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Rheumatoid arthritis (RA) is a chronic, systemic disease of unknown etiology.

The primary manifestation of RA is inflammatory synovitis, which eventually

leads to deformity and functional loss. Ferroptosis is a non-apoptosis form of

cell death that depends on intracellular iron accumulation. This leads to an

increase in reactive oxygen species (ROS) induced-lipid peroxidation. The

underlying mechanisms of ferroptosis are System Xc- and Glutathione

metabolism, regulation of glutathione peroxidase 4 activity, and ROS

generation. Recent studies have shown an association between the

pathogenesis of RA and ferroptosis, suggesting the involvement of

ferroptosis in the onset and progression of RA. In this review, we have

focused on the mechanism of ferroptosis and its association with RA

pathogenesis. Further, we discuss the status of therapeutics targeting

ferroptosis in the treatment of patients with RA. Targeting ferroptosis could

be a potential therapeutic approach for RA treatment.
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1 Introduction

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease. The primary clinical

manifestation of RA is aggressive, symmetric polyarthritis. The pathological changes associated

with RA are chronic inflammation of synovial joints, pannus formation, and gradual

destruction of the articular cartilage and bone, ultimately leading to joint deformity

(Kumar et al., 2016; Scherer et al., 2020). The incidence of RA is 0.5–1%, can occur at any

age, and has a high disability rate (Cush, 2022; Hugon, 2022; Sun et al., 2022). Therefore,

effective therapeutic strategies are crucial for a good prognosis for patients with RA. Non-

steroidal anti-inflammatory drugs, glucocorticoids, and disease-modifying anti-rheumatic

drugs (DMARDs), including conventional DMARDs, biological DMARDs, and targeted

synthesis DMARDs, are used to treat RA patients. Despite the advancement in

therapeutics, many patients do not achieve disease remission. “Ferroptosis” has recently

been discovered and is iron-dependent cell death. Ferroptosis occurs due failure of the cells
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to remove excessive intracellular iron, reactive oxygen species (ROS),

and lipid peroxides on time. Additionally, ferroptosis can also occur if

the body’s antioxidant system is inhibited or inactivated, which leads

to disruption in the redox balance of the cells, and the toxic lipid

metabolites produced in the cells attack the biomolecules (Stockwell

et al., 2017; Riegman et al., 2020; Jiang et al., 2021). Multiple studies

have shown the involvement of ferroptosis in cancers (Zhao et al.,

2022a; Gao et al., 2022; Lei et al., 2022), but there are relatively few

reports on the association between ferroptosis and RA. In this study,

we discuss the progress in ferroptosis and RA, thereby establishing an

association between the incidence of RA and ferroptosis. Further, we

shed light on the use of ferroptosismodulators as possible therapeutic

strategies for the treatment of patients with RA.

2 The pathogenesis of rheumatoid
arthritis

The pathogenesis of RA is not completely understood.

However, it is currently believed that RA occurs due to

FIGURE 1
Key target and effector cells are involved in the pathogenesis of RA. Naïve T cell activation is induced by specific recognition of TCR and antigens
presented by MHC-II molecules of antigen-presenting cells (APCs), such as dendritic cells, which are the most potent APCs. Cytokines produced by
activated T cells and APCs influence T cell differentiation. IL-12, IL-4, and IL-23 play a key role in the differentiation of naïve T cells into Th1, Th2, and
Th17 cells, respectively. Macrophages also promote Th17 differentiation by secreting cytokines such as TGF-β and IL-23. Upon activation and
differentiation, more cytokines, including TNF-α, TGF-β, IL-1, SDF-1, and FGF, are secreted to promote the proliferation of RA-FLS. RA-FLS, in turn,
secrete active substances like IL-6, MMPs, and TNF-α, to aggravate bone erosion and VEGF to promote neovascularization. The CD40/CD40L
interactions activate B cells to produce autoantibodies which play a critical role in bone resorption. SDF-1 also activates monocytes to produce IL-1,
IL-6, MMPs, and TNF-α, which lead to bone degradation. Osteoclasts are mainly activated by IL-1 and TNF-α, which ultimately promote bone
destruction. TCR:T cell receptor, MHC-II:Major Histocompatibility Complex Class II, APCs: antigen-presenting cells,ILs:interleukins, Th:T helper cell,
TGF-β:transforming growth factor-β, TNF-α:tumor necrosis factor-α, SDF-1:stromal cell-derived factor-1, FGF:fibroblast growth factor, RA-FLS:
rheumatoid arthritis-fibroblast-like synoviocytes, MMPs:matrix metalloproteinases, VEGF:vascular endothelial growth factor, CD40:clusters of
differentiation 40, CD40L:clusters of differentiation 40 ligand.
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immune damage caused by a series of autoimmune reactions in

genetically susceptible individuals under the influence of

environmental factors. Risk factors for RA include smoking,

silica exposure, disorders of periodontal and intestinal

microbiota, etc. (Novella-Navarro et al., 2021). The immune

cells and inflammatory mediators associated with RA mainly

include T cells, B cells, macrophages, monocytes, interleukins

(ILs), tumor necrosis factor-α (TNF-α), etc. (Figure 1).

Fibroblast-like synoviocytes (FLS) are commonly found at the

junction of RA pannus and cartilage. It has tumor-like effects and

is considered a key factor in the onset and development of RA

(Lefevre et al., 2009; Niu et al., 2019; Mueller et al., 2021; Jang

et al., 2022).

Rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS)

lead to the proliferation of synovial membrane, inflammatory

reactions, extensive angiogenesis, the disintegration of cartilage

matrix, and destruction of bones by producing abundant pro-

inflammatory cytokines and chemokines (Bartok and Firestein,

2010; Aldridge et al., 2020; Bai et al., 2022; Ji et al., 2022); Figure 1).

RA-FLS continuously produces many inflammatory factors like

IL-6, IL-1β, TNF-α, vascular endothelial growth factor (VEGF),

and matrix metalloproteinases (MMPs). ILs stimulate collagenase

production by synovial cells and cartilage, thereby enhancing the

inflammatory response in the joints. TNF-α activates macrophages

to produce cytokines like IL-1, IL-6, and IL-8, which enhances

inflammation and stimulates the differentiation of T cells, B cells,

and NK cells. VEGF promotes the vascular opacification of the

synovial membrane, which leads to joint destruction. MMPs

degrade the synovial matrix. These inflammatory factors

promote angiogenesis and proliferation of synovial membrane

and activate the expression of stromal cells and osteoblasts, which

are involved in inflammatory bone erosion (Davignon et al., 2018;

Currie et al., 2019; Hattori et al., 2019; Nygaard and Firestein, 2020;

Armaka et al., 2022; Micheroli et al., 2022).

3 Mechanisms of ferroptosis

Recent studies have shown that ferroptosis is another type of

regulated cell death that depends on the accumulation of iron and

highly lethal lipid peroxides. Morphologically, cells undergoing

ferroptosis show a decrease in mitochondrial volume, increase in

density of mitochondrial membrane, decrease or disappearance

of mitochondrial cristae, and rupturing of the mitochondrial

outer membrane (Stockwell et al., 2017; Chen et al., 2021). The

biochemical features of ferroptotic cells include the accumulation

of intracellular iron and ROS, activation of mitogen-activated

protein kinases (MAPKs) signaling pathway, inhibition of the

cystine/glutamate transporter system, and increase in

nicotinamide adenine dinucleotide phosphate (NADPH)

oxidation (Xie et al., 2016; Xia et al., 2021). Iron metabolism

and lipid peroxidation are key factors leading to the ferroptosis of

cells (Figure 2).

3.1 Metabolism of iron

Iron is indispensable for the body and involved in the

transportation of cellular oxygen and the synthesis of

adenosine triphosphate and deoxyribonucleic acid. It is also

an important cofactor in the electron transport chain and

MMPs in the mitochondria (Cai et al., 2019). A complex is

formed between free Fe3+ in the blood and transferrin (TF),

which transports Fe3+ into the cell, which forms endosomes by

binding to transferrin receptors (TFR) on the cell membrane.

Fe3+ is reduced to Fe2+ in the endosomes by the divalent metal ion

transporter 1 (DMT1) or ZRT/IRT-like protein (ZIP) and then

enters the cytoplasm. In the cells, most of Fe2+ is stored as

cytoplasmic ferritin formed by ferritin light chain and ferritin

heavy chain 1 (FTH1), and a small portion as labile iron pool

(LIP). Autophagy of ferritin via nuclear receptor coactivator 4

(NCOA4) also contributes to active Fe2+ (Wang et al., 2021).

Excess Fe2+ is oxidized to Fe3+ and pumped out of the cells

(Bogdan et al., 2016). Some studies show that iron chelators like

desferrioxamine can significantly inhibit cellular ferroptosis

induced by Erastin, suggesting that iron homeostasis and lipid

peroxidation are key factors associated with cellular ferroptosis

(Dixon et al., 2012).

3.2 Lipid metabolism

Lipid peroxidation is the loss of hydrogen atoms produced by

lipids due to free radicals or lipid peroxidase, which induces

oxidative degradation of lipids that ultimately damages the cells

(Ayala et al., 2014). In ferroptosis, lipid peroxidation triggers

oxidative degradation of two important biofilm components,

polyunsaturated fatty acids (PUFAs) and

phosphatidylethanolamine. PUFAs contain readily extractable

diallyl hydrogen, which is prone to lipid peroxidation and is

essential for the execution of ferroptosis. Acyl-coenzyme A

synthetase long-chain family member 4 (ACSL4) is a key

enzyme catalyzing the conversion of PUFAs into coenzyme A

which regulates lipid composition. Studies have shown that lipid

peroxidation, specifically in the cell membranes and plasma

membranes, has PUFAs (Galluzzi et al., 2012; Yang et al.,

2016; Xie et al., 2021). Multiple studies have shown that

antioxidants inhibit Erastin-induced ferroptosis, which

indicates lipid peroxidation could lead to ferroptosis of the

cells (Dixon et al., 2012; Zhang et al., 2022).

3.3 Amino acid metabolism

Amino acid metabolism is an important component of cell

metabolism and is closely associated with ferroptosis (Angeli

et al., 2017). Glutathione (GSH) is a water-soluble tripeptide

composed of amino acid residues like glutamate, cysteine, and
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glycine. Low GSH levels are an important antioxidant and free

radical scavenger of the cells. The glutathione peroxidase 4

(GPX4) uses GSH as a cofactor to reduce lipid peroxide levels.

GPX4 is the most important anti-lipid peroxidase in the cell and

is a central regulator of ferroptosis (Miao et al., 2022). GSH

depletion leads to GPX4 inactivation, which ultimately results in

ferroptosis (Imai et al., 2017; Seibt et al., 2019).

GSH synthesis requires the exchange of extracellular cystine

and intracellular glutamate through the cystine/glutamate

reverse transporter (System Xc-). System Xc- consists of the

solute carrier family 7 member 11 (SLC7A11), a 12-

transmembrane protein transporter, and solute carrier family

3 member 2 (SLC3A2), a single transmembrane regulatory

protein. Blocking the glutamate metabolic pathway or

FIGURE 2
Mechanisms of Ferroptosis and its modulators in RA treatment. GSH, iron and lipid metabolism are the core components of ferroptosis. System
Xc-/GPX4 axis is important for GSH synthesis. System Xc- transports cystine into the cells to generateγ-GCS alongwith glutamate, which is catalyzed
by GSS. GSH is synthesized by γ-GCS and glycine. GSH acts as a GPX4 cofactor to convert PUFAs-OOH to PUFAs-OH. STEAP3 converted Fe3+ to Fe2+

in the endosomes, and the Influx of Fe2+ into the cytoplasm is mediated by DMT1 or ZIP14. In the cytoplasm, a small portion of Fe2+ remains in
the LIP, and most of Fe2+ combines with ferritin for storage. NCOA4 aids in the autophagy of ferritin to provide Fe2+ by inducing ferritin degradation.
The intracellular PUFAs-OOH reacts with Fe2+ to induce lipid peroxidation, eventually leading to ferroptosis. ALOX15 promotes lipid peroxidation,
and CoQ10H2 inhibits lipid peroxidation. NADPH/FSP1/CoQ10 pathway is an antioxidant pathway parallel to GPX4. Glycine, SR9009, RSL3, and
etanercept show positive effects on the treatment of RA patients by inducing ferroptosis, while G1dP3 plays a positive role in RA treatment by
inhibiting ferroptosis. GSH:glutathione, System Xc-:glutamate reverse transporter, GPX4:glutathione peroxidase 4,γ-GCS:γ-glutamylcysteine
synthetase, GSS:glutathione synthetase, PUFAs:Polyunsaturated fatty acids, STEAP3:Six-Transmembrane Epithelial Antigen of Prostate 3, DMT1:
divalent metal ion transporter 1, ZIP14:ZRT- and IRT-like protein 14, LIP:labile iron pool, NCOA4:nuclear receptor coactivator 4, ALOX15:
arachidonate lipoxygenase 15, CoQ10H2:Ubiquinol-10, FSP1:ferroptosis suppressor protein 1, CoQ10:coenzyme Q10, NAD(P)H:nicotinamide
adenine dinucleotide phosphate, SR9009:REV-ERB agonist, RSL3:Ras-selective lethal small molecule 3, RA:rheumatoid arthritis, G1dP3:galectin-
1 derived peptide 3.
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inhibiting System Xc- increases ROS-induced-lipid peroxidation,

thereby inducing ferroptosis (Galluzzi et al., 2015). Glutaminase

2 (GLS2) converts glutamine to glutamate and is essential for

ferroptosis (Gao et al., 2015). GLS2 up-regulation leads to p53-

dependent ferroptosis, and p53 can limit ferroptosis by inhibiting

the dipeptidyl peptidase 4 activity (Jennis et al., 2016). Studies

have demonstrated that targeted glutamine decomposition

therapy could effectively treat organ damage caused by

ferroptosis (Li et al., 2017).

3.4 Reactive oxygen species metabolism

ROS are a group of molecules that contains partly reduced

oxygen molecules/species like peroxides, superoxide, singlet

oxygen, and free radicals, generated due the biomolecule

destruction. Ferroptosis can be induced by ROS produced by

iron-mediated Fenton reactions, NADPH acting on NADPH

oxidases (NOXs), and depletion of GSH (Yang et al., 2014). At

the structural level, lipids undergo extensive peroxidation

forming thinner biofilms and increases the curvature. This

further leads to oxidation reactions, ultimately destabilizing

the membranes (Park and Chung, 2019).

3.5 Other metabolic pathways

The NADPH/ferroptosis-suppressor-protein 1 (FSP1)/

coenzyme Q10 (CoQ10) pathway is another antioxidant system

parallel to GPX4. The inhibition of this pathway can induce

ferroptosis. In the plasma membrane, FSP1 acts as an

oxidoreductase which reduces ubiquinone (CoQ) to dihydro

ubiquinone (CoQH2). CoQH2 is an antioxidant that captures

lipophilic free radicals and prevents the accumulation of lipid

peroxides, thereby inhibiting ferroptosis (Doll et al., 2019). The

GTP cyclohydrolase1 (GCH1)/tetrahydrobiopterin (BH4)/

dihydrofolate reductase (DHFR) pathway is an antioxidant

pathway independent of GPX4. Ferroptosis can be induced by

blocking the GCH1/BH4/DHFR pathway. The initiation of the

GCH1/BH4/DHFR pathway promotes CoQ synthesis and

inhibits the accumulation of lipid peroxides, thereby

preventing the ferroptosis of the cells (Kraft et al., 2020).

4 Ferroptosis and rheumatoid arthritis

Previous studies have demonstrated an association between

ferroptosis and RA development. Various studies have shown

that several pathways or compounds are associated with

ferroptosis in the pathogenesis of RA (Qiu et al., 2020; Ursini

and Maiorino, 2020; Ferreira et al., 2021; Zhao et al., 2022b).

Therefore, it is speculated that there could be more direct

evidence that indicates the involvement of ferroptosis in the

pathogenesis of RA in the future.

4.1 Xc-/glutathione peroxidase 4 axis and
rheumatoid arthritis

GPX4 belongs to the glutathione peroxidase family. GPX4

protects cells from damage caused by lipid peroxidation by

degrading small peroxide molecules. Nuclear factor erythroid

2-related factor 2 (NRF2) is a transcription factor that regulates

the expression of various ferroptosis-related genes, including

GPX4 and TFR1 (Chadha et al., 2020).

A study by Luo and Zhang (2021) shows that the

lipopolysaccharide (LPS) stimulation reduces GPX4, SLC7A11,

SLC3A2L, and NRF2 expression in human synovial cells HUM-

CELL-0060, thereby confirming the association between

ferroptosis and synovitis. Zhou et al. (2022) showed a

significant increase in levels of ACSL4 and NOX4, whereas a

significant decrease in GPX4 levels was observed in cartilage of

RA patients. Similar results were observed in the adjuvant

arthritis (AA) rat model, indicating an association between

enhancement in ferroptosis of chondrocytes and RA

progression. As opposed to other studies, Ling et al. (2022)

reported a decrease in ACSL4 expression and an increase in

FTH1, GPX4, and SLC7A11 expression, thereby indicating a

reduction in ferroptosis in RA-synovium and FLS. The study also

suggests the presence of fibroblastic subpopulations with

different sensitivities to ferroptosis.

p53 is an important link between RA to ferroptosis.

p53 regulates various metabolic pathways, such as amino acid,

lipid, reactive oxygen, and iron metabolism, which are closely

linked to ferroptosis (Liu and Gu, 2022). Additionally, p53 favors

ferroptosis by downregulating SLC7A11 expression to increase

ROS levels via spermidine/spermine N1-acetyl transferase

(SAT1)-arachidonate15-lipoxygenase (ALOX15). Recent

studies suggest that the p53/SLC7A11 signaling axis control

ferroptosis in MH7A cells (Hu et al., 2022).

4.2 Iron metabolism and rheumatoid
arthritis

Previous studies have highlighted the correlation between

iron metabolism and chronic anemia in RA patients (Stefanova

et al., 2018; Zhao et al., 2022b; Chang et al., 2022). Recently, some

studies have shown the involvement of iron metabolism in

ferroptosis in RA pathogenies. An increase in lipid

peroxidation and iron levels was observed in the synovial

membrane and synovial fluid of RA patients with high disease

activity compared to moderate disease activity. This confirms the

accumulation of lipid peroxidation and iron overload in the
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synovial membrane and synovial fluid of patients with RA (Wu

et al., 2022).

Ferritin is an important Fe2+ storage protein in ferroptosis.

Recent studies have shown increased FTH1 expression in

synovium and FLS of patients with RA (Ling et al., 2022).

Follow-up studies have shown that Erastin (ferroptosis

inducer) treatment reduces the expression of FTH1, thereby

indicating the involvement of iron metabolism in the

ferroptosis in RA-FLS.

4.3 Reactive oxygen species and
rheumatoid arthritis

Recent studies have demonstrated the involvement of ROS in

multiple signal pathways, such as MAPK, Phosphatidylinositol-

3-kinase-Akt, and Nuclear factor kappa B, which contribute to

RA development (Shen et al., 2015; Phull et al., 2018). ROS

inhibits the interaction between growth factors and

chondrocytes, leading to the apoptosis of chondrocytes and

cartilage damage. In addition, ROS destroys the extracellular

and intracellular matrices, such as proteoglycans, which are

essential for chondrocytes (Mateen et al., 2016). ROS and

excessive lipid oxidation can also induce abnormal

proliferation of RA-FLS (Xie et al., 2021).

5 Use of ferroptosis-related drugs in
rheumatoid arthritis treatment

Currently, ferroptosis modulators have been widely used for

treating neoplastic diseases. RA-FLS have “tumor-like”

characteristics, which are critical for the onset and

development of RA. Furthermore, the role of ferroptosis

modulators in the treatment of patients with RA has been

investigated. We have summarized different ferroptosis

modulators in RA treatment, based on their different

mechanisms of action, as follows (Figure 2).

5.1 Targeted Xc/glutathione peroxidase
4 axis

SLC7A11 is the main active subunit of System Xc- which

regulates the dynamic balance of intracellular GSH. The

inhibition of System Xc- activity reduces the influx of cystine

into the cell. This further reduces the synthesis of intracellular

GSH and the ability of GPX4 to scavenge peroxides, ultimately

leading to ferroptosis of the cells (Song et al., 2018).

Food and Drug Administration has approved sulfasalazine,

an anti-rheumatic drug, for the treatment of RA patients. In

vitro studies have demonstrated that sulfasalazine inhibits

System Xc- which significantly reduces lymphoma cell

proliferation (Mao et al., 2021). However, no studies have

shown how sulfasalazine directly affects ferroptosis in the

treatment of RA patients.

A recent study has shown that RAS-selective lethal 3 (RSL3),

a GPX4 inhibitor decreases the expression of GPX4, SLC7A11,

and SLC3A2L in human synovial cells HUM-CELL-0060 and

promotes cell death (Luo and Zhang, 2021). In collagen-induced

arthritis (CIA) mice model, treatment with imidazole ketone

erastin (IKE), a ferroptosis inducer, can reduce the number of

fibroblasts in the synovial membrane (Wu et al., 2022). Further,

treatment with the combination of low doses of IKE and

etanercept (TNF antagonist) induced ferroptosis of fibroblasts

and improved the symptoms in CIA mice. These results suggest

that the combination of TNF inhibitors and ferroptosis inducers

could be a potential strategy for the treatment of RA patients.

Glycine is a component of single-carbon metabolism.

Glycine is also involved in the mechanism associated with the

transfer of methyl groups. A study by Ling et al. has shown that

glycine regulates the levels of S-adenosylmethionine (a direct

methyl donor), which promotes the methylation of the GPX4

promoter, thereby enhancing the ferroptosis of RA-FLS (Ling

et al., 2022).

Galectin-1 derived peptide 3 (G1dP3), a bioactive peptide

derived from the galectin-1 structural domain, has potent anti-

inflammatory effects on RA-FLS (Hu et al., 2020). A recent study

suggests G1dP3 promotes ferroptosis in RA-FLS via the p53/

SLC7A11 axis and has potential therapeutic effects (Hu et al.,

2022).

Besides these ferroptosis inducers, a recent study has

demonstrated that icariin inhibits ferroptosis by activating the

Xc-/GPX4 axis, thereby protecting RA-FLS from LPS-induced

cell death. This could be a new strategy for the treatment of RA

patients (Luo and Zhang, 2021).

5.2 Regulation of iron metabolism

In vivo, the Fenton reaction is the main source of ROS.

Sulfasalazine-induced ferroptosis is a classic example of a dual

reaction. In addition to the direct inhibition of the System Xc-,

Sulfasalazine induces ferroptosis by indirectly up-regulating the

level of trivalent iron, thereby inducing the Fenton reaction

(Chadha et al., 2020).

Auranofin is an early anti-rheumatic drug that is similar to

sulfasalazine. In cancers, Auranofin exerts an anti-cancer effect

by directly altering ferroptosis (Kato et al., 2020). Studies have

shown that the high doses of auranofin (25 mg/kg) induce

ferroptosis by inhibiting the thioredoxin reductase activity. At

a low dose (5 mg/kg), auranofin triggers hepcidin, which reduces

serum iron levels and transferrin saturation, thereby inhibiting

ferroptosis in mice (Yang et al., 2020). Hence, it is necessary to

choose an appropriate dose of auranofin to ensure cellular

ferroptosis and reduce drug toxicity.
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FTH1 is an essential Fe2+ storage protein in ferroptosis.

Recent studies have demonstrated an increase in FTH1 levels

in synovium and RA-FLS. On treatment with glycine, a decrease

in FTH1 levels was observed in RA-FLS (Ling et al., 2022). These

results suggest a reduction in FTH1 expression on glycine

treatment, which subsequently participates in the Fenton

reaction to increase ferroptosis during RA progression.

5.3 The inhibition of active oxygen

Effective binding of NRF2 to the antioxidant response

element promotes the production of cytotoxic electrophiles

and ROS (Dodson et al., 2019; Chadha et al., 2020).

GPX4 inhibitor RSL3 reduces the production of GPX4 in

synoviocytes and NRF2 levels, which ultimately reduces ROS

production (Luo and Zhang, 2021).

Liu et al. (2019) show that the NK-1R antagonist,

Aprepitant reduces TNF-α-induced expression of NOX-4

and ROS production in RA-FLS. Although the changes in

ferroptosis-related markers were not evaluated in this study, it

is likely that Aprepitant alters ferroptosis of RA-FLS. Further,

the activation of nuclear receptor subfamily 1 group D

member 1 (NR1D1) reduces ROS production and enhances

the secretion of Nrf2-related enzymes (Liu et al., 2020). CIA

mice treated with NR1D1 agonist SR9009 demonstrated a

significant inhibition in synovial hyperplasia, cartilage, and

bone destruction. This suggests that NR1D1 can potentially be

used as therapeutics in the treatment of patients with RA.

Various studies have indicated that ROS could be a new

therapeutic target for RA treatment regarding ferroptosis

(Xie et al., 2016; Xie et al., 2021; Chang et al., 2022; Lai

et al., 2022).

5.4 Potential therapeutic targets

Recently Zhou et al. (2022) showed a correlation between

transient receptor potential melastatin 7 (TRPM7) levels and

various core regulators of ferroptosis in chondrocytes of patients

with RA and the AA rat model. Knockdown of TRPM7

expression or inhibiting its activity can protect chondrocytes

from ferroptosis. These results suggest that TRPM7-mediated

chondrocyte ferroptosis could be a promising target for RA

treatment.

Recent studies suggest the involvement of FSP1 in

ferroptosis, which is independent of the GSH-based

GPX4 pathway. The FSP1-CoQ-dependent pathway depends

on NADPH-induced enhancement of the antioxidant system.

FSP1 reduces CoQ to block lipid peroxidation and may act as an

important threshold for ferroptosis. Hence, FSP1 could be a

potential therapeutic candidate for the treatment of patients with

RA (Xie et al., 2021).

6 Conclusion and perspectives

The pathogenesis of RA is still unclear. Some patients are

insensitive to the currently available therapeutic modalities. There

is a need for additional therapeutic targets in the treatment of patients

with “refractory” RA. Recent studies have shown ferroptosis as a new

type of cell death. Ferroptosis-related drugs have emerged as

promising targeted drugs in cancer therapeutics. Studies have

been conducted to investigate the therapeutic value of ferroptosis-

targeting drugs in RA treatment, and preliminary results have been

obtained. However, research on ferroptosis in RA is currently limited

and needs to be further explored. For example, the primary focus of

these studies has been on FLS and chondrocytes in RA. The role of

immune cells has not been explored until now and requires further

research. Moreover, there are discrepancies among the studies

reporting the role and the levels of ferroptosis in RA. Further,

there is a lack of direct evidence between ferroptosis and the most

widely used anti-rheumatic drugs in the treatment of RA patients,

which requires further investigation. Despite several studies

indicating the therapeutic effects of ferroptosis inducers for

treating RA patients, some studies have suggested that inhibition

of ferroptosis may improve the symptoms of patients with RA. Such

discrepancy in the results indicates the complex role of ferroptosis in

RA, and additional studies are required to enhance our

understanding. Furthermore, it is believed that drugs modulating

the key molecules associated with ferroptosis will be available for RA

treatment, thereby bringing hope to patients with RA.
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