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Wound healing is a very complex process, where variety of different pathways is

activated, depending on the phase of healing. Improper or interrupted healing

might result in development of chronic wounds. Therefore, novel approaches

based on detailed knowledge of signalling pathways that are activated during

acute or chronic cutaneous wound healing enables quicker and more effective

healing. This review outlined new possibilities of cutaneous wound healing by

modulation of some signalling molecules, e.g., gasotransmitters, or calcium.

Special focus is given to gasotransmitters, since these bioactive signalling

molecules that can freely diffuse into the cell and exert antioxidative effects.

Calcium is an important booster of immune system and it can significantly

contribute to healing process. Special interest is given to chronic wounds

caused by diabetes mellitus and overcoming problems with the inflammation.
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Introduction

Skin as the biggest organ in humans provides several important functions for the

organism—it acts as a barrier maintaining skin integrity and homeostasis against harmful

pathogens and physical stressors. Acute (mechanical injury, surgery, burn, etc.) or chronic

(diabetic ulcers, etc.) cutaneous damage can have serious consequences to the whole body.

Therefore, wound healing as a multistep process is an important move in the maintenance
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of human health and well-being. Hemostasis, inflammation,

proliferation, and remodelling belong to the main steps in

wound healing (Borena et al., 2015).

Skin consists of two layers—thin epithelial membrane

(epidermis) and a thicker layer (dermis), composed of

connective tissue. These layers differ in the composition and

also in the function. Various types of cells can be recognized in

both layers. In dermis, six cell types that differently contribute to

wound healing were identified. Also, myofibroblasts and

macrophages may change the skin wound healing fates by

modulating critical signalling pathways (Chen et al., 2022).

Single cell analysis revealed heterogeneity in large wounds

(Guerrero-Juarez et al., 2019). In murine skin wounds the

dynamic nature of fibroblast identities was shown during

healing with formation subclusters of the wound fibroblasts

into distinct cell populations. Also, the wound induced

plasticity of myeloid lineage cells was demonstrated on this

model (Guerrero-Juarez et al., 2019). Major variations in

epithelial, fibroblast, and immune cell populations were

observed in young and aged skin during wound healing (Vu

et al., 2022). It is well known that wound healing declines with

age, which contributes to a variety of health complications, and to

decreased lifespan. Aged skin wounds exhibited more

inflammatory profile than young equivalents, probably due to

dysregulated growth factor, chemokine, and cytokine pathways

during wound healing in aged skin (Vu et al., 2022). Moreover,

aged basal epidermal keratinocytes isolated from the wound edge

appeared to be more recalcitrant to activation, as judged by their

markedly reduced transcriptional activity of genes involved in

important processes of wound-repair (Keyes et al., 2016).

Wound healing is a complex process that involves the

interaction between different cell types, growth hormones,

cytokines, antioxidants and a stable supply of metal ions (e.g.,

calcium, zinc, and magnesium) (Dehkordi et al., 2019). After

the skin is damaged, several cell systems and signalling

pathways are activated in the wound to defend the body.

Therefore, and also due to complexity of the skin, diverse

approaches are needed to improve cutaneous wound healing

(Zeng et al., 2018). Due to differences in signalling, healing

strategy of acute and chronic wounds diverge. While acute

wound heals in 3–4 weeks depending on the size, localization,

origin, patient’s co-morbidities, age, etc., chronic wound basically

stops in the certain phase of healing, generally in the inflammatory

phase. Also, chronic wounds are characterized by persistent

infections, formation of drug-resistant microbial biofilms and the

inability of dermal and/or epidermal cells to respond to reparative

stimuli (Table 1, Demidova-Rice et al., 2012). Besides inflammatory

phase, basic differences between acute and chronic wounds occur

also in proliferative phase (Martin and Nunan, 2015). In the acute

wounds platelets release platelet-derived growth factor and

transforming growth factors A1 and 2, which attract

inflammatory cells that release reactive oxygen species (ROS) and

effectively clear the wound from bacteria (Demidova-Rice et al.,

2012). Afterwards, growth factors are produced to induce and

maintain cellular proliferation while initiating cellular migration.

Finally, granulation tissue is formed to support epithelialization

(Demidova-Rice et al., 2012). In chronic wounds, lower density of

growth factor receptors occur that decrease the mitogenic potential

of dermis and epidermis. Keratinocytes derived from chronic ulcers

have increased expression of several cell cycle–associated genes, such

as cyclin-dependent protein kinase 2 and cyclin B1, which point to

the hyperproliferative status. However, these chronic

wound–derived keratinocytes with increased proliferative marker

Ki67 exhibit impaired migratory potential (Demidova-Rice et al.,

2012; Martin and Nunan, 2015). Therefore, chronic wounds caused

by progression of some diseases (e.g., diabetes) require repetitive or

periodical medical intervention to prevent complications.

Inflammation is the basic response to cutaneous wounds that

helps to protect the tissue from further damage and set up

conditions that promote repair. Inflammation as the early step of

the wound healing is characterized by the overproduction of ROS.

Although the precise role of ROS in the process of wound healing is

still not fully clear, increasing evidence suggests that ROS might be

crucial for wound repair, not only as germicides but also for cellular

signalling (Roy et al., 2006) in different phases of wound healing (for

review see André-Lévigne et al., 2017). To eliminate excessive ROS

production antioxidants and/or gasotransmitters are among the

interest in many fields of medicine. Gasotransmitters are

signalling molecules that easily penetrate through the plasma

membrane and they have well defined and specific functions at

physiologically relevant concentrations (Shefa et al., 2017).

Exogenous application of gasotransmitters to wounds can

significantly improve their treatment. Calcium ions play an

unmistakable role in wound healing. It was proved that dietary

TABLE 1 Major differences between acute and chronic wounds.

Acute wounds Chronic wounds

Time of healing is 3–4 weeks Time of healing is long, or wounds are nontreatable

Activation of resident immune cells Persistent inflammation and formation of drug-resistant microbial biofilms

Release of cytokines Alterations in inflammatory cytokines

Stimulation of fibroblasts Fibroblast senescence

Deposition of extracellular matrix Decreased extracellular matrix

Neovascularization, angiogenesis Impaired angiogenesis
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calcium deficiency caused delayed wound healing and higher

prevalence of chronic wound formation (Lansdown, 2002).

Recently, photothermal injectable hydrogel composed of Ca2+

and alginate solution with α-lipoic acid modified palladium

nanoparticles was developed, and possess anti-oxidative and anti-

inflammatory properties (Luo et al., 2022). Role of the calcium ions

in healing process is well documented not only during

inflammation, but also in the proliferation phase (Subramaniam

et al., 2021). Thus, new approaches based on calcium therapy (and

combined calcium and vitamin D therapy) can result in more

effective wound healing. Also, ROS can affect calcium signalling

through targeting its influx through calcium channels (Gorlach et al.,

2015). Mutual communication of calcium signalling, ROS and

gasotransmitters is shown in Figure 1.

This review is focused on possibilities to utilize

gasotransmitters and calcium ions and/or their combination

in wound healing under normal and special conditions

(diabetes). We focus on wound healing in diabetes as a

modern civilization burden, which significantly contributes to

chronic wound healing problems.

Wound healing, reactive oxygen
species, and gasotransmitters

Increased reactive species (ROS) production serves as a

defence to fight against pathogen attacks. Thus, ROS

accumulation is required to prevent infection in the area of

the wound (Muzumdar et al., 2019). However, long-term

exposure to high concentrations of ROS generally causes

oxidative stress, which damages cells (Figure 1). ROS

contributes to the increasing group of gaseous mediators in

the control of wound healing. Inhibiting excessive ROS

production is an important feature in wound healing. From

this point, antioxidants might play an important role in this

process. Nrf2-activating compounds were studied to prevent and

treat chronic inflammatory and degenerative disorders. It has

been shown that Nrf2-inducing bioactive compounds that

improve the wound healing process may be a promising

therapeutic approach for treating chronic wounds (Suntar

et al., 2021). Li and co-workers have shown that a hydrogen-

rich medium relieved oxidative stress via activation of the Nrf-2/

heme oxygenase-1 (HO-1) pathway (Li et al., 2022). Also,

gasotransmitters serve as a barrier to increased ROS,

particularly to superoxide radicals. To promote gas-healing

therapy, the following requirements should be fulfilled: 1)

biocompatibility, 2) ability to provide adequate and controlled

amounts of gasotransmitter, 3) protection of the wound against

pathogens, and 4) retaining a favourable moist wound

environment (Schneider et al., 2009). Three gasotransmitters,

nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide

(H2S) are important players in wound healing. These

gasotransmitters are endogenously produced, but they could

be donated also exogenously.

Nitric oxide, the best-described gasotransmitter, is deeply

involved in the modulation of a variety of cellular functions,

especially in the heart and nervous system (Förstermann and

Sessa, 2012). It can be produced endogenously by three types of

NO synthases (NOS)—neuronal (nNOS), endothelial (eNOS),

inducible (iNOS), or added to the cells exogenously. NO was also

FIGURE 1
Schematic interaction of signalling molecules (calcium ions, ROS and gasotransmitters) in the individual phases of wound healing and their
effects. Calcium ions affect hemostasis, inflammation and also proliferative phase of wound healing, which have an impact on the process of
apoptosis, epithelization and migration. Gasotransmitters affect inflammation, proliferation and remodelling and significantly affect the amount of
reactive oxygen species (ROS) and thus oxidative stress and also epithelization and migration. (+) represents positive effect, (−) represents
negative effect.
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described to affect cutaneous functions, like proliferation,

differentiation, or keratinocyte migration (Krischel et al., 1998;

Zhan et al., 2015). NO seems to have a biphasic effect on wound

healing. Low levels of NO can increase the permeability of the

endothelium and facilitate the migration of inflammatory cells to

the affected site, thus positively affecting cytokine expression. On

the other side, high levels of NO can inhibit cutaneous

inflammation, probably by inhibiting migration and adhesion

of inflammatory cells (Man et al., 2022a). In wounds, NO is

generated mainly by iNOS. The iNOS plays an essential role in

non-specific defence against microorganisms (Man et al., 2022b).

It was shown that iNOS-deficient mice showed a severely delayed

epithelial wound closure (Yamasaki et al., 1998). Also, NO can

sensitize and enhance the antibacterial effectiveness of many

therapeutic approaches, such as antibiotics. To provide an

adequate and accurate amount of NO to the wound, several

new approaches were tested and developed. Polymer matrices are

of special interest for NO molecular systems functionalization

due to their high versatility and similarities with living tissues (for

review see work of Pinto et al., 2022). Recently, NO-releasing

oxidized bacterial cellulose/chitosan crosslinked hydrogel was

shown to eliminate polymicrobial wound infection, where linear

polyethyleneimine diazeniumdiolate was used as the NO donor

(Hasan et al., 2022). This newly developed NO-releasing

hydrogel represents a promising approach for the treatment of

various skin infections. Another approach utilizes a type of gold

nanostar/hollow polydopamine Janus nanostructure with precise

near-infrared - controlled NO release property, which effectively

eliminated methicillin-resistant Staphylococcus aureus from

infected wounds and promoted wound healing through a

synergistic photothermal and NO therapeutic effect (Liang

et al., 2022).

Carbon monoxide (CO) is endogenously produced by heme

oxygenases (HO) and its beneficial effect is also dependent on its

concentration. Three isoforms of this enzyme were described up

to now, inducible type HO-1, and constitutively expressed types

HO-2 and HO-3. HO-1 protects against oxidative stress and is

regulated by the redox-sensitive transcription factor, the nuclear

factor (erythroid-derived 2)-like 2 (Nrf2). Abundantly produced

CO in activated macrophages can enhance proliferation,

differentiation, and polarization towards anti-inflammatory

effects on cells (Kang et al., 2021). Vectorization of CO

releasing molecules by gold nanoparticles was shown to

improve the anti-inflammatory effect of CO (Fernandes et al.,

2020). Recently, a new strategy of the activation of CO-release

from 3-hydroxyflavone moieties through a photooxygenation

mechanism was described, thus enabling CO to release under red

light irradiation, exerting a selective antimicrobial effect on S.

aureus bacteria (Cheng et al., 2021). Combined and simultaneous

release of NO and CO from a single donor molecule (obtained by

covalent grafting of NO-releasing N-nitrosamine onto the CO-

releasing 3-hydroxyflavone derivatives under visible light

irradiation) exerted a synergistic antibacterial effect against S.

aureus (Gao et al., 2022). Nevertheless, application of an

exogenous CO might be a problem, since it is difficult to

quantify precise amount of administered CO and its

administration might increase plasma carboxyhemoglobin to

toxic levels (Takagi et al., 2022).

The third gasotransmitter—hydrogen sulfide (H2S)—was

described to affect a variety of body functions, including

cardiovascular, neurological, reproductive, and endocrine

systems. Also, it was shown to affect the cancer proliferation,

but also apoptosis, since its effect is bell-shaped (Cao et al., 2019;

Kajsik et al., 2022). H2S is also involved in wound healing, mainly

because of the anti-inflammatory properties and attenuation of

oxidative-stress-related tissue injury (Figure 1). Mechanism of

the beneficial effect on exogenous supplementation can cover

also vascular endothelial growth factor upregulation, which

might promote blood vessel formation, increase blood

perfusion around the wound, and finally accelerates wound

healing (Xu et al., 2019). Kutz and co-workers have found

that H2S mediates cutaneous vasodilation and has a functional

interaction with both NO and cyclooxygenase signalling

pathways (Kutz et al., 2015). H2S is produced endogenously

by three enzymes—cystathionine β-synthase (CBS),

cystathionine γ-lyase (CSE), and 3-mercaptopyruvate-

sulfurtransferase (MST). CSE appeared to be the most

relevant H2S-producing enzyme in wound tissue (Goren et al.,

2019). Wu and co-workers developed a novel PCL fibrous matrix

coated with pH-controllable H2S releasing donor JK1 (Wu et al.,

2016). This matrix promoted wound healing efficiency through

H2S’s unique cytoprotective characteristics in vivo. Other carriers

for JK1 encapsulation—sodium alginate or a hyaluronic acid-

based hydrogel were also tested (Chattopadhyay et al., 2016;

Zhao et al., 2020). Up to now, the controversial effect of the H2S

in inflammation caused by burns was described. The effect of H2S

might depend on the extent of burn degree, the course of the

burn, or dosage of H2S, and the treatment time with H2S donors.

Due to the biphasic effects of H2S on burn wounds, H2S

supplementation in the late, but not the early stage of a burn

may be helpful to accelerate healing (Xu et al., 2021).

Hydrogen peroxide (H2O2) is an endogenous reactive oxygen

species that contributes to oxidative stress directly as a molecular

oxidant and indirectly through free radical generation. It has

antimicrobial properties and can act as a debriding agent through

its effervescence, making low-concentration H2O2 useful for

wound care. H2O2 has also been shown to promote venous

insufficiency ulcer healing (Murphy and Friedman, 2019).

H2O2 is very important signalling molecule. In the zebrafish

animal model, where the wound was induced mechanically,

H2O2 production was detected in the wound margins, with its

concentration increasing over time along with leukocyte

recruitment with a peak at 20 min. Its formation is mediated

predominantly by NADPH oxidase, which converts oxygen to

the superoxide anion radical, which is further converted by

superoxide dismutase to hydrogen peroxide. NADPH oxidase
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is activated/stimulated not only by mechanical injury but also by

pathogenic microorganisms or pro-inflammatory cytokines (Zhu

et al., 2017). In the phase of haemostasis, hydrogen peroxide

stimulates the exposure of tissue factor to the surface of the

relevant cells involved in haemostasis, initiating a cascade of

actions leading to the generation of thrombin, the central

molecule of haemostasis. It also affects platelet adhesion and

aggregation (Sen and Roy, 2008). In the inflammatory phase,

hydrogen peroxide affects the efficiency of macrophages at the

level of protease secretion, stimulates the release of pro-

inflammatory cytokines and also stimulates the recruitment of

additional macrophages. It is involved in neutrophil extracellular

trap formation. Hydrogen peroxide as a non-radical form of ROS

is able to participate in the formation of microbially or

oxidatively more efficient compounds such as hypothiocyanite

(Zhu et al., 2017). In some works, H2O2 has been shown to have

the ability to induce TNF-β production and stimulate fibroblast

proliferation, leading to increased fibrotization. Here we are

already at the level of cell proliferation and remodelling

phases. Excessive stimulation of TGF-β leads to accelerated

wound healing, but it is accompanied by increased fibrosis

and scar formation. Hydrogen peroxide stimulates the

production of certain growth factors, such as VEGF, which is

released by macrophages and stimulates angiogenesis, and this

effect is concentration dependent. In in vivo models, ability to

affect keratinocyte viability and migration has been

demonstrated (Urban et al., 2019). The effect of hydrogen

peroxide on the secretion of other physiologically active

molecules involved in wound healing remains a question.

Here, it would certainly be worth mentioning cyclooxygenase-

2 (COX-2), which is crucial for the formation of prostacyclins

and prostaglandins. These actions influence a variety of processes

including blood flow, vascular tone or angiogenesis. Work by

Eligini et al. (2009) showed the ability of hydrogen peroxide to

stimulate COX-2, but in endothelial cells. Thus, this area remains

virtually unanswered and further studies are necessary.

Use of all mentioned compounds is extremely dependent on

the type of dressing. Dressing generally depends on the type of

wound, its stage, but also on the type of compound it has to carry.

Dressings can be classified from different points, e.g., thein

function in the wound healing, type of material, physical

form, etc. [for review see (Boateng et al., 2008)]. Modern

systems capable of controlled oxygen release are based on

oxygen releasing polymeric microspheres [by incorporating

hydrogen peroxide into poly (lactic-co-glycolic acid)] and

hydrogel scaffolds (Choi et al., 2018), cyanoacrylate-

encapsulated calcium peroxide (Zhang et al., 2020), OxOBand

composed of antioxidant polyurethane (PUAO), as highly

porous cryogels with sustained oxygen releasing properties

(Shiekh et al., 2020), oxygenated-bacterial-cellulose nanofibers

(Sarkandi et al., 2022), or injectable hydrogel based on hyaluronic

acid-graft-dopamine and polydopamine coated Ti3C2 MXene

nanosheets (Li et al., 2022). ROS-responsive oxygen and NO

releasing systems based on encapsulated biosafe NO donor

L-arginine and hydrogen peroxide were developed too (Yu

et al., 2022). Other therapeutic approaches include topical

application of growth factors and cytokines and some other

agents such as hyaluronic acid or erythropoietin. These are

also being tested in topical forms, but in controlled-release

systems (Legrand and Martino, 2022). Examples include

various polymers, particularly modified celluloses, which have

the ability to form hydrogels and release growth factors in a

controlled manner. Their major advantages include in particular

their biocompatibility. Most recently, Hao et al. (2022) have

prepared multifunctional benzaldehydeterminated 4-arm PEG

(4-arm-PEG-CHO)/carboxymethyl chitosan (CMCS)/basic

fibroblast growth factor (bFGF) hydrogels, that have shown

the ability to increase Ki67, increase generation of

epithelialization and collagen, induces the formation of hair

follicles, and enhanced neovascularization by upregulating the

production of CD31 and CD34 (Hao et al., 2022). A similar

approach was taken by Cheng et al. (2020), who, however, used

metal-free CO-releasing polymers based on photoresponsive 3-

hydroxyflavone derivatives (Cheng et al., 2020).

Involvement of calcium channels in
wound healing

A variety of ions is indisputably involved in different stages of

wound healing. Calcium ions are involved in both, normal skin

function and also in wound healing. Calcium ions are

prerequisite for keratinocyte differentiation and corneocyte

formation. To cope with the different calcium needs of

keratinocytes (low calcium concentrations for proliferation,

high calcium for differentiation) epidermis built up calcium

gradient (Rinnerthaler and Richter, 2018). Calcium can enter

the cytoplasm of cells either from outside, through special types

of calcium channels, or by release from the intracellular stores,

mainly from the endoplasmic reticulum (for review see Babula

and Krizanova, 2022). The function of individual calcium

transport systems in wound healing is unwinded from their

role in healthy skin. For example, ryanodine receptors (RyRs)

that are localized in themembranes of the endoplasmic reticulum

are expressed in keratinocytes and can affect their differentiation

and barrier homeostasis (Denda et al., 2012). After the skin

wound creation, the initiation of keratinocyte migration is among

the first reparation mechanisms (O’Toole, 2001). In this process,

an increase in the intracellular calcium concentration was

determined, which probably results in the upregulation of

bicarbonate transporter type 2 (AE2). An increase in

AE2 expression is probably involved in cell migration and

results in wound closure (Hwang et al., 2020). Inhibition of

RyRs by specific antagonists (e.g., dantrolene) can accelerate

wound closure in vivo through the process of epithelialization

(Degovics et al., 2019). RyRs are probably activated by exposure
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to ROS (Csordas and Hajnoczky, 2009). Thus, the limitation of

calcium release by inhibition of RyRs resulted in a decrease in

ROS formation (Degovics et al., 2019). Based on these results

authors have concluded that dantrolene might be another tool for

the acceleration of wound healing. The role of other store-

operated channels—inositol 1,4,5-trisphosphate receptors

(IP3Rs)—in wound healing is still elusive. In general, IP3Rs

type 1 and 2 were shown to have proapoptotic effects in

cancer cells, while type 3 IP3R has anti-apoptotic effect

(Rezuchova et al., 2019). Their importance in wound healing

has not yet been fully elucidated. It was already shown that IP3Rs

activated by phospholipase C are active in human keratinocytes

(Tu et al., 2005).

Transient receptor potential (TRP) channels are a diverse

group of channels with different function in various tissues. In

non-excitable cells, TRP channels regulate intracellular calcium

concentrations, which are related to keratinocytes proliferation

and differentiation to influence the skin barrier (Moran, 2018).

The family of TRP channels comprises a large number of

channels that can be divided into 6 subtypes—TRPA

(ankyrin), TRPC (canonical), TRPM (melastatin), TRPML

(mucolipin), TRPP (polycystin), and TRPV (vanilloid)

(Montell et al., 2002). Different TRP channels participate in

different skin homeostasis and barrier functions. A variety of

TRPC channels was shown to be expressed in keratinocytes and

probably playing role in keratinocyte differentiation (Caterina

and Pang, 2016). TRPV channels are sensitive to various tissue-

damaging signals and their activation is generally perceived as

pain (for review see Wang, 2021a). Non-selective ion

channel—transient receptor potential vanilloid 1 (TRPV1) is a

potential drug target for improving the outcome of

inflammatory/fibrogenic wound healing, especially cornea

(Nidegawa et al., 2014).

During aging, changes in pH and calcium transport are

detectable in skin. The pH of the epidermis goes up and the

calcium gradient goes down (Rinnerthaler and Richter., 2018).

Decrease in calcium levels is due to a failure to transport calcium

into the stratum granulosum. As a consequence, skin pH is

increased and aged skin is more vulnerable to bacterial infection.

Wound healing in diabetes

Diabetic foot ulcers (DFU) are the most common chronic

wounds characterized by poor healing. Patients with diabetes

mellitus have a 15%–25% lifetime risk of developing DFU, of

which 40%–80% become so severely infected that they suffer

from bone infection, leading to osteomyelitis. Wound healing

disorders in patients with diabetes also occur due to a higher

incidence of infectious complications, vascular changes at the

level of microangiopathy and macroangiopathy, and in some

cases repeated pressure on the wound increasing local ischemia.

The issue of wound healing is a complex matter, so attention

should be paid to the control of several parameters. The most

important factor involves poor glycemic control (Dissanayake

et al., 2020). Chronic decompensation of diabetes helps to

develop ischemic lower limb disease, neuropathy, and other

abnormalities that are modified not only at the systemic but

also at the local level. Prolonged poor controlled diabetes leads to

dysfunction of immune cells involved in repair processes and to

the formation of late glycation products, which affect wound

healing directly by reacting with some components of the healing

process, or indirectly through diabetic neuropathy or angiopathy

individual stages of the wound healing process (Fournet et al.,

2018).

The early stages of wound healing are characterized by

hypoxia, which induces the activation of hypoxia-inducible

factor (HIF) -1α and stimulates the stimulation of vascular

endothelial growth factor (VEGF-A). HIF is very important to

promote the migration and proliferation of each cell type as well

as the release of growth factors (Hong et al., 2014). HIF-1 is

involved in many wound healing processes; such as cell

migration, cell metabolism under hypoxic conditions, cell

differentiation, cell growth factor release, cell survival, and

synthesis of signal molecules throughout the healing process.

Both overexpression of HIF-1, as well as HIF-1 deficiency, are

associated with reduced adaptive responses to hypoxia during

diabetic wound healing (Li et al., 2021). Overexpression of HIF-1

leads to an increased production of profibrotic factors associated

with the overproduction of collagenous matrix (Kimura et al.,

2008). On the other hand, HIF-1 deficiency and subsequent

impaired response to hypoxic stimuli contribute to the formation

of non-healing ulcers. Targeted wound healing therapy using

regulators of HIF-1 production has many important aspects that

can lead to tissue repair (Li et al., 2021). However, more

preclinical and clinical studies are needed to validate the

feasibility of treating diabetic wounds by manipulating HIF-1α
activity.

In the damaged tissue, monocytes are activated, which

become macrophages and they mediate phagocytosis as well

as the production of growth factors such as platelet-derived

growth factor (PDGF), tumor necrosis factor (TNF), and

transforming growth factor (TGF-β). Growth factors

influencing wound healing include PDGF, which increases

macrophage migration and collagen synthesis, promotes

granulation tissue formation and accelerates epithelialization,

fibroblast growth factor (FGF) supporting angiogenesis and

fibroblast proliferation, insulin-like growth factor (IGF-1)

increasing fibroblast proliferation, collagen synthesis and

epithelialization (Patel et al., 2019; Garoufalia et al., 2021).

Decreased IGF-1 expression in diabetic individuals has been

reported, which in turn has slowed the healing process

(Garoufalia et al., 2021; Liu et al., 2021). Many (23 types) of

FGF have been identified and divided into seven subfamilies.

Recently, with the increasing research on the function of FGF,

more andmore studies are focused on FGF therapeutic approach.
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It has been applying FGF-1, FGF-2, FGF-4, FGF-7, FGF-21, and

FGF-23 topically to DFU with good therapeutic effects (Liu et al.,

2021).

The other three factors—TGF-beta, TNF-alpha, and IL-1

(interleukin-1) promote angiogenesis and collagen synthesis and

therefore regulate epidermal stem cells in wound epithelialization

(Xiao et al., 2020). The last factors influencing wound healing are

GSF (granulocyte stimulating factor) and VEGF (vascular

endothelial growth factor). The latter was significantly reduced

during wound healing (by 50%) in an experiment performed on

diabetic rats compared to healthy controls (Kurkipuro et al.,

2022).

The anti-inflammatory effect of epidermal growth factor

(EGF) has been intensively studied for more than 20 years.

Many studies showed that the intralesional administration of

EGF has emerged as an effective treatment for DFU (Mendoza-

Mari et al., 2022). EGF injected into the ulcer matrix enhanced

cell proliferation and migration, leading to peri- and intra-lesion

infiltration. Therefore, it accelerates the healing of deep and

complex ulcers, both ischemic and neuropathic, and reduces

diabetes-related amputations (Berlanga et al., 2013). EGF helps

diabetic wound healing, reaching responsive cells while avoiding

the deleterious effect of proteases and the biofilm on the wound’s

surface.

Gasotransmitter’s use was tested also in treatment of chronic

diabetic wounds. Nitric oxide and NO-releasing compounds can

significantly contribute to diabetic wound healing. Since in

diabetes endogenous production of NO is affected, need for

the topical supply of NO from exogenous sources is desirable

(Takagi et al., 2022). Azelnipidine, a new dihydropyridine

blocker of L-type calcium channels, increased wound fluid

NO level, enhanced fibroblast proliferation and promotes

angiogenesis, which participates to the acceleration of wound

healing in type 1 diabetic rats (Bagheri et al., 2011). The NO-

donors attached to patches or matrices to treat diabetic wounds

are under development. Recently, preparation of anti-bacterial

and nano-enzyme-containing hydrogel with inflammation-

suppressing, ROS-scavenging, oxygen and nitric oxide-

generating properties was published (Tu et al., 2022).

Insufficient intracellular H2S production in diabetes impairs

angiogenic property and ischemic tissue injury, probably via

interrupting the balance between pro- and anti-angiogenic

factors (Cheng and Kishore, 2020). Exogenous donation of

H2S by NaHS improved diabetic wound healing in ob/ob mice

via promoting angiogenesis and attenuating inflammation (Zhao

et al., 2017).

A meta-analysis was performed by Lin et al. (2022) focused

on the association between vitamin D levels, respectively vitamin

D hypovitaminosis, and wound healing in diabetic patients. Most

significant association has been found between low vitamin D

levels and foot ulcer wounds. Patients with foot ulcer wounds had

significantly lower levels of vitamin D. Also, higher prevalence of

vitamin D deficiency as well as higher prevalence of severe

vitamin D deficiency was associated with higher incidence of

foot ulcer wounds compared with non-diabetic non-ulcerated

diabetic subjects. Some studies suggest that vitamin D

supplementation in diabetic patients may have a positive

effect on foot ulcer wound healing (Yammine et al., 2020;

Halschou-Jensen et al., 2021; Kurian et al., 2021). Severe

vitamin D deficiency is associated with elevated inflammatory

cytokine concentrations in diabetic patients, particularly in those

with foot infection (Tiwari et al., 2014). Negative correlation was

observed between vitamin D and circulating concentrations of

IL-1 beta and IL-6, but not for TNF-alpha and IFN-gamma. The

question remains as to the mechanism of action of vitamin D in

wound healing. Topically applied vitamin D in diabetic patients

promotes corneal wound healing and nerve regeneration, reduces

neutrophil infiltration and stimulates the transition of

macrophages from M1 to M2, which is accompanied by

suppression of excessive activation of the

TABLE 2 Involvement of gasotransmitters and calcium transport systems in wound healing.

Wound healing Acute wounds Chronic wounds

Inflammation CO-antiinflammatory effect H2S—attenuates inflammation

NO- antimictobial effect NO—suppresses inflammation, ROS scavenging

H2S- antimicrobial effect

Ca2+ through TRPV—improves inflammatory wound healing

Proliferation differentiation CO-increases proliferation, differentiation Ca2+ blocking by azelnipidine promotes fibroblast proliferation

Ca2+ through RyR—promotes differentiation in keratinocytes

Ca2+ through AE2—promotes keratinocytemigration

Ca2+ through TRP—affects proliferation, differentiation

Remodeling angiogenesis H2S—increases blood perfusion around wounds H2S—promotes angiogenesis

NO through iNOS—enhancing angiogenesis

Ca2+ blocking by azelnipidine promotes angiogenesis

AE2, bicarbonate transporter type 2; CO, carbon monooxide; H2S, hydrogen sulfide; iNOS, inducible NO synthase; NO, nitric oxide; ROS, reactive oxygen species; RYR, ryanodine

receptors; TRP, transient receptor potential channel; TRPV, vanilloid transient receptor potential channel.
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NLRP3 inflammasome (Wang et al., 2021b). Vitamin D

downregulates the expression of MMP-1 and MMP-10 in

keratinocytes from diabetic food ulcer cultivated in vitro. In

contrast, increased expression of these genes was found in

diabetic patients with diabetic food ulcer (Lopez-Lopez et al.,

2014). MMP-1 breaks down the interstitial collagens I, II, and III,

MMP-10 is intensively studied in connection with processes of

metastasizing. The stem cells’ secreted bioactive molecules (the

secretome) mediate paracrine and autocrine functions.

Mesenchymal stromal cells (MSCs) are multipotent cells that

reside in tissues and can give rise to bone, cartilage, adipocytes, or

vascular smooth muscle cells (Laloze et al., 2021).

Meta-analyses of Jaluvka et al. (2020) reveals that cell

therapy in peripheral arterial disease (PAD) treatment can

prevent or delay foot amputation (Jaluvka et al., 2020). The

wound healing process with stem cell therapy can be at least

twice as shorter when compared with the standard

conservative therapy. It can lead to improvement of

perfusion and tissue oxygenation parameters in the wound,

even more to pain regression. The available evidence-based

medicine data showed that cells-based therapy is safe,

associated with minimum complications or adverse events,

and effective (Jaluvka et al., 2020). MSCs have been identified

in tissues other than the bone marrow, including the umbilical

cord, placenta, dental pulp, and adipose tissue (AD-MSCs).

From the stem cell types, AD-MSCs have been intensively

studied in terms of improving chronic wound healing (Ajit

and Ambika Gopalankutty, 2021). The influence of ASC-

secretome on cell types associated with the wound healing

process can provide a basis for further and more targeted

investigations that are useful for addressing the ways of

accelerating chronic non-healing wound closure (Lombardi

et al., 2019). A recent study showed that MSCs under TNF-α
stimulation (MSC-CM-T) can release numerous trophic and

survival molecules that have a promising prospect in wound

healing acceleration in an animal model of wound healing. The

topical gel of MSC-CM-T is more effective in accelerating

wound closure healing through increasing platelet-derived

growth factor (PDGF) levels and wound closure percentages

and fibroblast density appearances in the skin defect animal

models (Laloze et al., 2021; Putra et al., 2022).

Conclusion

Wound healing is an extremely complex and complicated

process that involves the integration of a variety of mechanisms

at different time intervals along a timeline. Hemostasis,

inflammation, proliferation, and remodelling are four stages of

wound healing. Effect of gasotransmitters and modulation of

calcium levels by calcium transport systems on individual phases

of wound healing is summarized in Table 2. Development of new

drugs targeting individual stages can provide a tool that can more

effectively treat different types of wounds (e.g., diabetic wounds).

Thus, new treatments based on precise knowledge of pathways

activated in every stage can facilitate the process of wound

healing. Calcium ions are known to play the crucial role in

cell signalling. Several experimental studies have shown that

calcium-releasing materials can significantly stimulate wound

healing. They stimulate angiogenesis, collagen and extracellular

matrix protein synthesis and overall tissue granulation.

Polymeric composite dressings containing calcium-releasing

nanoparticles are investigated as novel calcium-releasing

systems that significantly accelerated wound healing in a

diabetic (db/db) mouse model. Among new approaches, use

of gasotransmitters provides an excellent tool for treatment,

since they easily penetrate into the cells and they might

stimulate proliferation (especially NO), they enhance

vascularization and decrease period of treatment, especially in

diabetic wounds.

In summary, skin wounds often represent a burden to the

patient, generally limiting his comfort. Therefore, effective

healing, possibly without scars, represents a goal in

dermatology. Development of new strategies of wound healing

is based on current knowledge of modulated signaling pathways

in the wound. Recently, modern treatments based on

impregnation of hydrogels and nanoparticles with

gasotransmitters, blockers of calcium transport, vitamins, etc.

form a powerful tool for effective wound healing.
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