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Background: Abdominal aortic aneurysm (AAA) is a degenerative disease that

causes health problems in humans. However, there are no effective drugs for

the treatment of AAA. Artemisia annua L. (A. annua) is a traditional herbal that has

been widely used in cardiovascular disease. Based on network pharmacology

and molecular docking technology, this study predicted the practical

components and potential mechanisms of A. annua inhibiting the

occurrence and development of AAA.

Methods: The main active ingredients and targets of A. annua were screened

through the TCMSP database; the GeneCards, OMIM, PharmGkb, and TTD

databases were used to search for the targeted genes of AAA and map them to

the targets of the active ingredients to obtain the active ingredient therapy of A.

annua. The targets of AAA were to construct a protein interaction network

through the STRING platform. R software was used to carry out the enrichment

analysis of GO and KEGG for relevant targets, and Cytoscape was used to

construct the active ingredient-target network prediction model of A. annua.

Finally, AutoDock Vina was used to verify the results of the active ingredients

and critical targets.

Results: The main active ingredients obtained from A. annua for the treatment

of AAA include quercetin, luteolin, kaempferol, isorhamnetin, and artemetin, as
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well as 117 effective targets, including RELA, MAPK14, CCND1, MAPK1, AKT1,

MYC, MAPK8, TP53, ESR1, FOS, and JUN. The 11 targeted genesmight play a key

role in disease treatment. Enriched in 2115 GO biological processes,

159 molecular functions, 56 cellular components, and 156 KEGG pathways,

inferred that its mechanism of action might be related to PI3K-Akt signaling

pathway, fluid shear stress, atherosclerosis, and AGE-RAGE signaling pathway.

Molecular docking results showed that the top five active components of A.

annua had a good affinity for core disease targets and played a central role in

treating AAA. The low binding energy molecular docking results provided

valuable information for the development of drugs to treat AAA.

Conclusion: Therefore, A. annua may have multiple components, multiple

targets, and multiple signaling pathways to play a role in treating AAA. A.

annua may have the potential to treat AAA.

KEYWORDS

abdominal aortic aneurysm, Artemisia annua L., molecular docking, network
pharmacology, therapeutic targets

Introduction

Abdominal aortic aneurysm (AAA) is mainly

characterized by local progressive dilation of the abdominal

aorta, the most high-risk vascular degenerative disease in

vascular surgery (Kugo et al., 2019). Once AAA ruptures,

the mortality rate can reach 80%. After surgical resuscitation,

mortality remains high at around 42% (Karthikesalingam

et al., 2014). AAA is usually diagnosed when the diameter

of the upper abdominal aorta is greater than 30 mm (Moll

et al., 2011). Currently, AAA with greater than 55 mm in

diameter is mainly treated by surgical intervention, and these

surgical interventions are effective ways to prevent abdominal

aortic rupture (Powell, 1998; Lavin et al., 2019). In addition to

surgical treatment, there is currently a lack of effective drug

interventions, especially in the early treatment of AAA (Baxter

et al., 2008; Golledge et al., 2017). Therefore, it is vital to

explore potential effective drugs.

Chinese traditional medicine is a substantial medical

resource. Artemisia annua L. (A. annua) is a kind of

traditional Chinese medicine. With the award of the

2015 Nobel Prize in Physiology or Medicine to a Chinese

scientist, Artemisia has attracted global attention (Abba et al.,

2018). Artemisia and its derivatives are extensively used to treat

oncology and cardiovascular diseases (Bora and Sharma, 2011;

von Hagens et al., 2017; Abba et al., 2018; Saeed et al., 2019; Aktaş

et al., 2020). Several studies have shown that A. annua and its

derivatives have a particular therapeutic effect on inhibiting

atherosclerosis and inflammation (Cao et al., 2020; He et al.,

2020; Jiang et al., 2020). Although A. annua contains a variety of

active ingredients, its therapeutic target and mechanism for AAA

treatment are not fully understood.

Network pharmacology, based on bioinformatics and

computer technology, integrates a large amount of

biological information and data to study the mechanism of

action of multi-target drugs from molecules to cells to the

body (Hopkins, 2008; Berger and Iyengar, 2009). The strength

of network pharmacology lies in analyzing the “drug-

component-target-disease” interaction network,

systematically discovering drug-disease associations, and

revealing the synergistic effects between multi-molecular

drugs (Li et al., 2014). Furthermore, molecular docking is a

statistical simulation method that focuses on the interaction

between molecules and predicts their binding mode and

affinity (Wang and Zhu, 2016). The main function of the

method is to identify the binding pocket and binding affinity

of the drug to the target protein. Therefore, with the help of

network pharmacology and molecular docking methods, this

study analyzed the role and mechanism of A. annua in the

treatment of AAA, aiming to provide new ideas for drug

treatment of AAA and to facilitate new drug development

in the future. The flowchart for this study was shown in

Figure 1.

Materials and methods

Database and software

①Drug component target database: Traditional Chinese

Medicine Systems Pharmacology Database and Analysis

Platform (TCMSP, http://tcmspw.com/tcmsp.php). ②Disease

Target Database: GeneCards (https://www.genecards.org/);

Online Mendelian Inheritance in Man (OMIM, https://omim.

org), Pharmacogenomics Knowledgebase (PharmGKB, https://

www.pharmgkb.org/); Therapeutic Target Database (TTD,

http://db.idrblab.net/ttd/); ③Protein database, UniProt

(https://www.uniprot.org); Protein Data Bank (PDB, http://

Frontiers in Physiology frontiersin.org02

Jia et al. 10.3389/fphys.2022.1034014

http://tcmspw.com/tcmsp.php
https://www.genecards.org/
https://omim.org/
https://omim.org/
https://www.pharmgkb.org/
https://www.pharmgkb.org/
http://db.idrblab.net/ttd/
https://www.uniprot.org/
http://www.rcsb.org/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1034014


www.rcsb.org/); ④Protein interaction analysis platform, String

(https://String-db.org/); ⑤Network analysis and mapping

software: Cytoscape 3.8.0;R (R4.0.3 for Windows);

⑥Biological information analysis packet: VennDiagram

packet; Bioconductor(https://Bioconduct.org/biolite.r) and its:

org.hs.eg.DB, ⑦Molecular Docking Software: AutoDock Vina

4.1, PyMOL 2.4.

Collection of the active components and
targets of A. annua

All active ingredients in A. annua were obtained from

TCMSP (https://www.tcmspw.com/tcmsp.PHP). The

classification standards were defined based on drug-likeness

(DL) greater than or equal to 0.18 and oral bioavailability

FIGURE 1
The flowchart of this study.
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(OB) greater than or equal to 30% (Xu et al., 2020). Then, the

targets of the selected compounds were obtained from the

TCMSP database, and the targeted name was input into

Uniprot (http://www.uniprot.org/) to obtain the standardized

gene symbol.

Screening of genes related to the
treatment of AAA with A. annua

In the Genecards, OMIM, PHARGKB, and TDD

databases, “abdominal aortic aneurysm” was input as the

keyword for retrieval to obtain related AAA targets. The

Venn diagram packet was then run in R to obtain

compositional targets of A. annua intersected with targets

related to AAA to screen out the targets related to the

treatment of AAA in A. annua.

GO and KEGG pathway enrichment
analysis

The ClusterProfiler software package in R software (version

4.0.3) was used for Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analysis of

the intersection genes (Kanehisa and Goto, 2000; Yu et al., 2012).

When the q value ≤0.05, GO terms and KEGG pathways were

considered to be statistically significant. Then, the top 10 GO

terms and the top 30 KEGG pathways for molecular function

(MF), cellular component (CC), and biological process (BP) were

selected for further analysis.

Construction of the component-target
network

The targets of A. annua for treating AAA were input into

Cytoscape software to construct a “component-target” network

(Shannon, 2003). The active components and targets of the drug

were represented as “nodes”, and the interaction between nodes

was defined as “edges".

PPI network construction and core target
screening

The intersection gene data were imported into the String

database (https://string-db.org/) to obtain the possible

intersection points and establish the relationship between the

targets (Szklarczyk et al., 2019). The generated files were then

imported into Cytoscape software for protein-protein interaction

(PPI) maps to describe the relationship between A. annua and

the intersecting genes of AAA.

Molecular docking

Referring to the previous research literature (Powell, 1998;

Hong et al., 2022; Xu et al., 2022), we selected the top 5 active

ingredients in A. annua as ligands and hub genes from the PPI

network as receptors for molecular docking validation.

According to the molecular docking method, the 3D structure

of the active component was downloaded from PubChem CID,

the protein structure guide of the target was downloaded from

the PDB database, and the hydrodewatering and hydrogenation

of the protein were carried out by using PyMol software (Seeliger

and de Groot, 2010; Lill and Danielson, 2011). The component

and target protein formats were entered into PDBQT format by

AutoDockTools1.5 (Morris et al., 2008). Molecular docking was

performed using AutoDock Vina 4.1 software, and the results -

were further analyzed by PyMol 2.4 (Trott and Olson, 2010).

Results

Screening of active ingredients and targets
of A. annua for the treatment of AAA

After the search, screening was carried out under the

conditions of OB greater than or equal to 30% and DL greater

than or equal to 0.18, and the nontarget components were

removed. The 22 potential effective components were

obtained (Table 1). Furthermore, we found that 510 potential

targets corresponded to 22 potential effective ingredients

(Supplementary Table S1).

Targets of A. annua for AAA

The related targets of AAA were collected from the

GeneCards, OMIM, PharmGkb, and TTD databases. The data

were sorted and merged to obtain a total of 2010 disease targets

(Supplementary Table S2), as shown in Figure 2A. Then, we

intersected the obtained A. annua targets with the genes

associated with AAA and obtained a Venn diagram of the

intersected gene symbols for a total of 117 targets

(Supplementary Table S3), as shown in Figure 2B.

GO enrichment analysis

GO enrichment analysis was performed to analyze 117 genes

of drug-disease intersection by using the ClusterProfiler package

in R software (version 4.0.3). They grouped the functions of the

genes into three components: biological processes (BP), cellular

component (CC), and molecular function (MF), and enriched

2115 GO BPs, 159 MFs, and 56 CCs (Supplementary Table S4).

The top 10 significant items (p-value ≤ 0.05) for each module
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were shown in Figure 3. The horizontal coordinate indicated the

proportion of GO entries, the vertical coordinate representing the

name of the enriched entry, and the size of the scatter points

represented the number of targets involved in each entry. The

higher the significance of the entry, the redder it was. As shown in

Figure 3, in biological processes, A. annua was mainly associated

TABLE 1 The main active ingredients of A. annua.

MOL ID Molecule name OB Dl

MOL002235 Eupatin 50.8 0.41

MOL000354 Isorhamnetin 49.6 0.31

MOL000359 Sitosterol 36.91 0.75

MOL004083 Tamarixetin 32.86 0.31

MOL004112 Patuletin 53.11 0.34

MOL000422 Kaempferol 41.88 0.24

MOL000449 Stigmasterol 43.83 0.76

MOL004609 Areapillin 48.96 0.41

MOL005229 Artemetin 49.55 0.48

MOL000006 Luteolin 36.16 0.25

MOL007274 Skrofulein 30.35 0.3

MOL007389 Artemisitene 54.36 0.31

MOL007400 Vicenin-2_qt 45.84 0.21

MOL007401 Cirsiliol 43.46 0.34

MOL007404 Vitexin_qt 52.18 0.21

MOL007412 DMQT 42.6 0.37

MOL007415 [(2S)-2-[[(2S)-2-(benzoylamino)-3-phenylpropanoyl]amino]-3-phenylpropyl] acetate 58.02 0.52

MOL007423 6,8-di-c-glucosylapigenin_qt 59.85 0.21

MOL007424 Artemisinin 49.88 0.31

MOL007425 Dihydroartemisinin 50.75 0.3

MOL007426 Deoxyartemisinin 54.47 0.26

MOL000098 Quercetin 46.43 0.28

FIGURE 2
(A) The results of the Venn diagram of AAA-related targets in four databases. (B) The results of the Venn diagram of drug genes (green) and
disease genes (pink).
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with oxidative stress, cellular response to chemical stress, and

response to metal ion. Among the cellular components, A.

annua was primarily associated with membrane raft,

membrane microdomain, membrane region, and other

cellular components. A. annua was mainly related to

DNA-binding transcription factor binding, ubiquitin-like

protein ligase binding, signaling receptor activator activity,

and other molecular functions among the molecular

functions.

KEGG enrichment analysis

KEGG enrichment analysis was performed using the

ClusterProfiler package (version 4.0.3) in R software for

117 genes targeted at drug-disease crossover. The results of

KEGG analysis showed that these genes mainly enriched in

156 KEGG pathways (Supplementary Table S5), and the top

30 items were presented in Figure 4. The results suggested

that the active ingredients in A. annua might act together

through multiple pathways, such as the PI3K-Akt signaling

pathway, fluid shear stress, atherosclerosis, and AGE-RAGE

signaling pathway in diabetic complications. The size and

color of the nodes in the bubble map were determined by the

number and p-value of the associated genes. The node size

indicated how many target genes were associated, and the

color from purple to yellow reflected the p-value from high

to low.

Construction of the A. annua component-
target network

A total of 117 targets of A. annua for treating AAA were

input into Cytoscape software to construct a “component-

target” network. The active ingredients and targets were

represented as “nodes”, and the interaction between nodes

was defined as “edges”. The details were presented in

Supplementary Table S6. As shown in Figure 5, yellow

represented the active components of A. annua in

the treatment of AAA, and green represented the potential

targets.

FIGURE 3
GO enrichment analysis of A. annua compound and AAA “intersection target.”
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Construction of the protein-protein
interaction network

The 117 targets of A. annua for the treatment of AAA

were entered into the STRING platform; the parameter was

set to Homo sapiens, with the highest confidence (0.900), and

the rest of the parameters were set to default to build the

target protein interaction network, as shown in Figure 6A. It

was visualized and analysed by Cytoscape. A node in the PPI

network represented each target, and the edges connecting

the nodes represented the interaction between the targets.

Topological analysis of 117 targets using the plug-in

CytoNCA with two median filtering, the first filtering

criterion was: betweenness: 31.368076265, closeness:

0.117252968, degree: 6, eigenvector: 0.0489839665, lac:

2.45, network: 3.3304473305. The second screening

criterion was: betweenness: 8.080020796, closeness:

0.576923077, degree: 9. eigenvector: 0.145350322, lac:

4.5 network: 5.6, 11 hub genes were screened as shown in

Figure 6B. RELA, APK14, CCND1, MAPK1, AKT1, MYC,

MAPK8, TP53, ESR1, FOS, and JUN, with 11 nodes and

45 edges, scored as shown in Table 2. Therefore, we

considered these 11 genes can serve as potential central

genes of A. annua in the treatment of AAA.

Molecular docking verification

According to the “component-target” network,

quercetin, luteolin, kaempferol, isorhamnetin, and

artemetin were the top five active ingredients of A.

annua in the treatment of AAA, 11 centers for

topological analysis of genetic screening for potential A.

annua center for gene therapy AAA. Therefore, we docked

the active ingredients to the hub target genes. We

downloaded the 3D structures of the five active

ingredients from PubChem and the protein structures of

FIGURE 4
KEGG enrichment analysis of A. annua compound and AAA
“intersection target.”

FIGURE 5
“Component-target” network diagram. Yellow represented the active components of A. annua in the treatment of AAA, and green represented
the potential targets.
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FIGURE 6
(A) Construction of the PPI network. (B) Hub genes of (A) annua for the treatment of AAA.
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eleven hub genes from the PDB database. All active

ingredients and hub genes were docked, with binding

free energies calculated by running Vina, and the results

were presented as a thermal diagram in Figure 7. The

binding free energy of less than or equal to −5.0 kcal/

mol was regarded as good binding activity between

molecules, and the binding free energy of less than or

equal to −7 kcal/mol represented a strong binding force

between molecules (Morris et al., 2008). The docking

results showed that all five active ingredients had good

affinity with eleven core disease targets and played a

central role in the action of A. annua in the treatment

of AAA. We showed the top 10 molecular docking maps

with low binding energies in Figure 8. The low binding

energy molecular docking results provided valuable

information for the development of drugs to treat AAA.

Discussion

Since the 2015 Nobel Prize in Physiology or Medicine was

awarded to Chinese scientists, Artemisia has gained global

attention (Efferth et al., 2015). Artemisia and its derivatives

are used to treat malaria and are widely used to treat various

oncological and cardiovascular diseases (Ahmad et al., 2015;

Efferth, 2017; Lang et al., 2019; Feng et al., 2020; Jiang et al., 2020;

Yin et al., 2020; Meng et al., 2021). As the COVID-19 epidemic

rages around the world, some studies have been conducted to

fully elucidate the mechanisms behind A. annua’s treatment of

COVID-19 through network pharmacology and molecular

docking techniques (Tang et al., 2022). More studies have

been performed to explore the potential mechanisms of A.

annua and the treatment of chronic hepatitis B and

hepatocellular carcinoma (He et al., 2021; Zhang et al., 2021).

TABLE 2 Hub genes of degree value in the PPI network.

name Betweenness Closeness Degree Eigenvector LAC Network

RELA 1.507,142,857 0.769,230,769 7 0.25,598,225 4.571,428,571 5.333,333,333

MYC 2.078,571,429 0.909,090,909 9 0.326,317,787 6.444,444,444 8.172,619,048

MAPK8 0.821,428,571 0.769,230,769 7 0.263,347,566 5.142,857,143 6

FOS 2.078,571,429 0.909,090,909 9 0.326,427,132 6.444,444,444 8.172,619,048

TP53 2.192,857,143 0.909,090,909 9 0.326,792,687 6.444,444,444 8.130,952,381

JUN 3.164,285,714 1 10 0.354,707,539 7 10

MAPK14 1.942,857,143 0.833,333,333 8 0.295,108,497 5.5 6.595,238,095

CCND1 1.257,142,857 0.769,230,769 7 0.263,187,557 4.857,142,857 5.666,666,667

ESR1 2.192,857,143 0.909,090,909 9 0.326,792,687 6.444,444,444 8.130,952,381

MAPK1 1.942,857,143 0.833,333,333 8 0.295,108,497 5.5 6.595,238,095

AKT1 0.821,428,571 0.769,230,769 7 0.26,312,241 5.142,857,143 6

FIGURE 7
Thermal diagram of the molecular docking binding energy. The color from white to red indicated that the binding ability was weak to strong.
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With the development of network pharmacology, traditional

medicine based on multi-component, multi-target, and multi-

channel treatment of diseases have been paid more attention

(Yuan et al., 2017).

Our research screened 22 potentially active ingredients of

A. annua, including quercetin, luteolin, kaempferol,

isorhamnetin, artemetin, and artemisinin. Some

ingredients had been proven to affect vascular diseases,

FIGURE 8
Molecular docking diagrams of the top 10 molecular docking maps with low binding energies. The protein active site, binding distance, and
molecular docking model between the protein and the main active ingredient were shown in Figure 8. (A). MAPK8-Luteolin (−9.9 kcal/mol); (B).
MAPK8-Quercetin (−9.7 kcal/mol); (C). MAPK8-Kaempferol (−9.2 kcal/mol); (D). RELA-Luteolin (−9.2 kcal/mol); (E). RELA-Quercetin (−9.2 kcal/
mol); (F). AKT1-Isorhamnetin (−9.1 kcal/mol); (G). MAPK8-Isorhamnetin (−9.1 kcal/mol); (H). AKT1-Quercetin (−8.9 kcal/mol); (I). AKT1-Luteolin
(−8.7 kcal/mol); (J). CCND1-Luteolin (−8.7 kcal/mol).
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such as AAA. Quercetin, a flavonoid with anti-inflammatory

activity, was the most abundant ingredients that could act on

AAA and inhibited the development of AAA in mice (Wang

et al., 2012). Additionally, quercetin attenuated

neovascularization during AAA growth (Wang et al., 2020)

and decreased oxidative stress in AAA mouse models

(WANG et al., 2014). Luteolin inhibited vascular smooth

muscle cells proliferation and migration (Xu et al., 2015; Wu

et al., 2018). Kaempferol inhibited diabetic cardiomyopathy

in rats through a hypoglycemic effect and upregulation of

SIRT1 (Alshehri et al., 2021). Kaempferol attenuated

atherosclerosis via the PI3K/AKT/Nrf2 pathway (Feng

et al., 2021). In addition, some epidemiological studies had

found a positive correlation between the consumption of

foods containing kaempferol and a reduced risk of many

diseases, such as cancer and cardiovascular disease

(Calderón-Montaño et al., 2011). Isorhamnetin inhibited

oxidative stress (Skalski et al., 2019), and prevented

doxorubicin-induced cardiotoxicity (Sun et al., 2013), and

isorhamnetin attenuated atherosclerosis through PI3K/AKT

activation and HO-1-induced inhibition of macrophage

apoptosis (Luo et al., 2015). Artemetin had a certain

inhibitory effect on atherosclerosis (Kim and Shim, 2019)

and also could reduce hypertension proliferation, migration,

and inflammation of VSMCs (de Souza et al., 2011; Cao et al.,

2015). Therefore, the above results also showed that the

effective chemical components in A. annua had a certain

therapeutic effect on treating AAA.

After our filtering, there are 22 active ingredients in

Artemisia annua. The top compound is quercetin with a

degree-value of 89, and the last compound with a

degree-value of 1. The difference between the two values is

too large. We predicted the compounds and targets that play a

major role in A. annua, and the compounds with

high degree-value have higher representativeness while

referring to previous studies(Feng et al., 2022; Hong et al.,

2022; Xu et al., 2022), we selected the top five compounds for

subsequent validation and molecular docking. By screening a

total of 117 intersections of a drug-disease gene, the

topological analysis of 11 hub genes RELA, APK14,

CCND1, MAPK1, AKT1, MYC, MAPK8, TP53, ESR1,

FOS, and JUN were finally performed. The molecular

docking technique predicted the binding strength between

herbal components and targets (Zeng et al., 2019). The results

showed that the top 5 active ingredients had a good affinity

with 11 core disease targets, and the docking results were

less than −5.0 kcal/mol, which further demonstrated that

active ingredients and hub genes were critical targets of A.

annua in the treating of AAA. Among these, MAPK8-

Luteolin (−9.9 kcal/mol) had the best binding ability and

could be used as a potential drug therapeutic target in the

future. More literature had reported that these selected genes

were closely related to AAA (DiMusto et al., 2012; Leeper

et al., 2013; Ijaz et al., 2017; Hao et al., 2018; Zhang et al.,

2018; Zhao et al., 2019; Moran et al., 2020). These genes and

their associated pathways might become potential

therapeutic targets for AAA treatment. Because there is no

reliable high-level clinical evidence of drugs for the treatment

of abdominal aortic aneurysms (Golledge, 2019), we do not

have a positive control set in our molecular docking. As a

result, based on the advantages of A. annua in multigene

targeting, it is more promising to bring good news to AAA

patients.

In addition, KEGG enrichment analysis showed that

several pathways, such as the PI3K-Akt signaling pathway,

fluid shear stress, atherosclerosis, and the AGE-RAGE

signaling pathway, were closely associated with the

treatment of AAA by A. annua.

The relationship between the above pathways and AAA

had been extensively studied. Inhibition of Notch1-mediated

inflammation prevented AAA via the PI3K/Akt signaling

pathway (Ni et al., 2021), and AGE-RAGE stress

was associated with the pathogenesis of aortic aneurysms

(Prasad, 2019). Daidzein attenuated AAA through the NF-κB,
p38-MAPK, and TGF-β1 pathways (Liu et al., 2016). The

MAPK (mitogen-activated protein kinase)/ERK pathway was

an essential regulator of AAA formation during matrix

metalloproteinase (MMP) (Ghosh et al., 2012). Lithium

chloride could inhibit AAA by modulating the NF-κB
signaling pathway (Xu et al., 2021). Therefore, it was

speculated that A. annua might inhibit AAA by acting on

related signaling pathways or targets.

In summary, the study used network pharmacology and

molecular docking technology strategies to predict the

significant active compounds and critical targets of A.

annua in the treatment of AAA and speculated the

potential mechanisms from multiple approaches and

perspectives. Therefore, A. annua might have multiple

components, multiple targets, and multiple signaling

pathways to play a role in treating AAA. Among them,

quercetin corresponds to the most targets and has the

strongest activity, and it will be one of the possible

potential drugs in the future drug treatment of abdominal

aortic aneurysm.

Conclusion

Based on network pharmacology combined with

molecular docking technology, this study systematically

summarized the molecular targets of A. annua in the

treatment of AAA, aiming to promote more comprehensive

development and research of A. annua. The potential

molecular mechanism of the active ingredients of A. annua

in the treatment of AAA could support its subsequent clinical

research and be vital for exploring the pharmacological
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treatment of AAA. At the same time, the current work also has

some shortcomings. This study lacks corresponding

experimental verification, which will be further verified in

future research. In addition, the loss and incompleteness of

some database information will also have a particular impact

on the prediction results.
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