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Simulations of cardiac electrophysiology and mechanics have been reported to

be sensitive to the microstructural anisotropy of the myocardium.

Consequently, a personalized representation of cardiac microstructure is a

crucial component of accurate, personalized cardiac biomechanical models.

In-vivo cardiac Diffusion Tensor Imaging (cDTI) is a non-invasive magnetic

resonance imaging technique capable of probing the heart’s microstructure.

Being a rather novel technique, issues such as low resolution, signal-to noise

ratio, and spatial coverage are currently limiting factors. We outline four

interpolation techniques with varying degrees of data fidelity, different

amounts of smoothing strength, and varying representation error to bridge

the gap between the sparse in-vivo data and the model, requiring a 3D

representation of microstructure across the myocardium. We provide a

workflow to incorporate in-vivo myofiber orientation into a left ventricular

model and demonstrate that personalized modelling based on fiber

orientations from in-vivo cDTI data is feasible. The interpolation error is

correlated with a trend in personalized parameters and simulated

physiological parameters, strains, and ventricular twist. This trend in

simulation results is consistent across material parameter settings and

therefore corresponds to a bias introduced by the interpolation method.

This study suggests that using a tensor interpolation approach to personalize

microstructurewith in-vivo cDTI data, reduces the fiber uncertainty and thereby

the bias in the simulation results.
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1 Introduction

Despite recent improvements in medical care, cardiovascular

disease remains the leading cause of death worldwide (World

Health Organization, 2021). Advances in early detection and

prediction of disease progression after the first cardiac event are

essential to prevent irreversible damage and manifestation of

secondary disease. To this end, studies on disease development

with patient-specific models are a great opportunity to better

understand the underlying mechanisms of pathology and can

advance early diagnostics and patient-specific treatments

(Kayvanpour et al., 2015).

The heart is a multi-physics, multi-scale system with a

complex tissue structure. The myocytes are grouped in

myocyte aggregates arranged in a double helical pattern on

the organ scale, while forming a branching and inter-

connecting network on a smaller scale (Streeter et al., 1969;

Gilbert et al., 2007). Myocyte aggregates are arranged in

myolaminae (LeGrice et al., 1997; Gilbert et al., 2007;

Lunkenheimer and Niederer, 2012), a second component of

the local myocyte orientation. This characteristic arrangement

is represented by the fiber-sheet structure in biomechanical

models.

The cardiac microstructure is an essential component of

computational biomechanical models. Myocyte orientation

determines the direction of active tension during contraction

and the fiber-sheet structure is responsible for the anisotropy of

the tissue, influencing its passive response. Further, cardiac

microstructure and microstructure dynamics were shown to

be altered in pathology, such as hypertrophic and dilated

cardiomyopathy (Ferreira et al., 2014; von Deuster et al.,

2016a), and aortic stenosis (Gotschy et al., 2021). Due to the

involvement of microstructure in cardiac disease and associated

remodelling, a patient-specific representation is essential in

personalized cardiac models.

However, most state-of-the-art models rely on a generic

representation of microstructure, either defined by rule-based

methods, statistical atlases, or single ex-vivo cardiac Diffusion

Tensor Imaging (cDTI) data sets morphed onto a patient-specific

geometry. Rule-based methods typically represent the fiber

orientation as a function of transmural position prescribing

generic values of the characteristic helix and transverse angles

at the endo- and epicaridal boundaries (Beyar and Sideman,

1984; Potse et al., 2006). Extensions with spatial variations have

been proposed (Karadag et al., 2011). A rule-based method to

model cardiac microstructure in cardiac biventricular geometries

including the outflow tract has been introduced by Doste et al.

(2019). A well established approach to prescribe a transmurally

varying rule-based fiber orientation is based on physiological

coordinates following the heart shape and is obtained by solving a

Laplace problem with Dirichlet boundary conditions (Bayer

et al., 2012; Rossi et al., 2014; Wong and Kuhl, 2014; Doste

et al., 2019). Statistical atlases have been extracted from ex-vivo

cDTI data of multiple hearts (Peyrat et al., 2007; Lombaert et al.,

2012b,a; Piuze et al., 2013; Lekadir et al., 2014; Zhang and Wei,

2017; Mojica et al., 2020) or in-vivo cDTI upon interpolation by

Toussaint et al. (2010, 2013). These population averaged fiber

fields are then morphed onto individual geometries of the heart.

The sensitivity of simulation results (such as torsion, stress,

and strain distributions) to microstructure has been investigated

in previous studies, revealing an essential influence of fiber

orientation suggesting the need for individualized

microstructure in patient-specific simulations (Geerts et al.,

2003; Wang et al., 2013; Palit et al., 2015; Nikou et al., 2016b;

Pluijmert et al., 2017; Gil et al., 2019; Campos et al., 2020; Guan

et al., 2020; Barbarotta et al., 2021; Rodríguez-Padilla et al., 2022).

Sensitivity studies using a rule-based fiber orientation with

varying helix and transverse angles have revealed changes in

the distribution of myofiber stress and shortening of up to

9 percentage points resulting from a difference in fiber

direction of 8° (Geerts et al., 2003). Similarly, Pluijmert et al.

(2017) showed that a variation in fiber orientation of 8°, that was

generated with an automatic fiber reorientation method, led to a

change in local myofiber work and pump work of 11–19%. In a

diastolic left-ventricular model, Wang et al. (2013) showed that

changing the endocardial helix angle influences the transmural

distribution of fiber stress. A variation of the endocardial helix

angle of 60° by +10°/−10° resulted in a change in fiber stress of

approximately 31%/26% at a mid-ventricular, mid-mural

location. This sensitivity of the fiber stress to the

microstrucure orientation was likewise demonstrated for fiber

and sheet orientation in a study by Nikou et al. (2016b),

extending previous investigations from evaluations within one

short-axis region to multiple longitudinal slices. In a diastolic bi-

ventricular model, the variation of the fiber orientation, was

investigated by Palit et al. (2015), confirming the sensitivity of

fiber stress and strain distribution depending on fiber orientation

and showing an effect on stiffness. The effect of microstructure

on torsion was demonstrated by Campos et al. (2020) in a

sensitivity analysis of the left ventricle during the full cardiac

cycle. Barbarotta et al., 2021 revealed that the transverse angle has

a higher influence on the end-systolic strains than the helix angle

with shear strains being the most sensitive strain components.

Further, they found a higher sensitivity of cardiac strains to

microstructure than to variation in geometry, suggesting that the

lack of individual microstructure in patient-specific models

might hamper precise systolic strain estimation. Rodríguez-

Cantano et al. (2019) and Eriksson et al. (2013) identified a

high sensitivity of cardiac simulation outputs to local variation in

fiber orientation. The differences between homogeneous versus

heterogeneous fiber fields was further investigated in a study by

Gil et al. (2019). They showed that torsion and long-axis

shortening were closer to healthy data in a model with fiber

architecture derived from ex-vivo cDTI data compared to two

models with rule-based fiber representations adapted to data

from histology. This influence of realistic heterogeneous
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microstructure is confirmed in a study by Guan et al. (2020),

comparing three models with fiber fields generated with different

approaches from the same ex-vivo cDTI data. The more realistic

fibers obtained by directly mapping the ex-vivo cDTI data onto

the geometry resulted in physiological values of cardiac output,

higher ejection fraction, and larger apical twist. Additional active

contraction in cross-fiber directions was needed for the sector-

wise and a global rule-based representation, to achieve

physiological behaviour. In an ex-vivo analysis of the

myocardial tissue, Rodríguez-Padilla et al. (2022) found a bi-

layer structure in the septum, with two different primary

directions of fiber orientation and showed the influence of

this local feature on the stress distribution. These sensitivity

studies suggest that patient-specific, locally heterogeneous

microstructure is important for patient-specific modelling.

Recent advances in in-vivo cDTI enable non-destructive

measurements of in-vivo microstructural orientations (Nguyen

et al., 2016; Stoeck et al., 2016; Scott et al., 2018; Stoeck et al.,

2018; Moulin et al., 2020), providing a way to obtain patient-

specific structural information. However, cardiac motion

influences the diffusion signal and therefore in-vivo cDTI is

challenging. Two magnetic resonance sequences are typically

used: 1) motion compensated spin echo (SE) sequences (Welsh

et al., 2015; Stoeck et al., 2016) or 2) stimulated echo sequences

(STEAM) (Tseng et al., 1999; Dou et al., 2002; Nielles-Vallespin

et al., 2013; Stoeck et al., 2014). STEAM sequences encode

diffusion over two consecutive heart beats, requiring that the

heart is in the same position and motion state over two cardiac

cycles. This leads to long scan times and necessitates good patient

compliance due to repetitive breath holding. SE sequences allow

for acquisitions in one heartbeat and thus can be performed

during free breathing. However, high gradient strength is needed,

requiring high-performance hardware. A detailed comparison of

both approaches has been performed by von Deuster et al.

(2016b); Scott et al. (2018). In-vivo cDTI currently suffers

from low spatial resolution, low signal-to-noise ratio, and

reduced spatial coverage with a limited number of short-axis

slices. In-plane resolutions of 1.6 × 1.6 mm2 (Moulin et al., 2020)

or 1.8 × 1.8 mm2 (Gorodezky et al., 2019) have been reported in-

vivo when using parallel imaging or multi-shot acquisition

schemes, that allow to shorten the read-out duration. Patient

compliance and long scan times restrict the spatial coverage in

clinical in-vivo studies. Typically, one to three short-axis slices

are acquired (Nielles-Vallespin et al., 2013; Khalique et al., 2020,

2018; Gotschy et al., 2021). Increasing spatial coverage in a

clinical setting is ongoing research (Nguyen et al., 2021).

Therefore, data pre-processing and interpolation techniques

are necessary to use this sparse data to personalize 3D cardiac

models.

In this work, we address the gap between available in-vivo

micro-structural data and the requirements for biomechanical

modelling. We personalize a left-ventricular model to a porcine

heart based on MRI data with subject-specific cardiac

microstructure from in-vivo cDTI data. To this end, we

employ four interpolation techniques with varying degrees of

freedom to map the sparse in-vivo data to the model: one tensor

interpolation approach (Toussaint et al., 2013), two parametric,

low-rankmodels extracted from ex-vivo data (Stimm et al., 2021),

and a rule-based method (Bayer et al., 2012) adapted to the data.

The methods have been previously compared with respect to

interpolation performance (Stimm et al., 2022). The tensor

interpolation approach resulted in the lowest interpolation

errors followed by the low-rank models (PGD and POD) and

the rule-based method. An ex-vivo experiment with synthetically

down-sampled data suggested that interpolation benefits more

from an increase in in-plane resolution from 2.5mm2 to 1.5 mm2

of the measured input data compared to improvements of signal-

to-noise ratio and number of input slices. Here, we study the

sensitivity of the simulation output to the interpolation

techniques with varying smoothness and fidelity.

2 Methods

2.1 Data acquisition and processing

2.1.1 Imaging
One healthy porcine heart was imaged on a clinical 1.5 TMR

system (Achieva, Philips Healthcare, Best, Netherlands) with a

32-channel cardiac coil and gradient system parameters: gradient

strength: 80 mT/m per physical axis; slew rate: 100 T/m/s. Data

was collected from previous studies (Stoeck et al., 2021; Stimm

et al., 2022). Experimental procedures were approved by the

Cantonal Veterinary Office (Zurich, Switzerland) under licenses

ZH072/16 and ZH 152/2013. Image acquisition was performed

during ventilated breathing. Multi-slice, short-axis cine imaging

(cine) and cDTI were performed with the following parameters:

cine: 1.8 × 1.8 mm2 spatial in-plane resolution, 8mm slice

thickness, 25 heart phases, TE/TR 1.5 ms/3 ms, 45°flip angle;

cDTI: 2.0 mm2 × 2.0 mm2 spatial in-plane resolution, zero-filled

to 1.3 × 1.3 mm2, 8mm slice thickness, 3/3/12 encoding

directions at b = 100/200/450 s/mm2, TR/TE 5R-R intervals/

81 ms, and eight signal averages. cDTI was acquired with a

second-order motion-compensated spin-echo sequence (Welsh

et al., 2015; Stoeck et al., 2016) and triggered to 65% of peak

contraction (Stoeck et al., 2016, 2018). The field-of-view was

limited in the phase encoding direction using non-coplanar

excitation (Wilm et al., 2009). Ten consecutive slices were

acquired in an interleaved fashion within two scans with five

slices and a slice gap of 8 mm each.

2.1.2 Cine-based motion tracking
The end-systolic frame of the cine images was manually

segmented using MeVisLab (MeVis Medical Solutions, Bremen,

Germany). Consecutive motion tracking of the mesh over the

cardiac cycle was performed. To this end, displacement fields of
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all imaged time-frames were estimated with a FEM-based image

registration approach (Genet et al., 2018; Berberoğlu et al., 2021).

Registration was performed with a dilated geometry to enable

feature tracking at the endo- and epicardial boundaries. Dilation

to obtain a boundary layer of 2–3 mm around the ventricle was

performed using GMSH (Geuzaine and Remacle, 2009).

The volume of the deformed left-ventricular (LV) geometries

was estimated by partitioning the endocardial surface, connecting

the surface nodes to the center of the basal plane, and calculating

the sum over all resulting tetrahedral elements using VTK

(Visulatization Toolkit, Kitware, Inc.). The volume was

evaluated at end-diastole (VED), diastasis (VD), and end-systole

(VES). The mesh was extracted at diastasis and re-meshed with

160,000 elements using GMSH to provide the initial configuration

of the simulation study. As depicted in the red box in Figure 1 II),

the volumes VED, VD, VES, and the left-ventricular length in

diastasis LD and end-systole LES served as inputs for model

personalization (Section 2.3.4). The length was calculated as the

Euclidean distance between the apex and the center of the base. LES
corresponds to maximal left-ventricular shortening.

2.1.3 Pressure measurements
The left-ventricular and aortic pressure were measured prior

to MRI in the surgical theater with an open pig tail catheter

FIGURE 1
Workflow of the data assimilation and personalization process for a left-ventricular biomechanics model of one porcine heart. I) (orange box)
Ventricular and aortic catheter pressure measurements are combined and smoothed. The diastolic pressure trace and themaximal systolic pressure
value are extracted to personalize a template pressure curve extracted from the underlying Living Heart Model (LHM), while keeping the duration of
diastole, systolic pressure increase, and pressure decrease of the template pressure curve constant. This pressure trace provides the
hemodynamic boundary condition for the simulation (orange input). II) (red box) The volume over the cardiac cycle is extracted from cine images
using tracking. The mesh extracted in diastasis is used as initial state for the simulation. End-diastolic and diastatic volumes are used to adapt the
passive model parameters by scaling the parameter A (purple) and to estimate an unloaded reference state. The end-systolic frame is used to adapt
the active model (green). The end-systolic volume is used to fit the maximal active tension parameter Tmax, the left-ventricular length of this frame is
used to adapt the parameter n, scaling the active stress contribution in sheet direction. III) (blue box) The predominant aggregated myocyte
orientation is measured with in-vivo cDTI in eight short-axis slices. Four interpolation techniques are applied to obtain a 3D fiber field on the 3D
mesh. The sheet direction is estimated to reach a diastolic E2A angle of 13°(Nielles-Vallespin et al., 2017). The biomechanics model uses the LHM
implementation (Baillargeon et al., 2014) of the passive orthotropic Holzapfel andOgden (Holzapfel andOgden, 2009)material model and the active
Guccione model (Guccione et al., 1995). The reference geometry is estimated by unloading the initial state using a suction problem and subsequent
loading to end-diastole. This procedure (purple arrows) is repeated while iterating over the passive material scaling (A). The volume after loading is
compared to the data at the loading condition of the initial diastatic pressure and at end-diastole. The sum of these volume errors serves as objective
function to identify the unloaded reference and passive scaling parameter estimates. The simulation over the cardiac cycle is performed starting from
the unloaded reference (black arrows).
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placed in the LV cavity and aorta, respectively, and connected to

an external pressure sensor. The reference pressure was

calibrated to the ambient pressure. The pressure was

measured over 30 cardiac cycles and retrospectively averaged.

Post-processing is depicted in Figure 1 Box I. The averaged

pressure traces were smoothed to damp oscillations. To correct

for uncertainties in the LV pressure due to strong oscillations

introduced by the valve motion, the aortic and ventricular

pressure curves were merged. While the aortic valve was open,

the aortic pressure values were considered to coincide with the

ventricular pressure, neglecting pressure gradients. To enable the

use of previously calibrated active model parameters (Walker

et al., 2005; Baillargeon et al., 2014), depending on the timing of

rapid pressure increase and systolic length, the pressure curve

was combined with a generic pressure curve. The diastolic

pressure trace and the value of the peak ventricular pressure

pmax were obtained from the pressure data and used to adapt a

generic pressure curve, subsequently applied as the

hemodynamic loading condition as outlined in Section 2.3.3.

2.1.4 In vivo cardiac diffusion tensor data
processing

In-vivo data processing was performed as previously reported

(Stimm et al., 2022). To summarize, residual spatial mismatch of

acquisitions with different b-values and diffusion encoding

directions due to ventilated breathing were compensated for

by non-rigid registration (Vishnevskiy et al., 2017). Then, the

diffusion tensor was solved for on a pixel-by-pixel basis inMatlab

(MathWorks, Inc.) inverting the system of linear equations using

the Moore-Penrose pseudo-inverse. The 2D short-axis images

were manually segmented between the apex and the base,

resulting in nine segmented short-axis slices. A corresponding

3D geometry was estimated using a marching cube algorithm in

MeVisLab (MeVis Medical Solutions, Bremen, Germany).

Physiological, shape-adapted coordinates with global

transmural, circumferential, and longitudinal coordinates and

local coordinate axes were calculated (Bayer et al., 2005, 2012;

Paun et al., 2017; Doste et al., 2019). To this end, a total of four

heat transfer problems with Dirichlet boundary conditions were

solved in Abaqus 2020 (Simulia, Dassault Systèmes). A steady

state analysis was performed such that the problem is equivalent

to the commonly applied Laplace equation (Bayer et al., 2018).

To obtain the transmural coordinates, the boundary conditions

were defined at the endocardial and the epicardial surfaces (endo:

t = 0, epi: t = 1). At the apex a transmural cylinder with a diameter

of 2 mm was defined. To obtain the longitudinal coordinates, a

second heat transfer problem was solved between the basal plane

(base: l = 1) and the apex cylinder (apex: l = 0). Then, two

boundary value problems were solved with boundary conditions

at the plane through the anterior intersection of left and right

ventricle and the apex, splitting the ventricle into two-halves. For

these two heat flux simulations, the transmural cylinder at the

apex was defined as an insulating material. The solution on both

halves of the LV were combined to obtain the circumferential

coordinates. Within the cylinder at the apex, cylinder coordinates

were used to define the local circumferential coordinates. The

vectors of all resulting heat flux fields in transmural, longitudinal,

and circumferential direction were re-orthogonalized and

correspond to the local coordinate axes. The global

coordinates were obtained from streamline tracking and

normalization to the maximal streamline length, similar to the

normalization by Paun et al. (2017). These coordinates were

calculated both on the geometries obtained from the cDTI data

and the initial geometry used for simulation from the cine data,

enabling to transfer the measured microstructure from cDTI data

onto the mesh used for simulation.

The diffusion tensor’s first eigenvector, corresponding to the

average cardiomyocyte long-axis orientation was calculated for

each voxel within the myocardium. To overcome the sign

invariance, it was ensured that the eigenvectors had a positive

circumferential orientation. The average cardiomyocyte long-

axis orientation corresponds to the primary symmetry-axis,

considered in the mechanical material model and termed fiber

direction in the following. Helix and transverse angles were

calculated with respect to the local coordinate system. The

helix angle was defined as the angle between the projection of

the fiber direction onto the longitudinal-circumferential plane

and the circumferential axis (Scollan et al., 1998; Stoeck et al.,

2018). If the fiber direction and the longitudinal axis point into

the same half-space, the value is positive, otherwise it is negative.

The transverse angle was defined as the angle between the local

circumferential axis and the projection of the fiber direction onto

the local transmural-circumferential plane (Scollan et al., 1998).

It is positive if the projection and the transmural axis point into

the same half-space.

2.2 Interpolation of in vivo average
cardiomyocyte long-axis orientation

We compared four interpolation methods to interpolate

sparse in-vivo cDTI data onto a fine 3D mesh used for cardiac

LV simulations: 1) one tensor interpolation approach using the

method proposed by (Toussaint et al., 2010, 2013) with shape-

adapted, heat flux coordinates (Section 2.1.4) (HFC), 2) and 3)

two low-rank models, extracted from ex-vivo data in a previous

work (Stimm et al., 2021) with adjustable parameters based on a

Proper Generalized Decomposition and Proper Orthogonal

Decomposition, respectively (PGD and POD), and 4) one

rule-based method, based on the work of Bayer et al. (2018),

which only considers the LV and adapts the parameters to the

data (RBM). All interpolation methods were based on the

physiological coordinates outlined in Section 2.1.4. The

interpolation error was approximated, as previously prescribed

in (Stimm et al., 2022), by first excluding one mid-ventricular

short axis slice from the cDTI data set, then interpolating the
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remaining data onto the coordinates of the excluded mid-

ventricular slice. Finally, we compared the interpolated fiber

vectors to the original cDTI’s first eigenvector within this

mid-ventricular slice and evaluated the absolute angular

difference.

2.2.1 Tensor interpolation (HFC)
The tensor interpolation approach is based on the work of

Toussaint et al. (2010, 2013). The cDTI tensors were transformed

into the local shape-adapted coordinate system. The interpolated

diffusion tensor Dapprox,j at location �xj is a weighted average of

the input tensors in a log-Euclidean framework:

Dapprox,j � exp
∑N

i�1wi,j log Di( )∑N
i�1wi,j

( ), (1)

with input tensors Di at all N data points with positions �xi, and

weights wi,j. To obtain the weights, an anisotropic Gaussian

kernel function was defined by a pre-computed weighting

matrix H ∈ R3x3, that depends on the sparsity, resolution, and

signal-to-noise ratio for the available data. This matrix was

optimized for the underlying setting of the input data based

on ex-vivo data in a previous study (Stimm et al., 2022) using a

least squares approach (Toussaint et al., 2013). The resulting

weights for each target position �xj depend on the distance dXi,j
⃗ �

�xj − �xi to the input data position �xi:

wi,j �
exp −dXT

i,j
⃗ H−2dXi,j

⃗( )���
2π

√ · det H( ) . (2)

The first eigenvector of the interpolated diffusion tensor was

calculated to obtain the interpolated fiber directions.

2.2.2 Ex-vivo data-driven low-rank models (PGD
and POD)

Two data-driven models of the LV fiber orientation have

been derived from ex-vivo data with an isotropic resolution of

0.5mm3 from eight porcine hearts in a previous publication

(Stimm et al., 2021). Basis functions characterizing the spatial

variation of fiber orientation were obtained and combined with a

set of weights, that can be used to adapt the models to new data.

To obtain the basis functions for both models, the

normalized fiber directions �f(t, c, l) ∈ R3, with | �f| � 1 at the

position of each voxel center with coordinates (c,t,l), were first

projected on the unit vectors in transmural ( �et), circumferential

( �ec), and longitudinal ( �el) direction, spanning the local

coordinate system ( �et, �ec, �el). This resulted in the fiber

projections fd(t, c, l) � �f(t, c, l) · �ed, with d ∈ {t, c, l}, such

that the fiber orientation is represented in the physiological,

local coordinate system �f(t, c, l) � ∑d∈t,c,lfd(t, c, l) · �ed. Then for
each projection ft (t, c, l), fc (t, c, l), and fl (t, c, l) independently, the

data was compressed by applying order-reduction techniques, 1)

a Proper Generalized Decomposition combined with a Singular

Value Decomposition for the PGD-model, or 2) a Proper

Orthogonal Decomposition for the POD-model. Basis

functions approximating the main spatial variation of fiber

orientation across individual microstructures were obtained.

Combining these basis function with adjustable weights

resulted in a model for each projection fd,PGD or fd,POD, with

d ∈ {t, c, l}. The final interpolated fiber direction is given by:

finterp
⃗ (t, c, l) � ∑d�t,c,lfd,model(t, c, l) · ed⃗, with fd,model ∈ {fd,PGD,

fd,POD}.

The PGD-model was obtained by first applying a Proper

Generalized Decomposition (Chinesta et al., 2011, 2014; Genet

et al., 2015) to each heart and fiber projection separately. This

results in a low-rank basis decomposition that approximates the

data for each individual heart:

fd, data one heart t, c, l( ) ≈ ∑NPGD�6

m�1
Fm t( ) · Gm c( ) ·Hm l( ), (3)

were the mth basis function is a product of three 1D functions

(Xm(v) = Fm(t), Gm(c), Hm(l) with v = t, c, l). These 1D functions

(Xm(v)) are discretized with piece-wise linear Galerkin basis

functions ΦX,k(v), such that Xm(v) � ∑NX
k�1ΦX,k(v) · aXm,k. The

degrees of freedom aXm,k are extracted with an iterative, greedy

algorithm minimizing the L2-distance to the data. The number of

degrees of freedom NX is: NF = 14, NG = 24, and NH = 10 in

transmural, circumferential and longitudinal direction, respectively.

In contrast to a tensor projection that discretizes the data withNF ·
NG ·NH � 3360 degrees of freedom, the PGD compresses the data

by extracting basis functions and therby reduces the number of

degrees of freedom to (NF + NG + NH) · NPGD = 288. In a second

step, the variations of these spatial basis functions across hearts are

extracted. To this end, first, the mean across all hearts of each

resulting 1D function Xm(v) within the PGD basis was subtracted

(fd,m,mean(v) for variable v ∈ {t, c, l} and themth PGD basis function

of projection d ∈ {t, c, l}). Subsequently, a Singular Value

Decomposition (SVD) of the 1D functions representing the

variations from the mean was applied. The SVD basis functions

fd,m,n(v) for variable v ∈ {t, c, l}, themth PGD basis function, and nth

SVDmode were obtained. For each projection d = t, c, l, a truncated

PGD basis with six modes, represented by a truncated SVDwith six

modes (Stimm et al., 2022), was included into the model:

fd;PGD t, c, l( ) � ∑NPGD�6

m�1
⎡⎣ ∏

v�∈ c,t,l{ }
⎡⎣ wv,m,mean · fv,m,mean v( )(

+ ∑NSVD�6

n�1
wv,m,n · fv,m,n v( ))⎤⎦⎤⎦. (4)

The weights wv,m,mean and wv,m,n were adapted to the first

eigenvector of the in-vivo cDTI tensor. To this end, a modified

Proper Generalized Decomposition was performed directly using

the previously derived SVD basis instead of the Galerkin basis.

The POD-model was extracted by applying a Proper

Orthogonal Decomposition (Buljak and Maier, 2011; Buoso

et al., 2019) directly across the hearts. To this end, the data

was mapped onto a common, equidistant grid with
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200 circumferential, 20 transmural, and 120 longitudinal points,

with discrete coordinates (ti, cj, lk), and: i = 1, ., 20; j = 1, ., 200; k =

1, . . . , 120. The data was sliced in slices with transmural normal

direction and flatted into vectors. All vectors of all transmural

positions and all hearts were combined into one matrix. A Proper

Orthogonal Decomposition was applied to extract the 2D POD

basis functions Φm(cj, lk). The basis was truncated at eight

modes (Stimm et al., 2022) and combined with adaptable

weights wm,ti, one for each discrete transmural coordinate ti
and POD mode m, resulting in the POD-model:

fd;POD ti, cj, lk( ) � ∑NPOD

m�1
wm,ti · Φm cj, lk( )( )[ ]. (5)

To adapt the weights to the sparse data, the same common

grid was reduced, such that it only contained the closest point to

each data point. A tri-linear interpolation of the data onto these

remaining grid points was performed. The weights wm,ti were

then obtained by applying a gappy POD (Willcox, 2006), only

taking the remaining data points into account.

2.2.3 Rule-based method (RBM)
The rule-based method is based on Bayer et al. (2012), but

was reduced to the LV only. It is based on rotations of the local

coordinate axis defined by the local helix and transverse angle of

the fiber direction. Two linear functions of the transmural

coordinate (t) define the local helix angle:

α t( ) � αendo · 1 − t( ) + αepi · t, (6)
and transverse angle:

β t( ) � βendo · 1 − t( ) + βepi · t. (7)

Instead of using fixed parameter values inferred from

observations from histology, the parameters αendo, αepi, βendo, and

βepiwere adapted to the in-vivo cDTI data. To this end, a least squares

fit of the two linear transmural functions was performed, one to the

helix and one to the transverse angle calculated from the in-

vivo cDTI.

2.2.4 Fiber and sheet orientation
To generate a microstructure representation with realistic sheetlet

orientation, for each of the four fiber models from in-vivo cDTI data,

the corresponding sheetlet directions were calculated to match a

physiological orientation measured by (Nielles-Vallespin et al., 2017),

characterized by the E2A angle. The sheet orientation was estimated

using the local fiber orientation and physiological coordinate axes,

such that a diastolic E2A angle of 13°(Nielles-Vallespin et al., 2017)

was obtained. The E2A angle was defined as the angle between the

projection of the sheet direction onto the cross-myocyte plane and the

cross-myocyte direction (Ferreira et al., 2014). The cross-myocyte

direction is the cross-product of the direction of the transmural axis

and the projection of the fiber direction onto the local longitudinal-

circumferential plane. The cross-myocyte plane is spanned by the

cross-myocyte direction and the local transmural axis.

2.3 Computational left ventricular model

The computational cardiac biomechanics model was adapted

from the Living Heart Human Project (version 2.1, Simulia,

Dassault Systèmes) (Baillargeon et al., 2014), previously used for

biomechanical simulation studies by (Genet et al., 2014; Sack

et al., 2016a,b; Genet et al., 2016; Sack et al., 2018b,a; Peirlinck

et al., 2018; Dabiri et al., 2018; Sahli Costabal et al., 2019; Dabiri

et al., 2019b,a; Peirlinck et al., 2021; Guan et al., 2020; Sack et al.,

2020; Dabiri et al., 2020;Wisneski et al., 2020; Heidari et al., 2022;

St. Pierre et al., 2022). The dynamic problem was solved in

Abaqus 2020 (Simulia, Dassault Systèmes) using meshes of the

LV with 160,000 linear tetrahedral elements with an average edge

length of 1.8 ± 0.5 mm. Four different models with varying

microstructure orientation (see Section 2.2.4) were set up and

the material parameters were adapted (see Section 2.3.4) for each

model, respectively.

The behaviour of the myocardium comprises a micro-

structurally motivated anisotropic passive response and an

active contribution due to active contraction, triggered by

electrical activation. The active stress only acts in fiber and

sheet direction and is zero in the other directions. The fiber

stress σf and sheet stress σs are given by:

σf � σpassive,f + Tactive
�f ⊗ �f,

σs � σpassive,s + σactive,s � σpassive,s + n · Tactive �s ⊗ �s,
(8)

with active tension Tactive (Eq. 12) and unit vectors in fiber �f

and sheet �s direction. The scaling factor n can take values

between 0 and one and scales the additional active stress acting

in the sheet direction. This additional cross-fiber stress is

motivated by the need to model the fiber dispersion

(Krishnamurthy et al., 2016). The fiber vector �f, defined by

the local predominant aggregated myocyte orientation, does

not take the variation of myocyte orientations within the

represented local region into account. The passive Cauchy

stress tensor σpassive is given by:

σpassive � 2J−1F F zΨ/zC( )FT, (9)

with strain energy density Ψ (detailed in Section 2.3.1), right

Cauchy-Green tensor C, deformation gradient F and its Jacobian

JF. In our model, we assume a synchronous ventricular activation.

This simplification is motivated by missing data on the

heterogeneously distributed electro-mechanical delays

(Kerckhoffs et al., 2003), a Purkinji fiber tree, and tissue

conductivity values.

2.3.1 Passive constitutive model
The hyperelastic, nearly-incompressible passive response was

represented by an isochoric strain energy ψic and a volumetric

contribution ψvol. The isochoric part was described by the

orthotropic Holzapfel-Ogden material model (Holzapfel and

Ogden, 2009):
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ψ ic �
A · aiso
2biso

exp biso IC1 − 3( )[ ] + ∑
i�f,s

A · ai
2bi

· exp bi I4i − 1( )2[ ] − 1( ) + A · afs
2bfs

exp bfsI
2
8fs[ ] − 1( ),

(10)
formulated in terms of the invariants (I) of the isochoric, right

Cauchy-Green tensor (�C � J−2/3F C, with right Cauchy-Green

tensor C and Jacobian of the deformation gradient JF) and

eight material parameters: aiso, biso, af, as, bf, bs, afs, bfs. The

linear parameters ai, with i ∈ {iso (isotropic), f (fiber), s (sheet), fs

(fiber-sheet)} have the unit of stress and the exponential

parameters bi are unitless. Initial values were taken from

(Peirlinck et al., 2019): aiso = 0.0943kPa, biso = 5.874, af =

0.311kPa, as = 0.0431kPa, bf = 11.271, bs = 9.772, afs =

0.0254kPa, bfs = 2.405. The linear scaling factor A was

introduced for personalization by Sack et al. (2018a); Peirlinck

et al. (2019), as outlined in Section 2.3.4. IC1 � �C: I is the

isotropic, isochoric strain invariant, I4f � �f
T�C �f and I4s �

�s
T�C �s reflect the transversely isotropic contributions in the

fiber and sheet directions and the orthotropic pseudo-

invariant I8fs � �f
T�C �s reflects the fiber-sheet interaction. The

volumetric part is modeled by:

ψvol �
1
D

J2F − 1( )
2

− log JF( )( ), (11)

with JF being the Jacobian of the deformation gradient and D

being the inverse multiple of bulk modulus (with bulk modulus K

and D = 2/K), set to D = 0.1 as the initial setting of the Living

Heart Human Project (version 2.1, Simulia, Dassault Systèmes)

(Baillargeon et al., 2014). This small value of D = 0.1 was chosen

to enforce nearly-incompressible behavior. This approach of

prescribing a small value of D to enforce nearly-

incompressibility has been previously applied in (Sack et al.,

2018a). A small mass proportional Rayleigh damping was used to

damp oscillations as in (Sack et al., 2018a). The damping

contribution was proportional to the mass matrix of each

element with damping factor of 160 [1/s]. The density was set

to 1.6 · 103[Kg/m3]. These settings were taken from the original

Living Heart Human Project model (Baillargeon et al., 2014).

2.3.2 Active model
The active stress (Eq. (12)) follows a time-varying elastance

model introduced by Guccione et al. (1995) as implemented in

(Walker et al., 2005). The active stress in the fiber direction

σactive,f is a function of the time after activation (t) and the fiber

strain (Eff).

Tactive t, Eff( ) � Tmax
Ca20

Ca20 + ECa250 Eff( )Ct t, Eff( ), (12)

ECa50 Eff( ) � Ca0, max��������������������
exp B l Eff( ) − l0[ ]( ) − 1

√ , (13)

Ct t, Eff( ) � 1
2

1 − cos ω t, Eff( )( )[ ]

with ω t, Eff( ) �
π · t

t0
if 0≤ t< t0

π · t − t0 + tr
tr

if 0≤ t0 ≤ t< t0 + tr

0 if t0 + tr ≤ t

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(14)

The parameter Tmax is the maximum of the developed

tension and acts as a contractility scaling factor. The function

ω(t, Eff) (Eq. 14) differentiates the three phases: increasing active

tension after activation, relaxation, and no active contribution

after relaxation. Within the time t0, the active tension follows a

cosine-shaped increase. The relaxation time is given by tr = ml +

b, a linear function of the sarcomere length l. The sarcomere

length l(Eff) � lr
��������
2Eff + 1

√
changes with fiber strain Eff and is

scaled by the initial sarcomere length lr. Consequently, the

function Ct (Eq. (14)) introduces the influence of the

sarcomere length on the duration of the contraction. The

length-dependent calcium sensitivity ECa50 is modeled by Eq.

(13), with parameter B relating the sarcomere length to the peak

tension and threshold sarcomere length l0 below which no force

develops. This representation of the calcium sensitivity includes a

switch, that is active if (l(Eff) − l0) is small, triggering a rapid

decrease of the active stress. If the switch is not activated, the

active stress decreases with a cosine-shaped relaxation curve. The

peak intracellular calcium concentration is given by the

parameter Ca0. The parameter values: Ca0 = 4.35 μmol/L,

Ca0,max = 4.35 μmol/L, B = 4750mm−1 (Walker et al., 2005),

l0 = 0.75 μm, and lr = 1.835 μm were taken from the Living Heart

Human Project (Baillargeon et al., 2014), the parameters t0,m, b,

and Tmax were adapted to the data, as outlined in Section 2.3.4.

2.3.3 Boundary conditions
Motivated by findings of Peirlinck et al. (2019); Asner et al.

(2017) that over-constraining the basal plane affects global

functional parameters and local strains, the geometric

boundary condition applied here allows for circumferential

and radial tissue motion at the base. The boundary condition

constraining the basal motion is defined in accordance to

(Peirlinck et al., 2019) (Case 5). All nodes within the basal

plane were constrained in the longitudinal direction and the

center of mass of the base was fixed in all directions. A

continuum distributed coupling constraint was used to couple

the average circumferential and radial displacements of the nodes

within the endocardial, basal ring to the fixed center of mass.

Consequently, this results in a zero average displacement of the

endocardial ring, while all other nodes within the basal plane

were only constrained in longitudinal direction.

The hemodynamic loading was represented by a pressure

loading condition prescribed at the endocardial surface over the

cardiac cycle. A generic left ventricular pressure curve was
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extracted from the original Living Heart Human Project model

(Baillargeon et al., 2014). This pressure curve was then adapted to

measured pressure values (Section 2.1.3) while keeping the

duration of the diastolic and the systolic part constant

(depicted in Figure 1, Box I). This compromise allowed us to

keep the parameters of the active material model, that are related

to the timing of increase in active tension constant and thereby

reduced the complexity of the active fitting problem. To merge

the generic and the measured pressure curves, the measured

diastolic pressure waveform was scaled in time to the duration of

diastole of the generic pressure trace. The systolic pressure

waveform of the generic pressure curve was scaled in

amplitude such that the peak pressure corresponds to the

maximal measured pressure pmax. The transitions between

diastole and systole were smoothed, and the waveform was

circularly shifted, such that the initial value corresponded to

the initial configuration in diastasis. The resulting pressure curve

is shown in Supplementary Figure S1.

2.3.4 Estimation of material parameters and
unloaded reference state

For each microstructural model, an unloaded reference state

as well as passive and active material parameters were

personalized using volume and length information of the LV

obtained from cine data (Section 2.1.2).

The initial mesh was obtained in diastasis, corresponding to a

mid-diastolic time-point (Shmuylovich et al., 2010) and a plateau

of the volume curve (Freytag et al., 2021). In early diastole, a steep

increase in volume was observed, while after diastasis, the volume

increased slowly. This suggests an influence of energy stored in

the myocardium in early diastole, compromising the use of the

end-systolic configuration and the configuration corresponding

to the minimal pressure as an initial configuration. However, the

pressure loading in diastasis required the estimation of an

unloaded reference configuration. Due to the influence of the

material parameters on the unloaded configuration (Nikou et al.,

2016a; Hadjicharalambous et al., 2021), a joint estimation is

required.

The initial passive parameters were taken from a study with

the same material model and basal boundary condition by

Peirlinck et al. (2019). One scaling factor A, scaling the linear

coefficients, was introduced in the passive material model (Eq.

10) and adapted in the fitting process. A second scaling factor B,

scaling the dimensionless tissue parameters (biso, bf, bs, and bfs),

previously used in (Sack et al., 2018a; Peirlinck et al., 2019) was

disregarded to increase the time-efficiency of the joint estimation

process. This simplification was motivated by findings of

Hadjicharalambous et al. (2015) demonstrating a good trade-

off between model fidelity and parameter identifiability for a

reduced Holzapfel model and fixed values of the dimensionless

parameters. The previous adaptation by (Peirlinck et al., 2019)

ensures a feasible initial choice, consequently B = 1.0 was used for

all simulations. This simplification was confirmed by an

additional parameter sweep for A and B using the model with

the HFC fiber field. This showed a strong correlation of an

increase in Awith a decrease in B and hence a small change in the

objective function along a diagonal region was observed in a

range of B ∈ {0.5, 0.75, 1.0, 1.25, 1.5} and A = 16, 17, 18, ., 46. Joint

adaptation of A and the unloaded reference geometry was

performed with a parameter sweep of A with a step size of

ΔA = 1.0. In each iteration, first a suction problem was simulated

to obtain an approximation of the unloaded reference. To this

end, a negative pressure ramp on the endocardium, with a

maximal absolute value of the pressure in diastasis, was

applied. Second, a forward simulation to end-diastole was

performed. Thereby, a linear pressure increase to diastatic

pressure followed by the end-diastolic pressure curve was

applied as the loading condition. During this forward

simulation, the volumes at the initial diastatic pressure

(VD,simulation) and at end-diastole (VED,simulation) were obtained

and compared to the initial volume in diastasis VD and the end-

diastolic volume VED extracted from the cine data. The objective

function (fobjective,p, Eq. 15) was defined as the sum of the absolute

errors:

fobjective,p � | VED,data − VED,simulation( )|
+| VD,data − VD,simulation( )| (15)

The personalized parameter A = Aopt and the corresponding

unloaded reference configuration were obtained at the minimum

of fobjective,p. The suction problem, as previously used in the Living

Heart Human model (Dassault Systèmes, 2018), was chosen to

approximate the inverse mechanics problem within only one

simulation, in order to reduce the computational complexity

compared to an iterative backward displacement method (Sellier,

2011). A further advantage of this approach is that it can be used

without changes to the FEM implementation. The forward

simulation with active part included an initial loading with a

linear pressure increase from the reference configuration to

diastasis and consecutively a cardiac cycle. The initial active

material parameters were taken from the Living Heart Human

Model (Dassault Systèmes, 2018). The parameters m and b, that

determine the relaxation time tr, and thus influence timing and

shape of the relaxation (Eq. 14), were adapted manually to the

pressure curve, in order to adapt the point in time when zero

activation is reached. This adaptation was required to account for

the longer duration of the pressure trace due to the initial loading

step and a simplified synchronous electrical activation compared

to the Living Heart Human Model (Dassault Systèmes, 2018).

The manual fit was performed with the RBM fiber field and the

resulting parameters were kept constant for all simulations (m =

300, b = −0.38). In accordance to previous works, the parameter

Tmax, scaling the active tension (Peirlinck et al., 2019), and the

scaling factor n, providing the active sheet contribution (Sack

et al., 2018a), were personalized to each model with varying fiber

definition. First, the parameter Tmax was adapted using

parameter sweeps with manual refinement, such that the end-
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systolic volume evaluated during early iso-volumetric relaxation

at a pressure value of p = 60 mmHg coincided with the value

extracted from the data (VES). Next, the parameter n was

optimized in a parameter sweep between n = 0.4 and n = 0.9

with a sampling distance of Δn = 0.05. The objective function,

defined as the absolute error between the data and the simulation

of the maximal left-ventricular shortening during the cardiac

cycle with respect to the configuration in diastasis, was

minimized. The left-ventricular length was defined as the

Euclidean distance between the apex and the center of the

base and extracted from each forward simulation. If the

minimum was located between two sampling points of the

parameter sweep, the optimal parameter nopt was

approximated by linear interpolation. The choice of the

objective function was motivated by the work of Sack et al.

(2018a) that also included this global metric related to

longitudinal strain into the fitting process of the active sheet

contribution.

2.4 Simulation study

We studied the sensitivity of the simulation output

depending on the underlying fiber field obtained from the

same in-vivo cDTI input, but, computed with different

interpolation and mapping methods with varying number of

degrees of freedom and varying smoothing strength. To exclude

the influence of the material parameters, for each model,

simulations with the optimal parameter setting of all other

models were conducted and compared. To evaluate the

simulation output, the volume over the cardiac cycle was

extracted and the pressure-volume relation (pV-loop) was

analyzed. Global physiological parameters: end-diastolic

volume (EDV), end-systolic volume (ESV), stroke volume

(SV), defined as the difference between EDV and ESV, and

ejection fraction (EF) were calculated. The circumferential,

radial, longitudinal, and fiber strains relative to the initial state

in diastasis were extracted. The median over the myocardium

during the cardiac cycle and the distribution within the

myocardium at peak systole were compared. The twist,

defined as the difference in rotation of apex and base, was

measured relative to the end-diastolic state.

3 Results

In Figure 2, the interpolation errors were compared for the

different in-vivo fiber models based on the leave-one-out

technique with a mid-ventricular short-axis slice of the cDTI

data as target (Section 2.2). Figure 2A shows the distributions of

the interpolation error. The median interpolation error is the

smallest for the HFC method (15.2°), followed by the PDG

(18.9°), and POD models (24.2°). The highest error is observed

for the RBM (34.0°). To assess the similarity of the fiber fields, the

distributions of the mutual differences are shown in Figure 2B.

The fiber field obtained from HFC is most similar to the fibers

obtained from PGD and vice versa. Both show smaller median

angular differences to the fiber field resulting from POD than

compared to RBM. Remarkably the difference in angle

distribution when comparing HFC to RBM is skewed with a

peak at the 25th percentile and a tail of higher difference angles

leading to a smaller overall spread. All other distributions have

outliers at higher difference values. When comparing the fiber

field of the POD model to the fibers from HFC and PGD, the

distributions are similar. A slightly higher difference is observed

when compared to RBMwith higher median and 75th percentile.

When comparing all fiber fields to RBM, the PODmethod shows

the largest degree of similarity with the smallest median and 75th

percentile.

Figures 2C,D show the histograms of the characteristic helix

and transverse angles from the four interpolated fiber fields

compared to the in-vivo data. The fibers obtained from the

HFC interpolation show the most similar distribution

compared to the data for negative helix angles. The positive

helix angles, corresponding to the subendocardial layer, are

underestimated by 41.7°/52.8% for the 95-percentile. The helix

angle distributions of the fiber fields, resulting from the PGD,

POD, and RBM models, underestimate high positive (for the

95th percentile by PGD: 47.3%/POD: 52.9%/RBM: 79.3%) and

negative (for the fifth percentile by PGD: 25.8%/POD: 16.5%/

RBM: 69.9%) helix angles. The fiber field from RBM has the

smallest spread in helix angle. The fibers from the POD model

have a bias towards negative helix angles with a negative median

of −10.2°. For all other interpolated fiber fields, the negative bias is

smaller, with medians between −1.6° and −3.6°. The data has a

small imbalance towards positive values with a median of 4.3°. As

depicted in Figure 2D, the spread of the transverse angle

distribution is smaller for all interpolated fiber fields

compared to the data, with the histogram of the RBM model

showing the smallest spread. The shape of the distribution is

most similar to the data for the HFC-model and PGD-model, and

more similar for the POD-model than the RBM-model.

Figure 3 shows the objective function (yellow line) of the joint

estimation of the passive scaling parameter A and the unloaded

reference configuration (outlined in Section 2.3.4), evaluated in a

parameter sweep of A, between Alb = 20 and a variable upper

boundary between 35 and 50, adapted to the stiffness of the

model. The two contributions to the objective function are

shown: the volume error at the initial diastatic pressure

during inflation (inflated/gray line) and the volume error in

end-diastole (ED/black line). The volume error, corresponding to

geometry at the initial diastatic pressure during inflation,

decreases for all models with increasing stiffness (increasing

A). The volume error for end-diastole shows a minimum in

the range of investigated values for A. The resulting optimal

passive stiffness scaling factors A are listed in Table 1.
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FIGURE 2
Analysis of the interpolated fiber fields from in-vivo cDTI data obtained with the four interpolation methods: the direct tensor interpolation
method using heat flux coordinates (HFC) in red, the low rankmodel estimation based on Proper Generalized Decomposition (PGD) in violet, the low
rank model estimation based on Proper Orthogonal Decomposition (POD) in blue, and the rule-based method adapted to the data (RBM) in green.
Subplot (A) shows the absolute angular error distribution and median value for the in-vivo interpolation experiment. The in-vivo cDTI data is
interpolated to a previously excludedmid-ventricular short-axis slice and compared to themeasured cDTI data. Subplot (B) analyses the distributions
of the mutual angular difference between the resulting interpolated fiber fields. The reference fiber field is noted as label on the horizontal axis.
Subplots (C,D) depict the distributions of the helix and transverse angle obtained from the data (gray) and the interpolated fiber fields.

FIGURE 3
Objective function (sum; yellow) of the joint estimation of the passive material parameter and unloaded configuration, together with the single
volume error contributions as function of the passive scaling parameter A. The ventricular volume of the simulation results is compared to the
volume obtained from cine MRI data at the configuration inflated to the initial pressure (inflated; gray) and at the end-diastolic configuration (ED;
black). Each subplot shows the result of the parameter sweep for one interpolated fiber field obtained by the four compared methods: HFC,
PGD, POD, and RBM. The vertical lines indicate the optimum.

TABLE 1 Personalized passive and active tissue parameters (A, Tmax) and the active contribution in sheet direction (n) for the fourmodels with different
fiber orientation obtained by the four interpolation methods: HFC-model, PGD-model, POD-model, and RBM-model.

optimized parameter HFC-model PGD-model POD-model RBM-model

passive scaling factor (A) 38 35 29 29

active tension scaling factor (Tmax)[MPa] 0.105 0.109 0.08 0.071

active contribution in sheet direction (n) 0.68 0.7 0.76 0.7
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The optimized scaling factor of the active tension Tmax is

listed in Table 1. The mutual differences show the highest

similarity in personalized Tmax between HFC-model and

PGD-model, followed by POD-model, and RBM-model.

Figure 4 depicts the personalization of the active tension in

sheet direction (n). The gray line depicts the maximal LV

shortening obtained from the CINE data. The black line

shows the maximal LV shortening in the simulation as a

function of the parameter n. The yellow line corresponds to

the objective function, defined as the absolute difference of the

maximal long axis shortening between simulation and data. The

simulated maximal LV shortening decreases monotonically with

increasing n. Small values of active sheet contribution,

underestimate absolute shortening, while high values lead to

an overestimation of absolute shortening. The optimal values of n

are listed in Table 1.

Figure 5 shows the pressure-volume relations of the forward

simulation starting in diastasis, after prior inflation from the

unloaded reference configuration. The four subplots correspond

to the four parameter configurations obtained from

personalization to the four fiber models. For each parameter

setting, simulations with all four models, were performed. No

sharp isovolumetric contraction is present but rather an

indentation of the pv-loop is found. This non-physiological

behaviour is related to an imbalance of the increase in

pressure and active tension and observed for all models and

parameter configurations. The decrease in volume directly after

the end-diastolic state is less pronounced for Settings three and

four obtained from personalization to the POD-model and RBM-

model. In each subplot, the pressure-volume loops are similar for

all four models. Their mutual similarity is highest between the

HFC-model and the PGD-model and between the POD-model

and the RBM-model. The end-diastolic volume (EDV) shows

only small differences (below 3 ml) between the models within

each setting. The highest EDV is observed for the HFC-model,

followed by PGD-model, POD-model, and RBM-model. The

EDV for POD-model, and RBM-model are similar with

differences < 0.2 ml. The order corresponds to the decrease of

the personalized stiffness scaling parameter A. For all parameter

configurations, the smallest end-systolic volume at the beginning

of isovolumetric relaxation is observed for the RBM-model,

followed by slightly higher values for POD, HFC and PGD

FIGURE 4
Objective function (yellow) of the fitting procedure of the parameter that scales the active contribution in sheet direction (n), which is given by
the difference between data and simulation outcome of the maximum of the left ventricular shortening during the cardiac cycle with respect to the
initial configuration in diastasis. The maximum of the left ventricular shortening as a function of the parameter n is shown, for the data (gray) and the
simulation output (black), together with their absolute difference (yellow). The optimized parameter value resulting in the smallest absolute
shortening error is indicated by the vertical line. Each subplot shows the results of the parameter estimation for one interpolated fiber field obtained
by the four compared methods: HFC, PGD, POD, and RBM. The subtitles indicate the previously adjusted parameter values of the passive (A) and
active (Tmax [MPa]) scaling factors.

FIGURE 5
Simulated pressure-volume relation for the four different
parameter settings shown in the four subplots. Each parameter
settings was optimized to one interpolated fiber field obtainedwith
the four compared methods: 1) HFC, 2) PGD, 3) POD, 4) RBM.
For each parameter configuration (subplot) the pV-loop for all four
interpolated fiber fields are depicted. The marker indicates the
diastatic state, i.e. the initial state of the simulation.
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model, with differences ≤7 ml or < 13%. The order by increasing

end-systolic volume corresponds to the order by increasing active

tension scaling factor Tmax, obtained from personalization. The

same order applies to the stroke volume and ejection fraction (2).

The global physiological parameters, minimal ESV, EDV, SV and

EF are listed in Table 2. The maximal variation between the

models for each parameter settings is < 6 ml (equivalent 8%) for

SV and ≤ 5 percentage points (equivalent 9%) for EF. A high

similarity of the global physiological parameters, resulting from

the models simulated with their individually optimized

parameter setting, is observed with maximal variation of

1.3ml (equivalent 1.8%) in SV and 0.9 percentage points

(equivalent 1.6%) in EF.

Figure 6 shows an example time course of circumferential,

radial, longitudinal, and fiber strain during the cardiac cycle,

starting in diastasis. The strain values are relative to the diastatic

state. The presented traces of all fiber models are exemplary for

the parameter setting personalized to the HFC-model and are

similar in shape for all other parameter settings. During diastole,

all strains show only small changes within the first 400 ms after

diastasis, corresponding to a plateau in the pressure curve. In late

diastole, at the time point t = 400 ms the pressure starts to

increase and reaches the end-diastolic pressure (EDP) at t =

514 ms. In parallel the circumferential, longitudinal, and fiber

strain increase and the radial strain decreases. The end-diastolic

median strains averaged over the models are: circumferential:

0.029, radial: 0.060, longitudinal: 0.038, fiber: 0.023, with a

maximal variation between the models smaller than 0.005 for

all strains. After end-diastole, during the steep pressure increase,

a spike in all strain curves is observed and is most pronounced for

the circumferential strain. Similar to the indentation of the pV-

loop during iso-volumetric contraction, this behaviour is

attributed to the imbalance of active tension and pressure

increase (see Figure 5). This spike is followed by rapid

decrease in circumferential, longitudinal, and fiber strain, and

rapid increase in radial strain, corresponding to systolic

TABLE 2 Simulated global physiological parameters: minimal end-systolic volume (ESV), end-diastolic volume (EDV), stroke volume (SV), and ejection
fraction (EF). Each was evaluated for all four models: HCF, PGD, POD and RBM obtained from simulations with all four parameter configurations.

HFC-model PGD-model POD-model RBM-model

parameter setting HFC: A = 38, Tmax = 0.105 MPa, n = 0.68

EDV [ml] 131.8 130.8 129.2 129.2

ESV [ml] 58.2 59.8 55.5 53.2

SV [ml] 73.5 70.9 73.7 76.0

EF [%] 55.8 54.2 57.0 58.9

parameter setting PGD: A = 35, Tmax = 0.109 MPa, n = 0.7

EDV [ml] 132.5 131.5 129.8 129.9

ESV [ml] 56.7 58.4 54.1 51.9

SV [ml] 75.7 73.1 75.7 78.0

EF [%] 57.2 55.6 58.3 60.1

parameter setting POD: A = 29, Tmax = 0.08 MPa, n = 0.76

EDV [ml] 134.2 133.1 131.4 131.5

ESV [ml] 61.6 61.7 58.7 56.8

SV [ml] 72.5 71.4 72.8 74.6

EF [%] 54.1 53.6 55.4 56.8

parameter setting RBM: A = 29, Tmax = 0.071 MPa, n = 0.7

EDV [ml] 134.2 133.1 131.4 131.5

ESV [ml] 64.6 64.0 61.2 59.3

SV [ml] 69.6 69.1 70.2 72.2

EF [%] 51.9 51.9 53.5 54.9
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contraction. During relaxation and subsequent early diastolic

pressure increase, the circumferential, longitudinal, and fiber

strain decrease and radial strain increases to the initial

configuration with zero strain relative to diastasis.

Figure 7 shows the peak systolic strain distributions, clipped at

the 5th and 95th percentile, for the circumferential, radial,

longitudinal, and fiber strains relative to the initial diastatic

state in the four subplots. Each subplot depicts the simulation

results obtainedwith all four personalized settings, indicated by the

numbers on the horizontal axis. For each setting, the distributions

of the simulated strains are shown for all models with the different

fiber fields (HFC-model in red, PGD-model in violet, POD-model

in blue, RBM-model in green). When comparing the results

between the models, the same trends exist for all settings,

however, an offset of the strain values between the settings is

observed. Also the same variation between the models in the

spread of the distributions is observed for all settings.

For the circumferential strain, shown in Figure 7A, the

spread of the distribution is wider for the HFC-model and the

PGD-model than for the POD-model and the RBM-model. The

absolute median strain value is the smallest for the PGD-model,

followed by smaller absolute strains for the HFC-model, the

POD-model, and RBM-model. This order coincides with the

order of decreasing value of Tmax obtained during

personalization. The same order, with lowest absolute strain

for the PGD-model and highest for the RBM-model, is

present for the radial strains as shown in Subplot (B). The

median strain values are more similar, when comparing the

models with their individually personalized setting (HFC-

model/PGD-model/POD-model/RBM-model: circumferential:

0.12/-0.12/-0.12/-0.13; radial: 0.57/0.58/0.59/0.56;

Supplementary Figure S2). For the longitudinal strain, shown

in Subplot (C), the absolute median value of the HFC-model is

slightly higher than for the PGD-model. Lower absolute values

FIGURE 6
Simulated strain curves over the cardiac cycle, starting from the initial state in diastasis for all models with the four different fiber fields, obtained
by the compared interpolation methods (HFC: red, PGD: violet, POD: blue, and RBM: green) and simulated with one exemplary parameter setting
optimized for the fiber field interpolated with the HFC method. The subplots show the median of the circumferential, radial, longitudinal, and fiber
strain over the myocardium, relative to the inflated state in diastasis.
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are obtained with POD-model, and RBM-model. For the

personalized settings for each model, the RBM-model also

results in the smallest absolute median value (HFC-model/

PGD-model/POD-model/RBM-model: longitudinal: 0.15/

−0.16/−0.16/−0.14). For the median absolute fiber strain,

shown in Subplot (D), the highest value is observed for the

RBM-model, followed by the HFC-model, the POD-model, and

the PGD-model. The spread between the 25th and 75th

percentile is the smallest for the RBM-model, followed by a

slightly higher spread for the HFC-model, higher spread for the

POD-model, and largest spread for the PGD-model. The fiber

strain with the personalized setting, respectively is: HFC-model/

PGD-model/POD-model/RBM-model: 0.16/−0.14/−0.14/−0.15.

In Figure 8, the twist relative to end-diastole is shown.

Figure 8B depicts the twist over the cardiac cycle starting

from the initial diastatic time point. Figure 8A shows the

corresponding peak twist in systole corresponding to the

time point of 675 ms after diastasis. In Figure 8B, the four

subplots correspond to the four parameter settings obtained by

personalization to the four models. The vertical lines indicate

end-systole and correspond to the settings illustrated in Subplot

(A). For all parameter settings the HFC-model results in the

highest end-systolic twist (at t = 675 ms), followed by the twist

of the PGD-model. The POD-model and RBM-model result in

similar twist as the PGD-model for Setting one and lower twist

for the other settings at t = 675 ms. When comparing the twist

of the models simulated with their personalized settings, the

trend remains (twist: HFC-model: 7.4°; PGD-model: 6.4°; POD-

model: 5.3°; RBM-model: 5.3°; Supplementary Figure 2S). A

variation of the shape of the twist curve over the cardiac cycle

and the value of the twist in end-systole is observed between the

settings. When analyzing the change of twist over time in

Subplot (B), for all settings, first untwist is observed between

diastasis and end-diastole. The decrease in twist in end-diastole

(the reference frame for twist calculation) occurs parallel to the

EDP increase. This is followed by an oscillation at t = 535 ms.

Subsequently, 575 ms after diastasis, during the pressure

plateau and ejection, a steep increase in twist is observed

with clockwise rotation of the base and counter-clockwise

rotation of the apex. At the peak of the clockwise rotation of

FIGURE 7
Distribution of the simulated strains in systole, cropped at the 5th and 95th percentiles. The subplots correspond to the circumferential (A),
radial (B), longitudinal (C), and fiber (D) strain at the end-systolic time-point assigned to the peak radial strain. Each subplot shows four strain
distributions (one for each interpolated fiber field) for four different parameter settings (labeled on the x-axis), respectively. The parameter settings
are obtained by optimization with one interpolated fiber field: 1) HFC, 2) PGD, 3) POG, 4) RBM. Round markers indicate the median, horizontal
lines indicate the fifth,25th,75th, and 95th percentile.
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the base, a distinct spike in twist is present for the POD-model

and RBM-model and less pronounced for the PGD-model and

HFC-model at the t = 625 ms. Subsequently, twist further

increases for the PGD-model and HFC-model, until the

maximal apical counter-clockwise rotation is reached at the

time point 675 ms after diastasis, corresponding to the end of

the pressure plateau. This time point is marked by a vertical

gray line and evaluated in Subplot (A). For the POD-model and

RBM-model, this further end-systolic twist is not observed for

Setting four and also not observed for the RBM-model with

Setting 3.

4 Discussion

We provide a workflow to equip a biomechanical left-

ventricular model with individual microstructure from in-vivo

cDTI data and have demonstrated for the first time, that

integration of individual fiber orientation from sparse in-vivo

cDTI data in a personalized model is feasible. Four methods with

varying fidelity, different amount of smoothing strength, and

representation error were applied to bridge the gap between

sparse in-vivo data and the full field required for computational

simulations. The sensitivity of simulation outputs to the

interpolation method, was quantified. To this end, the

physiological parameters (EDV, ESV, SV, and EF), global

strains, systolic strain distribution, and ventricular twist were

compared. The models with different data-based fiber fields were

personalized based on MRI data, the effect on the personalized

parameters of the model was shown and remaining differences in

simulation outputs were evaluated.

For all four parameter settings, the differences in simulation

results between the four fiber models follow the same systematic

trend. This indicates that these variations in simulation results

arise from the fiber representation (maximal difference were:

EDV: 2.1%; ESV: 12.5%; SV: 7.2%; EF: 8.7%; median strains:

circumferential: 37.4%; radial: 8.4%; longitudinal: 15.0%; fiber:

22.9%). The trend between the fiber models and the pair-wise

similarity (between HFC-model/PGD-model and between POD-

model/RBM-model) is correlated with the error introduced by

the interpolation model. This suggests, that the error in the fiber

representation is propagated to the simulation output and

introduces a systematic bias.

The personalization of the material parameters, scaling the

stiffness of the myocardium (A), maximal active tension (Tmax),

and dispersion (n), showed a dependency on the choice of fiber

interpolation method. The parameter values differ significantly

between the microstructural models with a maximal increase of

31% for A, 53.5% for Tmax, and 11.8% for n. This dependence of

stiffness and stress on the fiber orientation has been previously

FIGURE 8
Twist relative to end-diastole. Subplot (A) shows the twist in end-systole at 675 ms after the initial state in diastasis, for the four parameter
settings listed on the horizontal axis and marked by vertical, gray lines. Each setting was obtained by parameter optimisation with one interpolated
fiber field (with interpolation methods: HFC (red), PGD (violet), POD (blue), and RBM (green)). For each setting, simulations with each fiber field,
obtained by the four interpolation methods, were performed. The resulting twist is indicated by the 4 markers for each parameter setting. In
Subplot (B), the twist over the cardiac cycle is shown. Each Subplot (1–4) corresponds to one parameter setting (optimized to: 1: HFC, 2: PGD, 3:
POG, 4: RBM), respectively. All plots show the twist for each interpolated fiber field. The gray vertical lines indicate the time point evaluated in
Subplot (A).
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observed by Wang et al. (2013). The variation in parameter

values for different interpolation methods hinders comparability

of model parameters to physical quantities measured in

laboratory experiments (e.g. stiffness or active tension) and

moreover requires consideration when comparing modelling

studies (e.g. active fiber stress). The parameters not only

reflect the physical tissue property but also act as auxiliary

parameters to compensate for inaccuracies in the underlying

fiber representation. The similarity of the parameters A and Tmax

between the HFC-model and the PGD-model is correlated to the

highest similarity in the interpolated fiber field providing the

smallest interpolation errors compared to the data. The POD-

model and RBM-model, both result in higher difference angles

compared to the data and lower parameter values. This trend and

separation into two groups is the same as observed in the

simulation outputs when keeping the parameter setting

constant. ESV, median circumferential, and radial strain

follow the trend of the resulting personalized Tmax. EDV

follows the resulting personalized stiffness scaling A.

The analysis for all parameter settings reveals a systematic

bias due to the underlying fiber interpolation method. However,

in practice the parameters are optimized to the fiber field. This on

the one hand results in differences in the personalized parameters

and on the other hand in remaining effects on the simulation

output. After personalization of each model individually, the

differences in median strain values were reduced to:

circumferential: ≤ 10.1%; radial: ≤ 3.9%; longitudinal: ≤
13.8%; fiber: ≤ 17.7%. Differences in the distribution of the

fiber strain were observed. A smaller spread of the

distribution is present for the HFC-model and the RBM-

model compared to the PGD-model and POD-model,

resulting from the smoother microstructure representation.

Due to the personalization with objective functions including

the EDV and ESV (evaluated during relaxation at a pressure of

60 mmHg), the remaining variation in SV and EF are small (SV:

1.3ml/1.8%; EF: 0.9 percentage points/1.6%) and can be

attributed to minor volume changes during relaxation

(Supplementary Figure S2). Compared to literature values all

models resulted in circumferential, longitudinal, and fiber strains

within a physiological range. (The average median strains were:

circumferential: 0.1475, radial: 0.575, longitudinal: 0.153, fiber:

0.148.) Literature values of global strains from porcine studies

are: circumferential: 0.17/−0.14/−0.14/−0.15; longitudinal:

0.1675/−0.17/−0.11/−0.13; radial: 0.435/0.65/0.21/0.39 from:

(Stoeck et al., 2021): (cine SSFP, mean value)/(Berberoğlu

et al., 2022) (cine SSFP)/(Ferreira et al., 2018) (DENSE MRI,

mean value)/(Verzhbinsky et al., 2020) (DENSE MRI, median

value)), and fiber strain: 0.14 from (Verzhbinsky et al., 2020)

(combined DENSE and cDTI). It is noted that a small

underestimation compared to the literature values is expected

due the difference in the reference configuration: The strains

were referred to mid-diastole for this simulation study and end-

diastole for the data. The simulated radial strain is higher than

three out of four literature values, thus, it might be overestimated

in the simulation. However, the literature values of radial strain

are subject to a high variation, corresponding to high uncertainty

in the data. Furthermore, different approaches for strain

estimations, e.g., 2D vs. 3D, are found in literature.

All models underestimated twist (HFC-model/PGD-model/

POD-model/RBM-model: twist = 7.4°/6.4°/5.3°/5.3°,

corresponding to a maximal torsion of 0.15°/mm, obtained

with the HFC-model), compared to literature values measured

by 3D tagging with CSPAMM (Rutz et al., 2008) in pigs: twist:

11.05°(Berberoğlu et al., 2022); torsion: 0.27°/mm (Stoeck et al.,

2021) averaged over all measurements and all healthy animals. In

contrast to twist, torsion excludes the bias of heart size (Young

and Cowan, 2012) and is calculated by the ratio of the twist and

the end-diastolic ventricular length. The HFC-model led to the

highest end-systolic twist, closest to physiological values,

followed by the PGD-model and lower values for the POD-

model and the RBM-model. This trend agrees well with the

interpolation error of the models and unlike other physiological

readouts is not compensated by personalization based on volume

and LV length data. Similarly, higher twist with a more realistic

representations of microstructure has been observed by Gil et al.

(2019). Comparing the temporal course of twist during the

cardiac cycle to a healthy physiological curve shape (Rüssel

et al., 2009; Omar et al., 2015), the twist obtained with the

HFC-model and the PGD-model have a more physiological

shape, showing less pronounced non-physiological oscillations

and spikes during isovolumetric contraction and early systole

than the POD-model and the RBM-model. For both, HFC-model

and the PGD-model twist increased during ejection after the

maximum counter-clockwise rotation of the base and a peak in

twist at end-systole is observed as found in physiology. Contrary,

the POD-model and RBM-model showed a drop in twist after the

early-diastolic spike.

The tensor interpolation method (HFC) corresponds to the

smallest interpolation error. It exploits the high spatial coherence

of the tensor field in shape adapted coordinates. For optimal

performance this method requires the adaptation of the

weighting matrix H for the anisotropic Gaussian kernel

according to the spatial resolution and coverage of the input

data. The two low-rank models (PGD and POD) are based on

basis functions that were extracted from high-resolution data.

This prior information results in a lower degree of flexibility to

represent the input data compared to the direct tensor

interpolation. The PGD model uses independent basis

function in each spatial direction and thus better adapts to

the input data compared to the POD model. This results in a

smaller interpolation error with the PGD model than with the

PODmodel. The rule-basedmethod is a simple linear model with

only four degrees of freedom. Thus, it over-smooths the fiber field

and results in the highest interpolation error. The computational

cost to generate the personalized fiber fields was: HFC: 21s, PGD:

34s, POD: 18s, RBM: 2s. Times were measured on an eight-core
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Intel Core i7-10700K, 3.79 GHz desktop computer. The times are

three orders of magnitude smaller than the simulation time:

HFC: 4 h 39 min, PGD: 4 h 42 min, POD: 4 h 32 min, RBM: 4 h

38 min. The standard deviation of 4.2 min between the

simulations for the four models is negligible compared to the

total simulation time and no differences in stability were present.

This study has shown the feasibility of personalization of

microstructure in a biomechanical model based on a pre-clinical

animal experiment with cDTI data including nine short-axis

slices. In a more clinical setting, three slices are currently

acquired (Khalique et al., 2020, 2018; Gotschy et al., 2021).

While full coverage and isotropic spatial resolution are

desirable for biomechanical modelling of the heart, cDTI in

clinical practice suffers from long scan duration (Nguyen

et al., 2020), which is being addressed as part of ongoing

imaging research (Nguyen et al., 2021). Due to a steep, non-

linear error increase for less than five short-axis slices for all

interpolation methods Stimm et al. (2022) (average error increase

from nine to three slices in an ex-vivo experiment: HFC: 4.6°/

PGD: 10.6°/POD: 5.2°/RBM: 0.2°), further development in clinical

data acquisition is required. When applying the interpolation

approaches presented in this study to clinical data, an additional

uncertainty in the simulation results would be present due to this

error increase for less than five short-axis slices. However, the

tensor interpolation method (HFC) remains the interpolation

method with the smallest interpolation error also with three

input slices (with an advantage of a 6.7°smaller error compared to

the rule-based method (RBM) on average (Stimm et al., 2022)).

In this study, we showed that a systematic bias in the simulation

results was introduced by the interpolation method and that a

correlation of the trend with the increase in interpolation error

exists. Combining these two observations of 1) the smaller

interpolation error that was observed for the HFC method

and 2) the systematic bias of the simulation outputs, we

expect a reduction in the bias of the simulation results when

using the HFC method also with clinical data. However, the

overall higher interpolation error increases the uncertainty

compared to the pre-clinical setting and the difference in

interpolation performance between the methods deceases in

the clinical setting thus the bias is expected to be smaller. To

reduce the uncertainty for patient-specific simulations based on

clinical in-vivo cDTI data, advancements in clinical DTI that

would enable a minimum of five input slices are required.

In-vivo cDTI studies have observed a reorientation of

microstructure in pathology, such as dilated cardiomyophathy

(DCM) (von Deuster et al., 2016a), hypertrophic

cardiomyopathy (HCM) (Ferreira et al., 2014; Das et al.,

2022) and aortic stenosis (AS) (Gotschy et al., 2021). Patient-

specific modelling based on a patient-specific microstructure

enables to perform modelling studies investigating the link

between structure and function of the heart. This can improve

the understanding of the mechanical conditions that lead to

structural remodelling, and consequently disease progression.

Remodelling might onset in an early disease state (Gotschy et al.,

2021) and therefore early biomarkers can be revealed by

investigation of remodelling. Together with future advances in

both in-vivo cDTI and patient-specific modelling based on

clinical data predictive modelling is a future goal.

Systematic trends of the simulation results were observed

between the fiber models, when using the same model

parameters. The correlation of this systematic bias with the

interpolation performance suggests that a more realistic

representation of in-vivo microstructure affects the

simulation output and therefore reduces the uncertainty in

the simulation results. This suggests that using the

interpolation method with the lowest interpolation method

(HFC tensor interpolation) leads to the simulation results

with the lowest uncertainty. The higher twist observed with

the HFC-model, remaining present after personalization,

further supports that models profit from more realistic

representation of microstructure.

5 Limitations

In this study, we have investigated the dependence of model

behaviour on interpolation errors and compared the results to

cohort values. The study concentrated on the isolated bias

introduced by the representation method to personalize the

model using in-vivo cDTI data. The direct comparison to

patient-specific physiological measurements is currently not

feasible. Results would be biased by model inaccuracy, due to

simplifications, such as neglecting the influence of the right

ventricle and data uncertainty (e.g. for radial strain and

consequently fiber strain estimation) on the individual basis.

Further, the improvement compared to a generic fiber

representation was not evaluated, which would require a

cohort study with enough cases to represent the fiber

variability across the population. In pathology, microstructural

remodelling is observed (Ferreira et al., 2014; von Deuster et al.,

2016a; Gotschy et al., 2021), consequently the variability of

structure increases, rendering patient-specific microstructure

more important.

The personalized microstructure, based on in-vivo cDTI

data, is subject-specific, but both, the data acquisition and the

interpolation techniques introduce errors. The error of the first

eigenvector of the in-vivo diffusion tensor, induced by the

measurement, can be estimated with the cone of uncertainty

(Aliotta et al., 2018). Aliotta et al. (2018) estimated an

uncertainty of 15.5°(human data). We estimated an

uncertainty of 11.3°in our previous work (Stimm et al., 2022)

for porcine data, which was equivalently used in this study. The

interpolation error calculated on a mid-ventricular slice was:

HFC: 15.2°, PDG: 18.9°, POD: 24.2°, RBM: 34.0°. Sensitivity

studies by Geerts et al. (2003); Pluijmert et al. (2017) have found

that a difference angle of 8°already influences the simulation
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output. Consequently, the error minimization by using a HFC

representation compared to a RBM representation has an effect

on the simulation results, as was confirmed in this study. The

analyzed interpolation error reflects the difference angle to the

measurement, that is subject to noise and imaging artifacts.

Consequently, denoising by smoothing or by exploiting prior

information included in the fiber models, also contributes to the

measured angular difference. The interpolation performance of

the models has been evaluated in detail in (Stimm et al., 2022),

presenting an average interpolation error of: HFC: 13.7° ± 1.1°,

PGD: 17.8° ± 5.2°, POD: 19.0° ± 3.3°, RBM: 24.8° ± 6.0°in-vivo.

Thus, the interpolation error of the underlying case is slightly

above the average error for all methods. The number of degrees-

of-freedom of the data-based models (PGD and POD) was

adapted to ex-vivo data Stimm et al. (2021). Optimization in an

in-vivo study might increase denoising and result in smoother

microstructure representation, thereby, potentially reducing

the spread of the strain distributions. All methods were

adapted based on all data points, however, the endo- and

epicardial boundaries were subject to partial-volume effects,

resulting in higher uncertainty of these data points. Further,

segmentation errors, in the proximity of the papillary muscles

at the endocardium, might have influenced the errors at the

boundaries. This resulted in wider spread of the helix and

transverse angles in the data. This spread is reduced by

denoising effects of the interpolation. Although, over-

smoothing has the same effect, it reduces the spread of the

helix and transverse angle distributions of the interpolated fiber

representations too radically. Adaptation of the fitting such that

it only uses data in areas not prone to partial voluming and

segmentation errors, might reduce the representation error,

especially for the RBM-method with only four degrees of

freedom. While the HFC-model resulted in a globally more

heterogeneous microstructure than the RBM-model, both

result in smoother fiber representations than the PGD-model

and POD-model. This might be a reason for the more narrow

distribution of the fiber strain found in this study.

The patient-specific model used in this work contains

simplifications, influencing the accuracy of the simulations.

While right-ventricular deformation and pressure influence

left-ventricular mechanics (Palit et al., 2015), a LV only model

was used in this study because in-vivomicrostructure is currently

not available for the thinner right-ventricular wall. Further, the

surrounding of the heart was modeled by a boundary condition

constraining the base as proposed by Peirlinck et al. (2019).

Adding a ribcage and pericardial boundary condition can

improve model accuracy (Pfaller et al., 2019; Ponnaluri et al.,

2019; Strocchi et al., 2020; Hadjicharalambous et al., 2021).

However, both, neglecting influences of the RV and the

surrounding are expected to result in a consistent offset of the

simulation results, not affecting the isolated influence of the

microstructure representation, analyzed in this study. Due to a

steeper increase in ventricular pressure compared to the active

tension, during isovolumetric contraction, a non-physiological

change in volume has been observed. The pressure trace was

generated based on subject-specific in-vivo measurements and is

inconsistent to the cosine-shape active tension resulting from the

active model of the living heart framework. The strong

hemodynamic constraint of a fixed pressure trace leads to a

challenging, if even possible, active parameter fitting problem. An

alternative, would be a lumped-parameter model, however,

resulting in an idealized pressure trace not directly

representing the measured pressure. Another data-driven

alternative would be to incorporate the active parameter as

Lagrange multipliers in the model implementation, while

including both, pressure and volume measurements as model

inputs (Asner et al., 2016; Miller et al., 2021). This option is,

however, not part of the Living Heart Human model. Therefore,

the results during isovolumetric contraction were not evaluated

in this study and physiological parameters were calculated from

the volume corresponding to the EDP and not from that

corresponding to maximal volume.

The twist, given by the relative rotation of apex and base,

was evaluated and follows a physiological behaviour.

Nevertheless, a remaining net counter-clockwise rotation of

the left ventricle was observed at the end of the simulation of

one cardiac cycle, related to the missing constraint of the

moments. Constraining the average moments of the base to

zero on the contrary would prevent basal rotation and thus

affect twist. A potential way to compensate the net rotation

would be to constrain the average moments to the average

moments of the data (Asner et al., 2017).

Linear tetrahedral elements were used in this study to

simulate the nearly-incompressible material. Despite the

small element size counteracting potential inaccuracies,

this might introduce locking and thus an artificial

stiffening and torsional rigidity (Maas et al., 2016).

Therefore, a potential way to mitigate the underestimation

of twist for all compared models could be the use of quadratic

tetrahedral elements.

6 Conclusion

We have demonstrated that cardiac simulations based on in-

vivo fiber orientation obtained from cDTI can be performed. We

outlined four methods to include patient-specific, in-vivo

microstructure in a cardiac computational model. The same

trend in simulation outputs for all parameter settings was

observed and found to coincide with the interpolation precision

and accuracy. A decrease in interpolation error was correlated with

more physiological twist and higher material stiffness. This

suggests that errors in the fiber representation propagate to the

simulation results and introduce a systematic bias in the model

outcome. To reduce the added fiber uncertainty by the

interpolation method, and thereby the bias of the simulation
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result, the tensor interpolation method (HFC) is the best choice,

despite the remaining bias due to the data uncertainty.
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SUPPLEMENTARY FIGURE S1
Pressure trace of the forward simulation during one cardiac cycle,
starting at the initial diastatic state. This pressure corresponds to the
loading condition on the endocardial surface applied upon linear
inflation.

SUPPLEMENTARY FIGURE S2
Personalized model outputs for the HFC-model (with Setting 1) in red,
PGD-model (with Setting 2) in violet, POD-model (with Setting 3) in blue,
and RBM-model (with Setting 4) in green. (A) shows the circumferential,
radial, longitudinal, and fiber strain distributions (similar to Figure 7), (B)
shows the pV-loops, with a marker indicating the initial state (similar to
Figure 5), and (C) shows the twist over the cardiac cycle. The vertical
black line in (C) marks the end-systolic time-point where peak twist is
evaluated (similar to Figure 8).
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