduced in

Section 3 that MCF, MSC data augmentation methods and the

diagnosis process of depression. In Section 4, experimental

results and corresponding analysis are presented to verify the

effectiveness of the proposed method. Finally, the conclusion is

proposed in Section 5.

2 Data description

The international standard for EEG acquisition electrode

position in the head is called 10–20 system, which consists of

19 recording electrodes and two reference electrodes, as shown in

Figure 1. EEG signals at different positions reflect different

functional activities of the brain (Jasper, 1959; Malloy et al.,

2006). Therefore, it is necessary to select the appropriate EEG

acquisition location when studying depression recognition in

EEG. Depression is a psychological disease closely related to

emotions. Previous studies have proved that the frontal lobe is

the main part of psychological activities and is related to

thoughts, emotions and depression, etc. Depression is most

closely related to the prefrontal lobe in the frontal lobe (Shi

et al., 2020). Therefore, in this study, Fp1, Fp2 and Fpz electrode

signals were selected as signal sources to diagnose depression,

andMODMAdata set from Lanzhou University (Cavanagh et al.,

2018) and EEG data set from University of NewMexico (Li et al.,

2020) were used to verify the effectiveness of the proposed

method in detecting depression EEG.

2.1 Dataset 1: MODMA dataset

The MODMA dataset from Lanzhou University was used as

the first dataset. Written informed consent was obtained from all

participants prior to the experiment. The local Biomedical

FIGURE 1
International 10–20 standard.
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Research Ethics Committee of Lanzhou University Second

Hospital approved the consent form and study design in

accordance with the World Medical Association Code of

Ethics (Declaration of Helsinki). The data set included

18 depressed patients and 25 normal controls. The subjects

were non-drug users and were aged 18–53. The acquisition

device is a three-electrode EEG acquisition sensor, which only

collects three electrodes Fp1, Fpz and Fp2. An EEG that records

closed eyes and resting states. EEG signals are sampled at 250 hz.

After the EEG data was collected, the data quality was evaluated

by technicians with EEG processing experience. Below is a EEG

of Healthy Controls(HC) and Major Depressive Disorder(MDD)

patients in Figure 2.

Depression Rest dataset of EEG signals are collected from the

University of New Mexico. Participants were recruited from

introductory Psychology courses based on large-scale survey

scores from the Baker Depression Scale (BDI), and all

participants in the dataset provided written informed consent

forms approved by the University of Arizona. Participants were

18–25 years old, had no history of head trauma or epilepsy, and

had no use of psychotropic substances. A score of 0–13 is

considered the minimum range for depression, with

14–19 being mild, 20–28 moderate and 29–63 severe. 64 Ag/

AgCl electrodes were used to collect EEG signals from the scalp,

with bandpass filter 0.5–100 Hz, sampling rate 500 Hz,

impedance &lt. 10 k Ω. In this study, only the signals of Fp1,

Fp2, and Fpz channels in the dataset will be used to classify and

identify the severity of depression. The four types of EEG are

shown in Figure 3.

3 Data fusion and identification
methods

3.1 Data Multi-channel Fusion

Convolutional neural network has huge advantages in the

field of image recognition. In order to take advantage of the

advantages of neural network, it is necessary to fuse the three-

channel brainwave signals together and convert them into 2D

images, and then use 2D convolutional neural network for direct

training and classification. Compared with the direct analysis of

the characteristics of three-channel 1D signals this method does

not require manual processing and feature extraction of 1D EEG

signals.

First, the proper length of a single sample is needed to select,

and we make a hypothesis on how to choose an appropriate

sample length: When using a convolutional neural network to

identify signals, the more data points a single sample contains,

the more information it contains. On the contrary, since the

number of data points in the original data set is fixed, if each

sample contains too many data points, the total number of

samples will be too small, which is not conducive to the training

of convolutional neural networks. Therefore, in order to select

an appropriate sample length, the single-channel data in

MODMA dataset were selected and intercepted with the

length of 100, 600, 1100, 1600, 2100, and 2600 respectively

to draw two-dimensional images, forming a small data set, as

shown in Table 2. Samples of different lengths are shown in

Figure 4.

FIGURE 2
EEG of Healthy Controls and Major Depressive Disorder patients:(A) Healthy Controls(HC),(B) Major Depressive Disorder(MDD).
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Six kinds of single-channel data sets were sent into neural

network training, and the EEG accuracy of normal people and

depressed patients was distinguished by the results of single-

channel EEG training. Finally the data length of a single sample

in the data fusion experiment in this paper was determined.

The results are shown in Figures 5, 6, 7, respectively. Through

the analysis of the results, the general trend is that the more

single-sample points contained in the data, the higher the

training accuracy. This verifies the conjecture above. But

when the data points contained in a single sample reaches

2600, the accuracy begins to decline instead. So considering the

size of the data set, as well as the accuracy and smoothness of

loss function curve obtained by training, 2100 data points were

selected as a sample.

A scheme to effectively fuse multi-channel EEG signal

information is proposed. The plt function in the Matplotlib

package in Python is used to convert the multi-channel data

into a 2D image. Before convolution is input, the EEG signals of

three channels are fused into a 2D image, which is similar to the

visualization of EEG. Compared with single-channel convolution

FIGURE 3
Four different levels of depression: (A) 0–13 depression, (B) 14–19 depression, (C) 20–28 depression, (D) 29–63 depression.

TABLE 2 Data sets of different sample lengths.

100 600 1100 1600 2100 2600

HC 2935 2933 2931 2933 2934 2930

MDD 2635 2636 2633 2637 2636 2631
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input, it better reflects the association between multi-channel

EEG and is easy to expand. This scheme takes 3-channel as an

example. However, this method is not limited to 3-channel, and

channels can be arbitrarily added or deleted to provide more

flexibility, as shown in Figure 8.

3.2 Data multi- scale clipping

The collection of EEG data is limited by realistic

conditions, and it is very difficult to collect data in a

standardized manner, not only because of the limitations of

FIGURE 4
EEG samples of different lengths: (A) 100 points, (B) 600 points, (C) 1100 points, (D) 1600 points, (E) 2100 points, (F) 2600 points.

FIGURE 5
Training results on six datasets of different lengths: (A) classification loss function for training set, (B) classification loss function for validation set.
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hardware conditions, but also because of the particularity of

depression: many depressed patients do not agree to have their

EEG data collected. On the other hand, deep learning is based

on the method driven by big data. In order to obtain high

accuracy and strong generalization ability, it requires multiple

types and quantities of data. Inspired by the use of clip,

translation, and flip to augment data sets in image

processing, EEG can also augment and amplify data sets by

translation, which is defined as multi-scale clipping (MSC).

Suppose N is the length of the original EEG time series data

set,X is the length of a data sample, and C is the augmentation

multiple. The number of data samples after data

augmentation, M, can be given by the following Formula 1:

M � N

X
× C (1)

The sample number of the augmented dataset is increased by

C times compared with the original dataset. According to the

conclusion in the previous section, the length of a data sample X

is 2100, andMSCmethod is used to expand the original dataset to

2, 4, and 8 times of the original dataset. The specific

augmentation steps are as follows:

No data augmentation (AU-N): Take 2100 data points as

1 sample, data 1–2100 is the first sample generated by cutting, the

starting point of the next sample is 2101–4200, until the end of

the EEG data, and the last time series less than 2100 points are

discarded, the definition of each sample can be given by Formula

2, d is the interval of each sample, and S is any one of the M

sample sets:

S × X + 1≤ d≤ S × X +X S � {0, 1, 2,/,
N

X
, } (2)

FIGURE 6
Training results on six datasets of different lengths: (A) training set accuracy, (B) validation set accuracy.

FIGURE 7
Summary results for six datasets of different lengths: (A) accuracy, (B) loss function.
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times data augmentation (AU-2):Starting from 0 is the original

data set, the first sample starts from 1, produces the first sample at

2100, 2101–4200 produces the second sample, and so on, until

the end of the sequence data, which is the first part of AU-2; X is

2100 and C is 2, so X
C is 1050 data points. Use 1051 as a starting

point, to 3150 is the first sample of part 2, and so on, the second

sample is 3151–5150, the third sample is 5151–7250, until the

end of the sequence data, data segments less than 2100 will be

discarded. The two new data sets are then fused into a data set

about twice the size of the original one, known as double data

augmentation, or “AU-2”. The definition of each sample can be

given by Formula 3, where X
C replaces X in the original formula.

S ×
X

C
+ 1≤d≤ S ×

X

C
+X S � {0, 1, 2,/,

N

X
× C}, C ≠ 0 (3)

Four times data augmentation(AU-4): The same original

data set starts from 1, generates the first sample at 2100,

generates the second sample at 2101–4200, and so on until

the end of the sequence data, discarding the part of the last

segment of the sequence less than 2100. This is part 1 of AU-4; XC
is 525 data points. Part 2 starts from 526, to 2625 is the first

sample of Part 2, and so on. The second sample of Part 2 is

2626–4725, and the third sample is 4726–6826, until the end of

the sequence data. Part 3 (Samples 1:1051 to 3150, Samples 2:

351 to 5250, samples 3:5251 to 7350); The fourth part is (Sample

1:1576 to 3675, sample 2:3676 to 5775, sample 3:5776 to 7875).

These four new data sets are then fused into a data set, that is,

approximately four times the size of the original one, which is

known as the quad-data augmentation, or AU-4 for short.

Eight times data augmentation(AU-8): The same original

data set as part 1 of AU-8; XC is 262.5.263 data points are selected

after rounding. The second part is (Sample 1:264–2363, sample 2:

2364–4463, sample 3:4644–6563). The third part is (Sample 1:

527–2626, Sample 2: 26.27–4726, sample 3: 47.27–6826). The

fourth part is (Sample 1:790–2889, sample 2:2890–4989, sample

3:4990–7090). The remaining four parts of AU-8 are generated

according to the above steps, and then the eight new data sets are

fused into a data set about 8 times the original data set, which is

called 8-fold data augmentation, referred to as “AU-8”.

FIGURE 8
Convolution is inputted after multi-channel data fusion.

TABLE 3 VGG neural network structure.

Layer Convolution kernel Size

1 RGB image 224 × 224

2 Convolutional layer 64 × 64

3 Convolutional layer 64 × 64

4 Maxpool

5 Convolutional layer 128 × 128

6 Convolutional layer 128 × 128

7 Maxpool

8 Convolutional layer 256 × 256

9 Convolutional layer 256 × 256

10 Maxpool

11 Convolutional layer 512 × 512

12 Convolutional layer 512 × 512

13 Convolutional layer 512 × 512

14 Maxpool

15 Convolutional layer 512 × 512

16 Convolutional layer 512 × 512

17 Convolutional layer 512 × 512

18 Maxpool

19 Fully Connected Laye 2048

20 Fully Connected Laye 2048

21 Fully Connected Laye 2

22 Soft-max

EEG, diagnosis of depression.
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3.3 Convolutional neural network

As an important member of neural network, CNN has

powerful capability of representation learning and automatic

feature extraction. So far, there are many variants. Mainstream

CNNmodels include AlexNet, GoogLeNet andVGGnetwork, etc.,

but the basic structure of CNN includes input layer, convolution

layer, pooling layer, full connection layer and output layer.

The convolution layer uses the convolution kernel to extract

features, and contains multiple convolution kernels. Each neuron

FIGURE 9
Flowchart of EEG diagnosis of depression.

FIGURE 10
Confusion matrix and t-SNE clustering analysis.
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is only connected to the local area of the previous layer. This area

is called the “receptive field”, and the size of the receptive field

depends on the convolution kernel. The Formula 4 is defined as

follows, where p × q is the size of the convolution kernel, w is the

weight of the convolution kernel, v is the image gray value, and

the bias b is added after the convolution; fis the activation

function.

zx,y � f⎛⎝∑ppq

i
wivi + b⎞⎠ (4)

Pooling layer is a subsampling operation. Its main objective is

to reduce the size of the feature graph. It is carried out by Max

Poolling method and its Formula 5 is as follows:

f � Max(xm,n, xm+1,n, xm,n+1, xm+1,n+1)(0≤m≤M, 0≤ n≤N)
(5)

After several iterations of the convolutional layer and the

pooling layer, the full connection layer connects the neurons of

the first several layers, extracts the nonlinear combination of

features and then tiles them into vectors as the input of the final

classifier. The output layer (SoftMax) is a general form of logistic

regression, which can realize multi-classification problems. For

input data {(x1, y1), (x2, y2), . . . , (xn, yn)} has k categories, and

SoftMax estimates the probability that input data X belongs to

each of k categories. In Formula 6: θ1, θ2, . . . , θkare the learning

parameters of the model, multiplied by 1∑k

j�1e
θT
j
xi
to make the

probability distribution between [0,1].

hθ(xi) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
p(yi � 1

∣∣∣∣xi; θ)
p(yi � 2

∣∣∣∣xi; θ)
..
.

p(yi � k
∣∣∣∣xi; θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
1

∑k
j�1e

θTj xi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
eθ

T
1 xi

eθ
T
2 xi

..

.

eθ
T
k xi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

The classical VGG structure in CNN is used to extract and

classify EEG features. VGG is a network proposed by Visual

Geometry Group of the University of Oxford in 2014, which

contains 13 convolutional layers and three fully connected layers.

This network reduces required parameters by stacking multiple

3x3 convolutional kernels to replace large-scale convolutional

kernels. Stacking two 3x3 convolutional kernels can replace the

sensory fields of 5x5 convolutional kernels. Stacking three

3x3 convolution kernels can replace the receptive field of

7x7 convolution kernels (Simonyan and Zisserman, 2014).

The structure of VGG is shown in Table 3.

After multi-channel data fusion and clipp augmentation,

convolutional neural network was designed for depression

EEG diagnosis. The method was divided into five basic steps,

and the flow chart was shown in Figure 9.

Step 1 : EEG signals were collected by wearable EEG acquisition

equipment, and selected data sets were used in this study instead

of data collection.

Step 2 : Processing the collected EEG signals, Fpz and Fp3 EEG

signals are fused to generate the initial data set, and multi- scale

clipping method was used to augment the data, forming data sets

of 2x, 4x and 8x augmentation.

Step 3 : Divide the data set into training set and test set in

proportion

Step 4 : VGG convolutional neural network was used to train the

model on the training set, and the neural network prediction

model of depression was obtained.

Step 5 : Deploy the trained model into a small EEG detection

device or wearable device for depression detection.

4 Results and discussions

The experimental software in this paper runs on Windows

10 64-bit operating system and is built using Python3.6 and

Keras deep learning library. The hardware is Intel Core i7-

10875H CPU and Nvidia RTX 2060 GPU. In the experiments.

TABLE 4 1-channel, 2-channel and 3-channel 2D MODMA datasets.

Data 1 One channel Two channel Three channel

Train set
samples

Test set
samples

Train set
samples

Test set
samples

Train set
samples

Test set
samples

HC 3776 419 3777 419 3772 419

MDD 3393 377 3392 376 3389 376

TABLE 5 Loss function and accuracy.

Channel Loss function Accuracy(%)

1-channel 0.5971 66.41

2-channel 0.3302 83.20

3-channel 0.1779 94.01
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The dataset is divided into 90% training set and 10% test set. The

number of training iterations is 20, and the learning rate is set to

0.0001.

The loss function uses the cross-entropy loss function, and

the definition of the cross-entropy loss function is shown in

Formula 7.

Loss � 1
n
∑

i
∑m

c�1yic log(pic) (7)

where n is the total number of samples. m is the number of

categories. yic is symbol function (0 or 1), the value is 1 if the true

class of sample i is equal to c, otherwise is 0. pic observes the

predicted probability of sample i for category c.

Accuracy is used as an evaluation index to evaluate the

diagnostic results. Accuracy refers to the proportion of correct

results obtained by classification in the total number in a given

test set. In the classification, if one category is defined as positive,

other categories are negative. Accuracy is defined as Formula 8.

Accuracy � TP + TN

TP + TN + FP + FN
(8)

where TP is the number of positive classes predicted to be

positive; FP is the number of negative categories predicted to

be positive; TN is the number of negative categories predicted to

be negative; FN is the number of positive classes predicted to be

negative.

Results visualization techniques can better observe

experimental results and find classification errors between

categories. Confusion matrix and t-SNE technique are used to

visualize the prediction results of the model, and the specific

process is shown in Figure 10 (Simonyan and Zisserman, 2014).

4.1 MODMA datasets

4.1.1 Multi-channel data fusion
Using the proposed data processing method, the 3-channel

EEG dataset was fused into a 2D image. To verify the

effectiveness of multi-channel EEG signal fusion, a single-

and dual-channel comparative dataset was added. The

sample sizes of the three datasets are shown in Table 4,

where HC stands for Healthy Control. MDD stands for

Major Depression Disorder.

The curve and accuracy of the loss function obtained by training

are shown in Supplementary Figure S11. Table 5 are the comparison

of the final loss rate and accuracy. It can be seen from the results that

with the increase of the number of fusion channels in the sample, the

loss rate obtained gradually decreases and the accuracy rate

increases. Compared with 65.49% of one channel, this is a big

increase. By observing the confusion matrix in Supplementary

Figure S12 and the clustering result in Supplementary Figure

S13, it can be seen that the discrimination degree of three

channels is also higher and the effect is better.

4.1.2 Multi-channel data fusion and clipping
augmentation

In order to verify the effect of clipped enhanced data on the

performance of CNN, first of all, new datasets AU-2, AU-4 and

AU-8 are obtained after augmenting data set 1,2, 4, and 8 times,

the unaugmented three-channel fusion data set is called AU-N,

and then these data sets are input into CNN depression diagnosis

classification respectively. The data set division of the two data

types is shown in Table 6.

The curve and accuracy of loss function obtained by

training after clipping augmentation are shown in

Supplementary Figure S14. Table 7 is the final comparison

of loss rate and accuracy. Compared with the data set without

augmentation, the accuracy reaches 99.36% after 8 times

augmentation. By observing the confusion matrix in

Supplementary Figure S15 and the clustering results in

Supplementary Figure S16, as the multiple of data

augmentation increases, the model classification after

training becomes more accurate, and the feature clustering

distinction between depressed patients and normal people is

also greater.

TABLE 6 Multi-channel data fusion and clipping augmentation of MODMA datasets.

Data1 AU-N AU-2 AU-4 AU-8

Train set
samples

Test set
samples

Train set
samples

Test set
samples

Train set
samples

Test set
samples

Train set
samples

Test set
samples

HC 3772 419 7515 835 14976 1664 29603 3289

MDD 3389 376 6757 750 13437 1493 26636 2959

TABLE 7 Loss function and accuracy of AU-N, AU - 2, AU - four and
AU—8 data set.

AU Loss function Accuracy(%)

AU-N 0.1428 94.01

AU-2 0.0679 97.83

AU-4 0.0325 98.88

AU-8 0.0120 99.63
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4.2 Depression rest data set

In order to verify the universality of the method, new data sets

AU-2, AU-4 and AU-8 were obtained after 2, 4 and 8 augmentation

of dataset 2. The non-augmented three-channel fusion data set was

called AU-N. These data sets were generated by fusion of 3-channel

EEG signals using multi-channel data fusion and clipping

augmentation method and then are input into CNN respectively

for diagnostic classification of depression. The data set division of

the four data types is shown in Table 8.

The curve and accuracy of loss function obtained by training

after clipping augmentation are shown in Supplementary Figure

S17. Table 9 is the final comparison of loss rate and accuracy. Due

to the small number of samples in the original data set of data set

2, after 8 times of augmentation, the accuracy of data set two

reached 93.97% compared with the data set without

augmentation, which was greatly improved compared with

48.66% without data cutting augmentation. By observing the

confusion matrix in Supplementary Figure S18 and the clustering

results in Supplementary Figure S19, as the multiple of data

augmentation increases, the model classification after training is

more accurate, and the feature clustering differentiation of

different depression degrees is also greater.

5 Conclusion

When the EEG acquisition device collects the EEG, due to

different collection equipment, different patients, different collection

conditions, etc., will lead to poor consistency of the collected data,

which will affect the feature extraction and disease diagnosis. While,

not all of the multi-channel EEG signals are depression-related, and

collecting all of the channel information is not conducive to data

collection, nor is it conducive to extracting depression-related

features from EEG. According to these conditions, an EEG

diagnosis method for depression was proposed based on multi-

channel data fusion and clipping augmentation and convolutional

neural network, which realized the diagnosis of depression after

selecting single and multiple channels of EEG signal fusion. Firstly,

in the case of data without clipping augmentation, the method is to

convert multi-channel fusion into two-dimensional image. Three

data sets of one, two and three channels were obtained respectively.

The data sets were input into the VGG neural network for training.

The training results on the two data sets showed that the more the

number of channels fused in the data set, the higher the accuracy of

the trainedmodel was, and themore stable themodel was. Then, the

two data sets were clipping augmented, and each data set was

expanded by 2, 4, and 8 times respectively. In dataset 1, the accuracy

was 95.44% without fusion enhancement, and the accuracy was

97.83%, 98.88% and 99.63% after fusion enhancement by 2, 4, and

8 times, respectively. It can be seen that the accuracy has been greatly

improved after data augmentation. Data set two is expanded by 2, 4,

and 8 times to obtain 64.73%, 86.96% ,and 93.97%, respectively,

which are greatly improved compared with without augmentation.

It can be seen that when training neural network in data set with

small sample size, multi-channel data fusion and clipping

augmentation can alleviate the performance degradation of CNN

due to small sample size and complex data. The results of the two

data sets show that the combination of multi-channel data fusion

and multi-scale clipping augmentation can make full use of multi-

channel data in EEG, reduce the complexity of feature extraction,

and quickly diagnose depression. The proposed method has low

complexity and is suitable for multi-channel EEG diagnosis of

depression, and has strong robustness and effectiveness.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: http://modma.lzu.edu.cn/data/index/

TABLE 8 Multi-channel data fusion and clipping augmentation of Depression Rest data set.

Data2 AU-N AU-2 AU-4 AU-8

Train set
samples

Test set
samples

Train set
samples

Test set
samples

Train set
samples

Test set
samples

Train set
samples

Test set
samples

0–13 536 59 1071 119 2138 237 4266 474

14–19 522 58 1038 115 2072 230 4133 459

20–28 529 58 1053 117 2107 234 4201 466

29–63 521 57 1014 115 2077 230 4141 460

TABLE 9 Loss function and accuracy of AU-N, AU-2, AU-4 and
AU–8 data set.

AU Loss function Accuracy(%)

AU-N 1.0359 48.66

AU-2 0.8914 64.73

AU-4 0.4443 86.96

AU-8 0.2325 93.97
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