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Skeletal muscle makes up almost half the body weight of heathy individuals and

is involved in several vital functions, including breathing, thermogenesis,

metabolism, and locomotion. Skeletal muscle exhibits enormous plasticity

with its capacity to adapt to stimuli such as changes in mechanical loading,

nutritional interventions, or environmental factors (oxidative stress,

inflammation, and endocrine changes). Satellite cells and timely recruited

inflammatory cells are key actors in muscle homeostasis, injury, and repair

processes. Conversely, uncontrolled recruitment of inflammatory cells or

chronic inflammatory processes leads to muscle atrophy, fibrosis and,

ultimately, impairment of muscle function. Muscle atrophy and loss of

function are reported to occur either in physiological situations such as

aging, cast immobilization, and prolonged bed rest, as well as in many

pathological situations, including cancers, muscular dystrophies, and several

other chronic illnesses. In this review, we highlight recent discoveries with

respect to the molecular mechanisms leading to muscle atrophy caused by

modified mechanical loading, aging, and diseases. We also summarize current

perspectives suggesting that the inflammatory process in muscle homeostasis

and repair is a double-edged sword. Lastly, we review recent therapeutic

approaches for treating muscle wasting disorders, with a focus on the

RANK/RANKL/OPG pathway and its involvement in muscle inflammation,

protection and regeneration processes.
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Introduction

Skeletal muscle is an essential organ of the human body. It is characterized by its great

plasticity and capacity to adapt to numerous hormonal, nervous, and mechanical stimuli

(Vittorio and Marcella, 2004). Skeletal muscle derives from a population of progenitor

cells that originate in the somites of the paraxial mesoderm (Buckingham et al., 2003).

Skeletal muscle plasticity is based on a balance betweenmuscle hypertrophy, which results

from an increase in organelles, cytoplasm, proteins and, consequently, an increase in the

cross-section of muscle fibers, and muscle atrophy, which is associated with a decrease in

cellular constituents and an increase in protein breakdown. Muscle breakdown involves
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several mechanisms, including the ubiquitin-proteasome system

(UPS), which is regulated by E3 ubiquitin ligases, the autophagy-

lysosome system (ALS), calpains, and caspases (Bonaldo and

Sandri, 2013) (Yin et al., 2021). Many factors and situations cause

protein degradation and/or a reduction in protein synthesis

leading to muscle atrophy and wasting. Primary skeletal

muscle atrophy is linked to genetic muscle disorders while

secondary skeletal muscle atrophy is a consequence of

physiological situations such as age-related sarcopenia, bed

rest, and unloading, and pathological situations such as

cancers, AIDS, osteoporosis, and heart failure (HF) (Yin et al.,

2021). Muscle atrophy is also accelerated by the uncontrolled

immune response observed in chronic diseases such as muscular

dystrophies, including Duchenne muscular dystrophy (DMD),

where the immune system promotes muscle cell death and

fibrosis as the disease progresses (Tidball et al., 2018).

However, the involvement of timely recruited inflammatory

cells is a prerequisite for the activation and differentiation of

satellite cells during the regeneration process (Tidball et al., 2018)

(Dufresne et al., 2016). In this review, we highlight recent

discoveries on the molecular mechanisms leading to muscle

atrophy caused by modified mechanical loading, aging, and

diseases. We also summarize current perspectives suggesting

that the inflammatory process in muscle homeostasis and

repair is a double-edged sword. Lastly, recent therapeutic

approaches for treating muscle wasting disorders are reviewed,

including pathways with potential impacts on skeletal muscle

and bones.

Overview of recent discoveries on the
molecular mechanisms leading to
muscle atrophy in healthy conditions

Physical inactivity, unloading, and
denervation-induced skeletal muscle
atrophy

Prolonged bedrest and spaceflight-related unloading induce

impaired muscle function, mainly due to the breakdown of

myofibrillar proteins and the impairment of protein synthesis.

In spaceflight or ground-based models of microgravity,

antigravity muscles such as postural muscles atrophy due to a

loss of myofibrillar proteins (Qaisar et al., 2020). Postural

muscles, which are predominantly composed of slow-twitch

type I fibers, are more affected than fast-twitch type II fibers

following a period of unloading (Baldwin et al., 2013).

Mechanistically, it has been suggested that selective atrophy is

in part related to pre-transcriptional and transcriptional changes

involving the downregulation of pre-mRNA and mRNA of

myosin heavy chain (MHC) type I, actin, transcriptional

enhancer factor-1 (TEF-1), and myogenin, which are mainly

involved in protein synthesis (Baldwin et al., 2013). In addition to

type I fiber atrophy, a switch in fiber phenotype from slow to fast

is observed following hindlimb suspension (HS) and

microgravity conditions. Epigenetic modifications of histones

or non-coding RNAs would play a role in the changes in muscle

phenotype (Pandorf et al., 2009) (Haddad et al., 2003). However,

in humans, muscles with predominantly fast-twitch fibers appear

to be as affected by microgravity as type I fiber muscles (Fitts

et al., 2001). For example, the vastus lateralis muscle is

predominantly composed of fast-twitch type II fibers, which

are significantly more affected than slow-twitch type I fibers

when humans are exposed to spaceflight for 11 days (Edgerton

et al., 1995), suggesting that the preponderance of certain types of

muscle fibers in a muscle may be more important than the

individual fiber type in its responsiveness to unloading stimuli

(Baldwin et al., 2013). In addition to muscle mass, a 20-day

bedrest of human volunteers induced a significant decrease in

quadriceps muscle thickness and cross-sectional area (CSA) and

an increase in the expression of two ubiquitin ligase genes, Cbl-b

and atrogin-1, which are involved in muscle proteolysis (Ogawa

et al., 2006), suggesting that the mechanisms of muscle atrophy

may differ depending onmuscle location and function, fiber type,

or the condition leading to the atrophy. In general, slow-twitch

fibers are mostly affected by denervation, microgravity, and

immobilization due to mechanical discharge while fast-twitch

fibers are more affected by aging or disease conditions. As the

oxidative metabolism of slow twitch fibers is mainly regulated by

the transcription factor peroxisome proliferator-activated

receptor-g coactivator-1 (PGC1a), the downstream

calcineurin/nuclear factor of activated T cells (NFAT) may

play a role in the protection of slow-twitch fibers from muscle

atrophy in some pathological conditions (Wang and Pessin,

2013). Nonetheless, an imbalance between protein degradation

and protein synthesis pathways remains at the origin of muscle

atrophy.

The insulin/IGF-1/Akt-mTOR pathway is the main pathway

regulating muscle growth (Figure 1). When insulin and IGF-1

bind to their respective receptors, they initiate a phosphorylation

cascade that leads to the activation of Akt, also known as protein

kinase B. Akt enhances protein synthesis via the activation of the

mammalian target of rapamycin (mTOR) pathway and the

inhibition of glycogen synthase kinase β (GSK3β).
Additionally, Akt blocks forkhead box Os (FoxOs), a family of

transcription factors, preventing protein degradation (Sartori

et al., 2021) (Schiaffino and Mammucari, 2011). It has been

reported that the IGF-1/PI3K/Akt signaling pathway reduces

denervation-, unloading-, and joint immobilization-induced

muscle atrophy, and that the injection or overexpression of

IGF-1 counteracts denervation- and age-related muscle

atrophy (Timmer et al., 2018). On the other hand, several

cellular systems are responsible for ensuring the turnover of

muscle proteins and are finely regulated by complex regulatory

mechanisms (Figure 1). UPS remains the primary system for

protein breakdown in all tissues (Rock et al., 1994). The labeling
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of proteins by a ubiquitin molecule leads to their recognition and

degradation by the 26S proteasome. Ubiquitination is ensured by

three enzymes (E-1, E-2, and E-3). E3 is the key enzyme as it

recognizes the substrate and catalyzes the insertion of ubiquitin

(Lecker et al., 2006). The cellular level of E3 ligases determines

protein degradation. Two E3 ligases, atrogin-1 and MuRF-1, are

specific constituents of muscle, and their expression increases

considerably in catabolic states (Lecker et al., 2006). Accordingly,

FoxOs are key players in the regulation of muscle atrophy. FoxO

1, 3, and 4 regulate the induction of atrophy-related genes by

controlling the ALS and UPS (atrogin-1 and MuRF1) (Brocca

et al., 2017) (Bonaldo and Sandri, 2013). Akt phosphorylates

FoxOs, inducing their inhibition and exportation from the

nucleus thereby preventing muscle atrophy (Calnan and

Brunet, 2008). The expression of FoxO-dependent atrophy-

related genes varies in different muscles under different

conditions. FoxO-1, -3, or -4 deletion in mice significantly

prevents the loss of muscle mass following unloading (Brocca

et al., 2017) but only partially spares skeletal muscle following

denervation (Milan et al., 2015), highlighting the divergence in

the mechanisms of the atrophy program in each catabolic

condition. Calpains are also involved in inactivity-induced

muscle atrophy since their inhibition attenuates muscle

atrophy in rodents (Talbert et al., 2013) (Hyatt and Powers,

2020). Transgenic overexpression of calpastatin, the endogenous

calpain inhibitor, protects skeletal muscle against atrophy

suggesting their involvement in muscle wasting (Salazar et al.,

2010) (Tidball and Spencer, 2002). Disruption in cytosolic Ca2+

homeostasis plays a role in initiating calpain activation following

physical inactivity (Ingalls et al., 2001), and reactive oxygen

species (ROS) generation exacerbates the rise in cytosolic Ca2+

leading to further calpain activation (Hyatt and Powers, 2020).

More recently, Hayden and colleagues provided evidence that

calpains play an important function in inactivity-induced

mitochondrial dysfunction and oxidative stress in skeletal

muscle fibers (Hyatt et al., 2021). They showed that the

overexpression of calpastatin inhibits calpain activation

thereby reducing mechanical ventilation-induced oxidative

stress and mitochondrial dysfunction, fiber atrophy and

contractile dysfunction (Hyatt et al., 2021).

In addition to the dysregulation of protein turnover, muscle

stem cell proliferation and differentiation also decrease, which

may contribute to atrophy under unloading conditions. Muscle

atrophy leads to a significant decrease in the number of stem

cells, with alterations in their capacity to proliferate and

differentiate, accentuating muscle wasting in a mouse model

of HS (Mitchell and Pavlath, 2004). Furthermore, the Notch

signaling pathway, which tightly regulates stem cell proliferation

and quiescence but not differentiated myofibers, is also involved

in the alteration of regeneration and muscle atrophy in aging and

muscular diseases (Gioftsidi et al., 2022). A recent study has

shown that the inhibition of Notch signaling attenuates atrophy

and fibrosis and reduces fibroblast levels in denervated

gastrocnemius muscles (Feng et al., 2019). The mechanisms of

muscle atrophy are thus complex and involve a panoply of

signaling pathways. The specificities of the molecular

mechanisms are still being investigated.

Age-related skeletal muscle atrophy:
Sarcopenia

Sarcopenia is characterized by a progressive age-related loss

in muscle mass and strength limiting motor function and a

decrease in quality of life. Muscle atrophy and muscle cell death

are the primary cause of the loss in muscle mass due to many

molecular and cellular changes, including changes in

mitochondria function, oxidative stress, hormonal signaling,

and inflammatory cytokine secretion (Roubenoff, 2000). At

the cellular level, mitochondrial function deteriorates in

sarcopenia. Mitochondrial dysfunction involves various

processes, including the production of ROS, mitochondrial

biogenesis and turnover, Ca2+ dynamics, energy sensing, and

apoptosis (Gonzalez-Freire et al., 2015). Recently, Grevendonk

et al. (2021) examined mitochondrial function in young and

elderly patients and determined whether physical activity

interferes with mitochondrial dysfunction. The elderly patients

exhibited a lower mitochondrial capacity compared to young

adults with a similar mitochondrial content and who had

performed comparable physical exercise. The muscle strength,

aerobic capacity, exercise efficiency, insulin sensitivity, and gait

stability were lower in elderly adults with higher body fat.

However, an increase in physical activity partially reversed

these observations (Grevendonk et al., 2021). In addition to

mitochondrial dysfunctions, many studies have reported that

age-related decreases in nicotinamide adenine dinucleotide

(NAD+) accentuate muscle wasting (Yaku et al., 2018)

(Castro-Portuguez and Sutphin, 2020). NAD+ is an important

co-enzyme that regulates the energy balance, oxidative stress and

protein posttranslational modifications. Aging disrupts both

NAD + synthesis and degradation. Camacho-Pereira and

colleagues shows that the decrease in NAD+ in aging is

related to an increased level of CD38; the main enzyme

involved in NAD + degradation (Camacho-Pereira et al.,

2016). In addition, they showed that CD38 is also involved in

mitochondrial dysfunction through a mechanism involving

SIRT3; a regulator of mitochondrial homeostasis. In murine,

the deletion of Nampt, an essential enzyme in the NAD + salvage

pathway, induces an 80% decrease in intramuscular NAD +

content which is accompanied by muscle degeneration and

progressive loss of muscle strength and function. In contrast,

the lifelong overexpression of Nampt preserved muscle NAD +

levels and exercise capacity in aged mice, highlighting the

important role played by NAD+ in muscle homeostasis

(Frederick et al., 2016). In other tissues, PARP-mediated

NAD+ depletion and loss of SIRT1 activity have been
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associated with an increase in oxidative nuclear damage and

oxidative stress in both rodents and human (Massudi et al.,

2012). Autophagy is another cellular mechanism that is modified

with aging and that results in muscle atrophy (Wohlgemuth et al.,

2010). Autophagy ensures that cellular components are delivered

into lysosomes to be degraded and recycled, ensuring cellular

homeostasis (Barbosa et al., 2019). However, autophagic activity

decreases with age, increasing the production of ROS and

oxidative stress causing sarcopenia (Barbosa et al., 2019) and

reducing the ability of satellite cells to participate in muscle

regeneration during aging (see review Chen et al., 2022).

Activating transcription factor 4 (ATF4) also participates in

age-related skeletal muscle atrophy (Ebert et al., 2015).

ATF4 interacts with both C/EBPβ and the ATF–C/EBP

composite site to activate Gadd45a, a gene involved in stress-

related growth arrest and muscle atrophy (Ebert et al., 2020). In

terms of muscle phenotype, type II muscle fibers are mostly

atrophied in aging, also causing a marked conversion from the

fast-to the slow-twitch phenotype (Dao et al., 2020) (Nilwik et al.,

2013) (Ciciliot et al., 2013). The decline in satellite cell content

may in part explain age-related type II muscle fiber atrophy

(Verdijk et al., 2014). Thus, age-related muscle atrophy is very

complex andmultiple pathways converge toward muscle atrophy

along with a reduced muscle regeneration capacity.

The age-related impairment of the motor unit (MU) is also

responsible for the loss of muscle mass and function due to

motoneuron loss, dysfunction in the process of compensatory

reinnervation, and alterations at the neuromuscular junctions

(NMJ). Larsson and colleagues (2019) recently presented a

detailed review demonstrating the age-related changes in the

MU in animals and humans (Larsson et al., 2019). It has been

reported that the number of MUs is reduced by more than 40%

after the age of 71, causing progressive muscle fiber denervation

(Piasecki et al., 2016). A reinnervation mechanism is often set up

at an advanced age favoring an inhomogeneity in the distribution

of MUs (Larsson et al., 2019). However, this compensatory

system is often insufficient to counteract the loss of

motoneurons leading to the death of muscle fibers. In

addition, the neuronal conduction and the quality of

transmission are impaired in aging motor neurons (Larsson

et al., 2019). Structural and molecular changes such as the

reduction in the stability of transmission, the presence of

fragmentation and the alteration of primary signaling

molecules like the nicotinic acetylcholine receptor and agrin

have been reported in aging NMJ (Rudolf et al., 2014)

(Hepple and Rice, 2016). Skeletal muscle capillarization is also

reduced during aging and the distance between satellite cells and

capillaries increases potentially impacting the capacity for muscle

regeneration in humans (Joanisse et al., 2017) (Larsson et al.,

2019). Muscle capillarization is accompanied by a decrease in

mitochondrial enzyme function, highlighting the limitations in

oxidative capacity (Coggan et al., 1992). Thus, aging-related

morphological changes occurring at the MU and

capillarization may contribute directly or indirectly to

molecular mechanisms responsible for muscle atrophy.

Changes in anabolic hormone secretion also play an

important and easily observed role in sarcopenia. Growth

hormone (GH), testosterone, and insulin-like growth factor

(IGF-1) secretion decline gradually with age (Bian et al.,

2020). GH binds directly to its receptor, activating the JAK2/

STAT pathway and myocyte proliferation (Skorupska, 2018)

(Velloso, 2008) and maintains muscle mass by promoting

IGF-1 secretion by the liver, a key anabolic hormone (Chikani

and Ho, 2014) (Widdowson and Gibney, 2008). In addition to

the decrease in anabolic hormone secretion, anabolic resistance

slowly develops as the anabolic response to stimulation is

attenuated with aging, reducing the sensitivity to IGF-1

stimuli and the Akt-mTOR cascade thus limiting the capacity

of muscles to grow (Dao et al., 2020) (Funai et al., 2006).

Moreover, IGF-1 modulates mitochondrial functions through

the activation of the Akt pathway and the inhibition of FoxO

proteins (Poudel et al., 2020). The local expression of IGF-1

protects against the age-related decline in muscle force and mass.

Transgenic mice revealed that the local expression of IGF acts by

increasing the ALS and the expression of PGC1-α, which

modulates mitochondrial function and ROS detoxification in

aged mice (Ascenzi et al., 2019). In addition, the levels of

myostatin, a member of the TGF-β superfamily and a

negative regulator of skeletal muscle mass, increase in aging

men and women (Yarasheski et al., 2002) and may potentially be

an important regulator of muscle wasting. Several alterations that

occur with aging disturb the protein turnover process and lead to

protein breakdown and muscle atrophy. All these changes in the

hormonal profile mainly influence muscle growth and lead to

sarcopenia during aging.

Sarcopenia is characterized by chronic low-level

inflammation that develops with advanced age, which is also

called inflammaging. This inflammation may contribute to

muscle loss associated with aging. Pro-inflammatory

cytokines, including members of the TNF family, as well as

downstream transcription factor NF-κB, are significant

regulators of muscle atrophy (Thoma and Lightfoot, 2018).

The NF-κB signaling pathway increases the expression of

several proteins of the UPS involved in the degradation of

specific muscle contractile proteins and can also interfere with

myogenic differentiation (Li et al., 2008) (Thoma and Lightfoot,

2018) (Cai et al., 2004). Furthermore, Pasco et al. (2020) recently

summarized the mechanisms of muscle atrophy involving the

weak inducer of TNF-like apoptosis (TWEAK) and its associated

receptor, fibroblast growth factor 14 (Fn14). The TWEAK/

Fn14 signaling pathway maintains chronic inflammation and

induces the secretion of profibrotic cytokines (Zhang et al., 2021).

Fn14 levels increase in aged mice while the genetic deletion of

Fn14 increases specific muscle protein levels and reduces age-

related fiber atrophy, most likely by decreasing the DNA-binding

activity of NF-κB (Tajrishi et al., 2014). Additionally, TNF-α
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enhances ROS generation in muscle cells, causing muscle

wasting, while antioxidant treatments inhibit TNF-α-induced
atrophy (Xu et al., 2018). NF-κB and chronic inflammatory

pathways thus play significant roles in skeletal muscle atrophy

under physiological and pathological conditions. Acute and well-

controlled inflammation remains essential for muscle repair,

regeneration, and growth. Its dual function is discussed in the

following section.

Overview of the inflammatory
process in skeletal muscle: A double-
edged sword

The role of inflammation in muscle repair

The presence of satellite cells and inflammatory cells plays a

major role in the skeletal muscle regenerative process (Tidball,

2017). The participation of sentinel inflammatory cells such as

mast cells are important for the initiation of the inflammatory

process following an injury (Perandini et al., 2018) (Bentzinger

et al., 2013) (Gaudenzio et al., 2016). Mast cells secrete

inflammatory mediators and lead to a well-orchestrated

sequential activation and recruitment of neutrophils that play

an important role in fighting pathogens (Kawanishi et al., 2016).

However, in cases of severe injuries, the release of ROS and the

secretion of proteolytic enzymes resulting from prolonged

activation of neutrophils may cause collateral damage

(Duchesne et al., 2017) (Dumont et al., 2008). The pro-

inflammatory environment is crucial for the arrival of

monocytes that differentiate into pro-inflammatory

M1 macrophages in injured skeletal muscle. M1 macrophages

secrete pro-inflammatory cytokines. Including TNF-α and IL-1β,
and play a key role by ensuring the phagocytosis of cell debris and

apoptotic neutrophils, the activation and proliferation of satellite

cells, and the recruitment of other immune actors (Locati et al.,

2013) (Mosser and Edwards, 2008) (Otis et al., 2014). Pro-

inflammatory M1 macrophages switch to the anti-

inflammatory M2 macrophage phenotype, which promotes the

differentiation of satellite cells and the formation of mature

myofibers. M2 macrophages initiate muscle repair by secreting

anti-inflammatory cytokines (IL-4, IL-10) and growth factors

(TGF-β, IGF-1, and HGF) (Arnold et al., 2007) (Chazaud et al.,

2003) (Deng et al., 2012) (Oishi and Manabe, 2018). They are

important for promoting muscle regeneration and repair

following acute muscle injuries (Chazaud et al., 2003) (Arnold

et al., 2007) (Chazaud, 2020) (Bouredji et al., 2021). In addition to

cytokines, lipid mediators generated via cyclooxygenase-2 (COX-

2) also play a prominent role by orchestrating the inflammatory

process and contributing to the macrophage switch and

inflammation resolution (Duchesne et al., 2017). The

depletion of immune cells or COX-2 inhibition impairs

muscle regeneration and induces fibrosis during acute

inflammatory processes, highlighting the predominant role of

inflammation in muscle healing. This puts into question the

relevance of using anti-inflammatory treatments for acute muscle

injuries (Toumi et al., 2006) (Summan et al., 2006) (Duchesne

et al., 2017) (Bondesen et al., 2004).

Cytokines and their impact on skeletal
muscle

Discoveries over the past 20 years have significantly

improved our understanding of myokines, i.e., interleukins,

growth factors, and the numerous peptides secreted by

muscles (Pedersen, 2013). Interleukin 6 (IL-6) is one of the

most thoroughly studied myokines. Considered, in part, as a

pro-inflammatory cytokine, humanmuscle contractions release a

significant amount of IL-6, depending on the duration and

intensity of the physical activity (Pedersen, 2013). IL-6

secreted during exercise has anabolic properties and

participates in the regulation of glucose and lipid metabolism

(Ellingsgaard et al., 2019). IL-6 is an essential regulator of satellite

cell-mediated muscle growth while the deletion of the IL-6 gene

attenuates muscle hypertrophy and reduces the proliferation of

satellite cells via STAT3 as well as the expression of its target,

cyclin D1 (Serrano et al., 2008). Chowdhury et al. (2020) recently

showed that the high levels of IL-6 found in circulation during

physical exercise mainly originates from muscle. Furthermore,

muscle-released IL-6 increases RANKL secretion by osteoblasts,

promoting osteoclast differentiation and osteocalcin release. In

turn, circulating osteocalcin potentiates IL-6 released by muscle

cells, increasing nutrient uptake and exercise capacity in rodents

(Chowdhury et al., 2020). IL-6 is also an anti-inflammatory

cytokine and promotes the expression of another anti-

inflammatory myokine, IL-10, which inhibits the production

of proinflammatory cytokines, including IL-1 and TNF-α,
during regular exercise (Petersen and Pedersen, 2005),

favoring the switch of macrophages to anti-inflammatory

M2 macrophages during muscle repair and regeneration

(Deng et al., 2012). However, IL-6 is also associated with

numerous skeletal muscle alterations such as atrophy and

muscle wasting. The IL-6/JAK/STAT3 signaling pathway is

strongly activated during denervated skeletal muscle atrophy.

IL-6 enhances C2C12 myotube atrophy while pharmacological

blocking of IL-6 reduces the expression of atrophic and

autophagy-related genes (Huang et al., 2020) (Madaro et al.,

2018). Another study has recently shown that IL-6 is upregulated

in the skeletal muscles of limb-immobilized mice and that a

systemic IL-6 deficiency protects against immobilization-

induced muscle atrophy (Hirata et al., 2022). IL-15 is also

abundantly expressed and secreted by skeletal muscle in

response to exercise (Huang et al., 2015) (Yang H et al., 2013)

and protects muscle against sepsis-induced muscle wasting (Kim

et al., 2012). In vitro, IL-15 overexpression induces myotube
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hypertrophy similar to the overexpression of IGF-1 (Quinn et al.,

2002) while the co-incubation of IL-15 and TNF-α reduces the

detrimental effects of TNF-α on myotube development (O’Leary

et al., 2017), highlighting the potential of IL-15 to prevent muscle

wasting. However, the hypertrophic effects of IL-15 seem to be

effective in pathological situations, and IL-15 is not an anabolic

factor in homeostasis and steady state conditions (Nadeau and

Aguer, 2019) where anabolic effects on the muscle mass of mice

overexpressing IL-15 are not observed (Pistilli and Quinn, 2013).

IL-15 is also involved in bone development, and mice lacking IL-

15 receptor alpha (IL-15 RA) exhibit a decrease in bone

mineralization (Loro et al., 2017). Myostatin, another myokine

and a member of the TGF-β superfamily, negatively regulates

muscle growth. The myostatin/TGF-β/activin pathway via

activin receptor type II (ActRIIB) induces the activation of

SMAD2/3 causing the inhibition of Akt, protein synthesis,

and cell differentiation (Morissette et al., 2009)

(Trendelenburg et al., 2009). In addition, myostatin deletion

increases both muscle mass and bone density (DiGirolamo

et al., 2015). More recently, ActRIIB signaling has been shown

to directly and negatively regulate bone mass in osteoblasts,

suggesting that myostatin neutralization would benefit bones

(Goh et al., 2017). Although the receptor activator of nuclear

factor kappa B (RANK), its ligand (RANKL), and

osteoprotegerin (OPG), a decoy soluble receptor of RANKL,

constitute the primary pathway regulating bone homeostasis, we

have shown over the last 10 years that this triad plays significant

roles in skeletal muscle disease and repair. RANKL, through the

activation of the NF-κB pathway, is involved in the activation of

inflammatory-atrophic pathways in skeletal muscle (Hamoudi

et al., 2019). Muscle cells in culture also produce and secrete OPG

(Dufresne et al., 2015), and its deletion in mice causes muscle

atrophy (Hamoudi et al., 2020). Pharmaceutical treatments with

recombinant OPG markedly improve muscle integrity and

function in dystrophic mice (Dufresne et al., 2015) (Dufresne

et al., 2018) and in a mouse model of acute muscle injury

(Bouredji et al., 2021). Our recent review discusses the

involvement of the RANK/RANKL/OPG triad in skeletal and

cardiac muscles in greater detail (Marcadet et al., 2022).

Disease-related skeletal muscle atrophy

Cancer cachexia
While sarcopenia is characterized by a loss of muscle mass and

strength with aging, cachexia is a condition characterized by a

continuous decrease in skeletal muscle mass, involuntary weight

loss, and the deterioration of an individual’s nutritional status, and

is mainly observed in chronic diseases such as cancer (Anker et al.,

2019) (Dolly et al., 2020). Perturbations of cellular and

inflammatory processes, including the activation of

inflammation and proteolytic mechanisms, UPS and the ALS

are at the origin of cancer-associated cachexia (Baracos et al.,

2018). The central mechanism behind cancer-associated cachexia

is inflammation (Cortiula et al., 2022) involving the

overproduction of inflammatory cytokines, especially IL-6,

TNF-α, and IL-1β. The simultaneous secretion of IL-6 and

TNF-α induces muscle weakness as well as the activation of

pro-inflammatory pathways, including the NF-kB pathway

(Webster et al., 2020). Cachexia is associated with high levels of

circulating cytokines, and preclinical studies have shown that there

is an increase in UPS and a decrease in protein synthesis due to the

downregulation of Akt and FoxO3 phosphorylation (Webster

et al., 2020). A recent clinical study involving gastric cancer

patients with cachexia has shown that the patients exhibit a

significant decrease in the CSA of skeletal muscle associated

with a significant increase in UPS and ALS (Zhang et al.,

2020). The current hypothesis regarding cancer-associated

cachexia suggests that mitochondrial dysfunction combined

with lipid droplet accumulation and oxidative stress increases

proteolysis and the loss of muscle mass through UPS and ALS

(Dolly et al., 2020). The RANKL/RANK interaction has recently

been associated with muscle wasting and cachexia in a mouse

model of non-metastatic cancer. Fabrizio et al. (2022) have shown

that elevated levels of circulating RANKL are sufficient to cause

skeletal muscle atrophy and bone resorption whereas anti-RANKL

treatments improve muscle mass and function in cancer-

associated cachexia (Pin et al., 2022). The NF-kB pathway is

also involved in impairing satellite cell differentiation in cancer

patients and animal models by inducing PAX7 dysregulation,

impairing muscle regeneration, and promoting muscle wasting

(He et al., 2013). Moreover, therapeutic approaches, including

chemotherapy or radiotherapy, can potentially induce muscle

atrophy and dysfunction. Chemotherapeutic compounds induce

muscle wasting in mice through the activation of the NF-kB

pathway (Damrauer et al., 2018) (Coletti, 2018). Some

218 proteins are downregulated in C26-tumor bearing mice and

chemotherapy-treated mice. A pathway analysis has shown

showed that these two conditions both lead to the

dysregulation of mitochondrial functions, the Krebs cycle, and

fatty acid metabolism as well as Ca2+ dysfunctions and that both

are associated with muscle loss (Barreto et al., 2016). Furthermore,

cancer cells and the administration of cytotoxic chemotherapeutics

induce a rapid inflammatory response, leading to the dysregulation

of the neuroendocrine system, more precisely the hypothalamic-

GH-IGF-1 axis. The inhibition of this axis contributes to skeletal

muscle atrophy and cachexia (Martín et al., 2021). In addition, a

rapid inflammatory response induced by cytotoxic chemotherapy

treatment leads to endogenous glucocorticoid (GC) secretion,

which increases in the UPS-, lysosome- and autophagy-genes,

resulting in muscle loss (Braun et al., 2014). Conversely, the

muscle-specific deletion of the GC receptor blocks treatment-

induced muscle atrophy, highlighting the involvement of GCs

in cachexia (Braun et al., 2014) (Braun et al., 2013). However, the

mechanisms of chemotherapy-induced cachectic myopathy may

be specific to each chemical agent and has recently been reviewed
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by Campelj et al. (2021)(Campelj et al., 2021). Overall, cancer-

related cachexia is a consequence of many disorders caused by

cancerous cells and the side effects of therapeutic approaches,

including the reaction of the body against the tumor, the

inflammatory reaction, the impairment of metabolism, and the

loss in appetite.

Heart failure-related skeletal muscle
dysfunction/atrophy

Muscle wasting often occurs concomitant with chronic

diseases. Patients suffering from chronic HF present marked

muscle atrophy, with a reduction in exercise capacity and muscle

strength (Fülster et al., 2013). Similarly, 47% of young patients

with HF experience muscle wasting (Hajahmadi et al., 2017).

Metabolic and molecular changes, in particular protein

breakdown and an increase in the production of ROS, may

explain the muscle dysfunction/exercise intolerance following

HF (Springer et al., 2017) (Nambu et al., 2021) (Wood et al.,

2021). MuRF-1 is increased in the skeletal muscle of HF patients

and physical activity attenuates its expression (Gielen et al.,

2012). The inhibition of MuRF1 has a protective effect on

muscle atrophy in mice with HF (Adams et al., 2019). In

addition, the expression of IGF-1 in skeletal muscle is reduced

(Hambrecht et al., 2002) and, consistent with these findings, the

phospho-Akt/Akt levels and phospho-mTOR/mTOR ratios are

diminished in patients with HF compared with healthy controls

of a similar age, muscle mass, and physical activity levels. Further

investigations are clearly needed to better understand the

molecular mechanisms regulating HF-induced muscle wasting

and exercise intolerance.

Muscle wasting in muscular dystrophies
A common characteristic of genetic muscle diseases,

including congenital muscular dystrophy and mitochondrial

and genetic myopathies, is a major impairment of muscle

integrity and the loss of Ca2+ homeostasis, which in turn leads

to a loss of muscle function (Yin et al., 2021). In myotonic

dystrophy type 1 (DM1), a genetic disease that causes myotonia,

muscle atrophy, and insulin resistance, insulin receptor type 1 is

expressed at lower levels in skeletal muscle, which leads to a

decrease in mTOR signaling and an increase in UPS protein

expression, giving rise to muscle atrophy (Renna et al., 2019).

Congenital muscular dystrophy caused by genetic changes in the

LAMA2 gene is mainly characterized by severe muscle wasting.

Preclinical studies have shown that the increase in protein

degradation is the result of an increase in UPS protein

expression and a reduction in Akt phosphorylation and

protein synthesis (Carmignac et al., 2011) (Gawlik et al.,

2019). DMD is one of the most common forms of muscular

dystrophy. Although the alterations in muscle integrity and

function lead to progressive muscle atrophy in DMD, certain

muscles may grow as a result of an accumulation of fat and

fibrosis and an increase in myofiber size called compensatory

hypertrophy (Kornegay et al., 2012). In the mdx mouse model of

DMD, an initial phase of muscle hypertrophy is followed by

atrophy associated with a decline in regenerative potential and

changes in the activation of the mTOR signaling pathway

(Mouisel et al., 2010). In both animals and humans,

dystrophic muscles are not uniformly affected, with some

being atrophied others hypertrophied, adding a greater

challenge for therapeutic healthcare (Kornegay et al., 2012).

Additionally, membrane fragility due to the absence of

dystrophin leads to chronic inflammation, which aggravates

the pathology (Petrof et al., 1993) (Wehling et al., 2001).

Patients affected by DMD exhibit an increased expression of

inflammatory cells (Abdel-Salam et al., 2009) while chronic

inflammation alters the macrophage switch. Macrophages

express high levels of transforming growth factor β1 (TGF-

β1), which disrupts muscle regeneration and increases

connective tissue deposition (Lemos et al., 2015) (Tidball,

2017). Neutrophils and mastocytes also play a harmful role in

dystrophic muscles, and their depletion reduces necrosis

(Hodgetts et al., 2006) (Radley and Grounds, 2006), whereas

regulatory T cells modulate the progression of muscular

dystrophy by suppressing the pro-inflammation environment

in dystrophic muscles (Villalta et al., 2014). A recent review

summarizes the harmful role of inflammatory cells in muscular

dystrophies and describes an immune response involving

neutrophils, macrophages, helper T-lymphocytes, and

cytotoxic T-lymphocytes (Tidball et al., 2018).

The standard of care for patients with muscular dystrophies

remains the chronic use of GCs. Although GCs are the only

therapeutic agents with proven benefits for quality of life,

mobility, and life expectancy, they are associated with several

adverse effects, including potential muscle atrophy (Goemans

and Buyse, 2014). GCs induce selective fast-twitch glycolytic

fiber atrophy typified by a reduction in CSA and protein

content. GCs modulate IGF-1 and myostatin signaling and

induce the increase in protein breakdown through the UPS

and lysosomal systems involving Murf-1, Atrogin-1, and FoxO

(Schakman et al., 2013). Furthermore, GCs interfere with

protein synthesis by inhibiting the mTOR/S6 kinase

1 pathway (Schakman et al., 2013) (Braun and Marks, 2015).

Other mechanisms that contribute to GC-induced muscle

atrophy involve the downregulation of the transcription

factors myoD and myogenin, and the increase in insulin

resistance and Ca2+ levels through activated store-operated

Ca2+channels (SOCs) (Hasselgren et al., 2010). A recent

study has further highlighted the adverse effects of GCs on

bone integrity (Box et al., 2022). GC-related bone

demineralization is mainly caused by a reduction in bone

formation combined with an increase in bone resorption

(Box et al., 2022). GCs inhibit osteoblastogenesis and the

activity of osteoblasts and osteocytes (Weinstein et al., 1998).

They also inhibit OPG secretion by transrepressing the OPG

gene, which increases the RANKL/OPG ratio, and by
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promoting osteoclast proliferation and bone resorption (Kondo

et al., 2008) (Jia et al., 2006). Prolonged and chronic use of GCs

in DMD is thus potentially associated with muscle atrophy and

bone demineralization.

Bone disease-related skeletal muscle
dysfunction/atrophy

Osteoporosis is characterized by a reduction in bone mass

associated with microarchitectural deterioration of bone

tissue due to an imbalance between bone resorption and

bone formation, which occur simultaneously with

sarcopenia (Reginster et al., 2016). The occurrence of

osteoporosis was, for a long time, considered a

consequence of sarcopenia associated with an age-related

reduction in mobility. However, major advances point to

bidirectional molecular communication between bone and

muscle that share common signaling pathways, suggesting a

concomitant wasting of bone and muscle (Reginster et al.,

2016). Terracciano et al. (2013) have shown that patients

suffering from osteoporosis present a preferential and diffuse

type II fiber atrophy that is proportional to the degree of bone

loss and possibly linked to a reduction in Akt expression

(Terracciano et al., 2013). Our laboratory has investigated

bone-muscle bi-directional communication, with a focus on

RANK/RANKL/OPG, the main pathway regulating bone

homeostasis. The dysregulation of this pathway is directly

associated with the onset of osteoporosis (Ono et al., 2020).

Preclinical studies in mice have shown that RANKL/RANK

interactions are involved in muscle wasting, atrophy, and

dysfunction (Box et al., 2022) (Hamoudi et al., 2020)

(Dufresne et al., 2018) (Bonnet et al., 2019). Our work

highlights the involvement of the RANK/RANKL/OPG

pathway in mitigating DMD. Moreover, OPG knockout

mice exhibit selective atrophy of fast-twitch-type IIb

myofibers, the most powerful muscle fibers, which may

occur through the activation of the NF-kB pathway

(Hamoudi et al., 2020). In vitro, RANKL stimulation of

myotubes in culture increases the expression of NF-kB,

atrogin-1, and MuRF-1 (Hamoudi et al., 2020).

Furthermore, mice overexpressing RANKL exhibit

decreased muscle mass, force, and glucose uptake

associated with an upregulation of inflammatory genes

(Bonnet et al., 2019). In a mouse model of sarcopenia,

RANKL neutralization increases muscle volume and force

and normalizes insulin signaling and inflammatory genes in

skeletal muscle (Bonnet et al., 2019). Our recent review

summarizes the current knowledge on the involvement of

RANK/RANKL/OPG signaling in cardiac, skeletal, and

smooth muscles in health and disease (Marcadet et al.,

2022). The molecular mechanisms concertedly regulating

muscle wasting and bone diseases are now being

intensively investigated and important findings will soon

emerge.

Overview of the therapeutic
approaches for treating muscle
wasting

Exercise, electrical stimulation and
nutrition

Exercise is the most effective treatment for counteracting

muscle wasting and atrophy (Glass and Roubenoff, 2010).

Resistance training induces muscle hypertrophy in part by

increasing the expression of IGF-1 (Glass and Roubenoff,

2010). The overexpression of IGF-1 or its addition to cultures

of myotubes increases myofiber size. IGF-1 induces an increase in

muscle mass by promoting protein synthesis through PI3K-Akt-

mTOR signaling and inhibiting FoxO transcription factors

involved in myofibril degradation. The expression of

hypertrophic factor PGC1α increases with exercise training,

reducing the FoxO3-dependent loss in muscle mass (Sandri

et al., 2006). While resistance exercise induces skeletal muscle

hypertrophy by promoting growth signaling pathways,

endurance training is also beneficial for improving the

capillary and mitochondrial networks and promoting the

switch in muscle fiber phenotype towards more oxidative fiber

isoforms thereby improving muscle physiology in HF (Nijholt

et al., 2022). More recently, swimming has been shown to

attenuate tumor growth and cancer-related muscle atrophy by

downregulating the expression of proinflammatory proteins

including NF-κB, p-NF-κB, TNF-α, IL-1β, and IL-6 (Li et al.,

2021). The anti-inflammatory effects of exercise are increasingly

being investigated and are of major interest for the treatment of

chronic inflammation and muscle atrophy (Suzuki, 2019) (He

and Ye, 2020). However, resistance training cannot be prescribed

for all patients, in particular to those who are bed-ridden with

acute disease or frail elderly sarcopenic individuals. In addition,

exercise must be performed on a regular, long-term basis to

maintain its effectiveness. Additionally, the transcutaneous

neuromuscular electrical stimulation (NMES), a biophysical

agent, may be beneficial to slow down muscle atrophy in

deconditioning patients. For example, NMES was found to

have benefits in terms of improved muscle mass and function

and health status for patients with limited physical capacity

(Gerovasili et al., 2009). In bed-ridden patients suffering from

a severe COPD, NMES associated with an active limb

mobilization significantly improve muscle strength and life

quality (Zanotti et al., 2003). The same results were obtained

in a subsequent study (Vivodtzev et al., 2006) confirming the

benefice of NMES when combined with rehabilitation program.

In patient with advanced chronic heart failure, the use of a low-

frequency NMES helps to increase exercise capacity and to

counteract skeletal muscle deterioration (Nuhr et al., 2004).

Furthermore, the NMES of lower extremities preserves the

muscle mass in critically ill patients (Gerovasili et al., 2009).

Although NMES seems to improve muscle function particularly
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in patients with limited physical capacity, the methodological

quality is generally poor and the heterogeneity in the study design

render it difficult to draw solid conclusion about the efficacy

of NMES.

Nutritional therapies that have emerged lately show that

amino acid (AA) supplementation is beneficial for muscle

health. A recent study has shown that taurine, a non-essential

AA, has a therapeutic effect in the treatment of age-related

sarcopenia. Taurine improves skeletal muscle regeneration,

reduces chronic inflammation, and decreases high levels of

oxidative stress thereby counteracting the effects of aging

(Barbiera et al., 2022). Another recent study has shown that

supplementation with essential AA reduces the loss in muscle

volume in immobilized older adults recovering from total knee

arthroplasty (Dreyer et al., 2018). The branched-chain AA

leucine and its metabolite, β-hydroxy-β- methylbutyrate,

activate mTORC1, increasing protein synthesis (Kamei et al.,

2020). β-alanine levels are reduced in the skeletal muscles of aged

mice, while β-alanine supplementation increases physical

performance and improves endurance exercise-induced

executive function in middle-aged individuals (Kamei et al.,

2020). In elderly subjects with sarcopenia, an 18-month

supplementation with a mixture of AAs significantly increases

lean body mass associated with a significant decrease in

circulating TNF levels and a marked increase in IGF-1 levels

(Solerte et al., 2008). Preclinical evidence has shown that, in

addition to AA, various nutrients including fatty acids (omega-

3 and omega-6) and vitamins (C, D, E) are involved in

modulating muscle protein synthesis and degradation and

mitochondrial metabolism and energy production, thus

improving muscle mass, strength, and function (Lee et al.,

2022). Currently, the standard treatment approaches for

sarcopenia are resistance exercise, protein supplementation,

and vitamin D administration (Morley, 2016).

Targeting inflammatory pathways

As inflammation is an important biological process involved

in muscle wasting, especially in cancer-associated cachexia,

several preclinical studies on rodent cancer models have

reported that inhibiting IL-6 and its signaling pathways may

have beneficial effect on muscle wasting (Belizário et al., 2016).

The earliest studies over 20 years ago have shown that blocking

the IL-6 receptor prevents muscle atrophy in a tumor-bearing

mouse model via the modulation of the lysosomal and ATP-

ubiquitin-dependent proteolytic pathways (Fujita et al., 1996).

The study conducted in mice bearing human tumors shows that

tumor cell-secreted IL-6 directly contributes to body weight loss

while the administration of a human-mouse chimeric

monoclonal antibody reverses muscle wasting, highlighting the

potential role for IL-6 as pro-cachectic agent and the potential of

its neutralization for treating cachexia (Zaki et al., 2004). In the

same vein, targeting an IL-6 downstream signaling pathway has

been shown to have a beneficial effect on protecting muscle

against cachexia (Belizário et al., 2016). Bonetto et al. (2012) have

shown that the inhibition of the STAT3/JAK pathway,

downstream from IL-6 signaling, reduces cancer-induced

cachexia and may be an interesting therapeutic target

(Bonetto et al., 2012). Furthermore, in a model of

denervation-induced skeletal muscle atrophy, blocking IL-6

with tocilizumab or the pharmacological/genetic inhibition of

the JAK/STAT3 pathway in skeletal muscle both suppress muscle

atrophy and inhibit mitophagy, leading to a decrease in the

expression of atrophic genes (MuRF1 and MAFbx) and

autophagy-related genes (PINK1, BNIP3, Beclin 1, ATG7, and

LC3B) (Huang et al., 2020). Targeting IL-6 or its downstream

mediators is thus a promising therapeutic approach for

preventing muscle atrophy.

Targeting the NF-κB pathway and the UPS system are also of

interest in preventing muscle atrophy as their dysregulation is

associated with different pathologies that cause muscle atrophy.

Preclinical studies using MG132, a specific reversible proteasome

inhibitor, have shown that MG132 blocks the degradation of

ubiquitin-conjugated IκB, thereby inhibiting NF-κB activation

and reducing cachexia (Inoue et al., 2009) (Zhang et al., 2013).

The RANKL/RANK interaction activates NF-κB and we have

previously shown, in dystrophic mice, that an anti-RANKL

treatment improves muscle function and integrity and

increases the proportion of anti-inflammatory and non-

cytotoxic M2 macrophages (Hamoudi et al., 2019). In

postmenopausal women, neutralizing RANKL using a

monoclonal antibody (denosumab) treatment for more than

3 years improves appendicular lean mass and handgrip

strength compared with an untreated group (Bonnet et al.,

2019). In a mouse model of non-metastatic ovarian cancer

cachexia, where elevated RANKL levels cause muscle atrophy,

the administration of anti-RANKL has been shown to reduce

muscle mass loss and dysfunction (Pin et al., 2022). Interestingly,

full-length OPG, which contains four RANKL-binding domains,

two TRAIL-binding domains, and one heparin-binding domain

has been shown to be effective in preserving muscle function and

integrity in dystrophic mice and is even superior to anti-RANKL,

suggesting that full length OPG also acts via a mechanism that is

independent of RANKL (Dufresne et al., 2018). In dystrophic

mice, OPG improves muscle function, attenuates muscle

inflammation, and improves muscle integrity by modulating

Ca2+ homeostasis (Dufresne et al., 2015) (Dufresne et al.,

2018). Alternative approaches targeting NF-κB/TNF-α or UPS

could thus reduce muscle atrophy (Fang et al., 2021).

Megestrol acetate (MA) is currently the only drug used to

fight both cachexia by stimulating appetite and certain cancers by

acting as an antineoplastic agent (Wen et al., 2012). The

combination of MA and thalidomide, which is known to have

immunosuppressive effects, is superior to MA alone and

improves the condition of patients with cachexia by reducing
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TNF-α levels (Wen et al., 2012). Lastly, targeting oxidative

stress in the elderly appears be another potential therapeutic

strategy. Allopurinol is in the xanthine oxidase inhibitor

family of medications and reduces oxidative stress. A

retrospective study in elderly subjects taking allopurinol as

a medication has shown that they exhibit a greater degree of

improvement in muscle function during rehabilitation,

highlighting the potential beneficial effect of allopurinol on

skeletal muscle (Beveridge et al., 2013). As inflammatory

pathways are directly involved in inducing protein

breakdown, targeting these pathways is a major focus of

developing new therapeutic approaches to fight muscle

atrophy.

Targeting protein synthesis and
degradation

Therapies targeting endogenous regulators of muscle atrophy

such as TGF-β-like molecules, including the myostatin/TGF-β/
activin pathway, have been tested preclinically given their

interaction with activin receptor complex (ActRIIB), which

induces the activation of SMAD2/3, which in turn causes the

inhibition of Akt and results in a decrease in protein synthesis

and cell differentiation (Morissette et al., 2009) (Trendelenburg

et al., 2009). Different strategies have been developed to target

endogenous regulators of muscle atrophy, including the

neutralization of myostatin using myostatin antibody, the

FIGURE 1
Signaling pathways leading to protein turnover in skeletal muscles. Muscle growth occurs following physical, neuronal, and hormonal
stimulations. While a gain of muscle mass is mainly associated with resistance training, endurance training also improves muscle function by
improving mitochondrial function, reducing oxidative stress, and modulating inflammation. Following unloading, age-related muscle wasting,
sarcopenia, or diseases such as cachexia induces muscle atrophy. Muscle atrophy occurs as result of an increase in protein degradation,
inflammation, oxidative stress, and apoptosis. Themain pathway involved in protein synthesis is the PI3K/Akt/mTOR pathway, which is activated both
by growth hormone (GH) and insulin-like growth factor IGF-1. Protein breakdown involves the activation of the ubiquitin-proteasome system (UPS)
and the autophagy-lysosome system (ALS), which are mainly regulated by FoxOs and NF-κB, leading to muscle atrophy. NF-κB also inceases pro-
inflammatory cytokine production and ROS, accentuating muscle loss. TGF beta, myostatin, RANKL, TNF-α, and IL-6 induce NF-κB activation.
However, IL-6 can act as both a pro- and an anti-inflammatory cytokine as it induces anti-inflammatory cytokine IL-10 production and is mainly
involved in stem cell proliferation leading to muscle growth.
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memetic endogenous neutralization of myostatin by follistatin,

or the blockage of ActRIIB (Smith and Lin, 2013). However,

clinical results have been very disappointing as they are not very

efficacious and have significant adverse effects (Sartori et al.,

2021) (Golan et al., 2018). Nonetheless, a novel strategy for

inhibitingmyostatin using amonoclonal antibody that selectively

binds to the autoinhibited precursor form of myostatin and

prevents its maturation has shown promising results in

animals, with a reduction in muscle atrophy and an

improvement in muscle strength and function (Pirruccello-

Straub et al., 2018). In cachexia-associated muscle atrophy, the

pharmacological blockade of myostatin/activin has been found to

be the most effective therapy (Estelle et al., 2014). The use of β-
blockers may be a potential strategy for treating cachexia given

that the pathology is associated with weight loss and that β-
blockers have effects on survival and weight gain by inhibiting

catecholamine-induced lipolysis and decreasing insulin

sensitivity (Kung et al., 2010). The β-blocker carvedilol has

been shown to attenuate and partially reverse cachexia in

patients with chronic HF (Clark et al., 2017). For GC-induced

skeletal muscle atrophy, an emerging approach targeting

urotensin-II (U-II) has shown interesting results as a novel

therapeutic strategy. As GC increases the expression of U-II,

antagonizing urotensin signaling improves muscle atrophy by

increasing PI3K/Akt/mTOR levels and inhibiting UPS (Yin et al.,

2022). Lastly, the use of anabolic hormones as therapeutic agents

to treat muscle atrophy has attracted interest but often the effects

have been associated with significant adverse effects (Morley,

2016). For example, the administration of high doses of

testosterone has been shown to improve muscle mass and

function but has several potentially limiting side effects

(Morley, 2016). The same applies to ghrelin as its adverse

effects need to be taken into consideration given that it

increases IGF-1 levels, which may induce diabetes or insulin

resistance (Yin et al., 2021). IGF-1 has shown very interesting

effects on various neuromuscular diseases in preclinical studies.

However, clinical trials have failed to reproduce these results

(Song et al., 2013). Given the lack of effective treatments, major

research efforts are ongoing to develop new therapeutic strategies

that target muscle atrophy. The combination of exercise,

nutraceutical, and pharmacological approaches that target

multiple pathways may be required to effectively reduce

muscle loss in aging and disease conditions.

Conclusion

Muscle wasting and atrophy occur under different

physiological and pathological conditions and involve a

variety of cellular and molecular changes that may differ

depending on the situation and the muscle fiber phenotype.

Muscle atrophy in microgravity and the HS model primarily

affects postural and slow-twitch muscle fibers. The mechanisms

involved are complex and are not yet fully understood. Age-

related sarcopenia is a morbidity that causes many complications

and that is often associated with other co-morbidities such as

osteoporosis, diabetes, and HF. Each of these morbidities causes

muscle atrophy by modulating protein synthesis and degradation

pathways and hormonal signaling, and by impairing

mitochondrial and lysosomal functions. Pathological situations

such as cancer cachexia involve an impairment of the protein

degradation pathway, the modulation of inflammation, and

apoptosis, whereas, in muscular dystrophies, the rise in

cytosolic Ca2+ levels, muscle damage, and chronic

inflammation are mainly responsible for muscle atrophy and

wasting. While we have reviewed the mechanisms involved in the

atrophy of skeletal muscle, we have also referenced the double-

edged sword of inflammation in muscle repair. Although much is

known about muscle wasting, it remains a focus of much ongoing

research, and while many therapeutic approaches have been

investigated in numerous preclinical studies, the clinical

therapeutic armamentarium for treating muscle disorders,

especially muscle wasting, has to be expanded, hence the need

for more investigations.
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