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Acousticelectric brain imaging (ABI), which is based on the acoustoelectric (AE)

effect, is a potential brain function imaging method for mapping brain electrical

activity with high temporal and spatial resolution. To further enhance the quality

of the decoded signal and the resolution of the ABI, the decoding accuracy of

the AE signal is essential. An adaptive decoding algorithm based on Fourier

fitting (aDAF) is suggested to increase the AE signal decoding precision. The

envelope of the AE signal is first split into a number of harmonics by Fourier

fitting in the suggested aDAF. The least square method is then utilized to

adaptively select the greatest harmonic component. Several phantom

experiments are implemented to assess the performance of the aDAF,

including 1-source with various frequencies, multiple-source with various

frequencies and amplitudes, and multiple-source with various distributions.

Imaging resolution and decoded signal quality are quantitatively evaluated.

According to the results of the decoding experiments, the decoded signal

amplitude accuracy has risen by 11.39% when compared to the decoding

algorithm with envelope (DAE). The correlation coefficient between the

source signal and the decoded timing signal of aDAF is, on average, 34.76%

better than it was for DAE. Finally, the results of the imaging experiment show

that aDAF has superior imaging quality thanDAE, with signal-to noise ratio (SNR)

improved by 23.32% and spatial resolution increased by 50%. According to the

experiments, the proposed aDAF increased AE signal decoding accuracy, which

is vital for future research and applications related to ABI.
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1 Introduction

The monitoring of neurological conditions such as

epilepsy especially for neuro-intensive care, depression, and

brain-computer interface (BCI) control using brain

spontaneously or evokedly electrical activity is prevalent

(Cao et al., 2018; Xu et al., 2018; Panwar et al., 2019).

Since 1924, electroencephalography (EEG), which uses a

hundred or fewer electrodes to measure electric potentials

generated by the brain on the scalp surface, has been used to

detect brain electrical activity (Grover and Venkatesh 2016).

Voltage is recorded using incredibly sensitive surface

electrodes. EEG has a constrained spatial resolution,

though. High temporal and spatial resolution non-invasive

imaging of electrical activity is still difficult to accomplish.

Confirm brain electrical activity, high-density

electroencephalography (hdEEG), for instance, with

256 electrodes, is a supplementary and non-invasive

neurophysiology method. The aim of electrical source

imaging is to locate the sources of scalp EEG signals within

the brain by resolving an ill-posed inverse problem.

Furthermore, hdEEG is still fundamentally constrained by

an inadequate spatial resolution (Hedrich et al., 2017). It is

essential to develop a method with high performance that

enables direct mapping of electrical activation in order to

better comprehend these brain disorders, make more accurate

diagnoses, and operate BCI with precision.

With high temporal and spatial resolution, acoustoelectric

(AE) imaging, which is based on the AE effect, has the ability to

map biological current densities directly. Focused ultrasound

can change the resistivity at the focal spot leading to the AE

effect, a type of physical interaction between the acoustic and

electrical fields. For electrolyte solution (Fox et al., 1946;

Jossinet et al., 1998; Jossinet et al., 1999; Lavandier et al.,

2000a; Lavandier et al., 2000b; Li et al., 2012) and tissue

(Song et al., 2017) respectively, its mechanisms have been

studied. Bench-top experiments have demonstrated the

viability of using AE imaging to map biological current

Wang et al., 2011, and the parameters, such as frequency

and pulse shape, are optimized (Qin et al., 2012). Besides

that, heart is used in vivo investigations (Qin et al., 2015;

Berthon et al., 2019). And, a highly sensitive ultrafast AE

imaging system is included (Berthon et al., 2017). A

potential application for AE imaging, subsequently, is the

selective mapping of lead currents using DBS device (Preston

et al., 2018). In 2017, the concept of Acoustoelectric brain

imaging (ABI) was introduced, which expressly refers to the

measurement of brain electrical signal via ABI. A pulse

repetition frequency (PRF) coding technique for ABI is be

researched in 2020 (Zhou et al., 2020), then.

The AE signal, which retrieved from recored EEG signal, is

directly proportional to current density and sensitive to the

direction of current flow. Therefore, the AE signal could be

used to reconstruct the current source density image, and then

realize the reconstruction of the activation source in the human

brain. Time-space resolution in ABI result is affected derectly by

the decoding accuracy of AE signals. Because ABI is a novel brain

imaging technique, the decoding algorithm used in it is still

envelope algorithm based on Hilbert transform. The basic work

of early AE imaging decoded with envelope algorithm (Song

et al., 2019; Zhou et al., 2019). Zhou et al., in 2020, conducted the

first multi-source acoustoelectric imaging experiment (Zhou

et al., 2020), which adopted algorithm based on the envelope

function to decode the AE signal. For the first time, ABI decoded

the Steady state visual evoked signal in the brain of a living mouse

and also exploited the envelope algorithm to decode the AE

signal (Song et al., 2021). Since the brain contains a sea of

neurons that fire simultaneously, the frequency and amplitude

properties of these many current sources are complex, the

current decoding algorithm for the AE signal needs to be

optimized and improved to improve imaging quality for

practical application.

In this experiment, we designed a recent algorithm, an

adaptive decoding approach based on Fourier fitting (aDAF),

to improve the decoding accuracy of the AE signal, and verified

the feasibility of the algorithm in the phantom experiment and

then compared the performance of the classic algorithm (DAE).

In addition, imaging experiments claim that the new algorithm

markedly improves the spatial resolution of the ABI. The

comprehensive performance demonstrates the innovation and

superior performance of the aDAF in ABI decoding. Therefore,

the application potential of ABI in the field of clinical diagnosis

and brain-computer interface is enhanced.

2 Materials and methods

2.1 Acoustoelectric brain imaging

Based on AE effect, ABI is a novel neuroimaging approach.

When ultrasound travels through biological tissue, the conductivity

modulation brought on by acoustic pressure. The conductivity

modulation by acoustic waves were calculated as follows:

1
Δσ

� 1
σ0

KΔP (1)

Where σ0 is the initial conductivity and Δσ is the changed

conductivity, ΔP is the acoustic pressure and then K is a

constant of interaction that value is on the order of 10–9 Pa−1

in a 0.9% NaCl solution (Jossinet et al., 1998). A lead is a group of

two electrodes. Lead field refers to the sensitivity distribution of a

lead. The lead field and the current flow field that results from

applying a unit current to the lead are identical (Malmivuo and

Plonsey, 1995; Song et al., 2019; Zhou et al., 2019; Zhou et al.,

2021). According to lead field theory, the voltage Vi measured by

lead i is:
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Vi � ∫∫∫ 1
σ

Ji
L · JI( )dxdydz (2)

Where JiL represents the lead field and JI � JI(x, y, z) represents
source current density.

The distribution of conductivity changes when an ultrasonic

wave travels through biological tissue, and the resulting

conductivity distribution is:

1
σ
� 1
σ0

+ 1
σ0

KΔP (3)

Substituting (3) into (2), the resulting voltage satisfies:

Vi � Vi
AE + Vi

LF (4)
Vi

LF � 1
σ0

Ji
L · JI( )dxdydz (5)

Vi
AE � 1

σ0
KΔP Ji

L · JI( )dxdydz (6)

Where Vi
LF represents the low-frequency (DC-10 kHz) content

of Vi while Vi
AE represents the high-frequency (MHz) AE signal

(Olafsson et al., 2008).

The AE signal at the focal point can be derived, according to

(6). Since the location of the focal point is determined,

millimeter-focused ultrasound can sift an AE signal having

good spatial resolution and positional accuracy. ABI can

create images with spatial resolution limited to the ultrasound

focus after scanning the relevant areas of the brain and collecting

the decoded AE signal.

2.2 Decoding algorithm with envelope

In the research of ABI, the Decoding Algorithm with

Envelope is frequently utilized (Qin et al., 2012; Qin et al.,

2015; Berthon et al., 2017; Preston et al., 2018; Berthon et al.,

2019; Zhou et al., 2020; Zhou et al., 2021). The theory (Zhou

et al., 2019) stipulates that the AE signal is first converted into

an analytical signal. In the construction of analytic signal, the

high frequency components of the actually recorded signal

were taken as the real part, and the result from which the real

part have been done Hilbert transform were taken as the

imaginary part.

x̃ t( ) � x t( ) + jx̂ t( ) (7)

where x̃(t) is the constructed analytic signal from the AE

signal, x(t) is AE signal, x̂(t) is the result from which the AE

FIGURE 1
(A) Schematic of experimental setup. (B) Detail of the chamber.

FIGURE 2
Experimental design for decoding performance evaluation.
(A) Is the 1-source diagram. (B) is the 2-source diagram. (C) is the
3-source diagram. S+ is the positive electrode placement position.
R is the recording electrode placement position. S- is the
negative electrode placement position.
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signal have been done Hilbert transform. The AE signal

contains both amplitude and phase information. And it can

be expressed as:

x t( ) � A t( ) cos ω0 + θ t( )( ) (8)

Substituting (8) into (7) leads to:

x̃ t( ) � A t( ) cos ω0 + θ t( )( ) + jA t( ) sin ω0 + θ t( )( ) (9)
x̃ t( )
∣∣∣∣∣ ∣∣∣∣∣ � A t( )| | (10)

Where |A(t)| is the envelope of the AE signal, and the decoding

result of DAE.

2.3 Adaptive decoding algorithm based on
Fourier fitting

Towards the aim of further extract the frequency and

amplitude characteristics of the source signal, an adaptive

decoding algorithm based on Fourier fitting (aDAF) is

developed. The aDAF includes two steps. Firstly, the

envelope of AE signal is divided into multiple harmonics

by Fourier fitting. Then, Harmonic component is adaptively

selected by the least square method, which is the largest

contribution to envelope.

2.3.1 Fourier fitting
Fourier fitting can get the frequency characteristics of the

original signal in time sequence. Any periodic function can be

expanded into an infinite series of trigonometric functions

(Guillén et al., 2007; Smetanin et al., 2020). The envelope

signal contains periodic information of low frequency source

signal. And the envelope signal |A(t)| can be expanded by

trigonometric function. Taking n as sample length, |A(t)| can
be extended to (−∞,+∞). In interval [−n

2,
n
2] , the fitting value of

|A(t)| , |A(t)1| can be expressed as the sum of a series of

harmonics whose frequency is multiplied (Gonzalez et al.,

2002), and the number is not more than n
2.

A t( )1
∣∣∣∣ ∣∣∣∣ � a0 +∑m

i�1
μi sin iw0t + θi( ) (11)

Where a0 is the DC component, and m (m � int n2 ) represents
the harmonic number. μi is twice the amplitude of each harmonic

component. ω0 is the fundamental frequency of each harmonic

(ω0 � 2π
n ). θi is the initial phase angle of each fundamental

frequency. Expand formula 11 to get formula 12:

A t( )1
∣∣∣∣ ∣∣∣∣ � ∑m

i�0
aicosi

2π
n
t + bisini

2π
n
t (12)

Where ai ( ai � μi cosθi ) is the amplitude of each harmonic

cosine component, and bi ( bi � μi sin θi ) is the amplitude of

each harmonic sinusoidal component.

2.3.2 Least square method
The least square method is a mathematical optimization

technique (Björck et al., 1990). It finds the best functional

match of data by minimizing the square sum of errors. Using

the least square method to determine the coefficients of |A(t)1|:

∑n
i�t

ei| |2 �∑n
i�t

A t( ) − A t( )1
∣∣∣∣ ∣∣∣∣2 (13)

Where ei is the fitting error. Minimizing the sum of squares of ei
in Eq. 13.

Taking the∑n
i�t|ei|2 partial derivative of ai and bi respectively,

and setting the value of the partial derivative to zero. Using the

orthogonality of trigonometric function. The following results

can be obtained:

a0 � 1
n
∑n
i�1

A t( )| | (14)

ai � 2
n
∑n
i�1

A t( )| | cos i 2π
n
t (15)

bi � 2
n
∑n
i�1

A t( )| | sin i 2π
n
t (16)

c2i � a2i + b2i (17)

2.4 Experimental device setup

The experimental apparatus applied in this study is shown in

Figure 1. The chamber was repleted with 0.9% NaCl solution. As

an acoustic window, a 3M Transparent Film (Tegaderm™,
United States) was fastened to the base of the chamber.

According to Figure 1A, the triggering device is an ultrasonic

pulser/receiver (Olympus model 5077P. JP) with a repetition rate

of 1 kHz. An ultrasonic transducer (Olympus, A392S, 63.5 mm

focal length) with a single element operating at 1 MHz generates

focused ultrasound. An electronic signal generator (RIGOL

DG4162) produces the current source for research. The z-axis

FIGURE 3
Experimental design for the imaging experiment. S+
represents the placement position of positive electrodes. Gray
represents the focal spot of ultrasound. The yellow area indicates
2-source scanning point area. And the green area indicates 3-
source scanning point area.
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is the direction in which an ultrasonic wave travels, and the x-y

plane is mechanically scanned by the ultrasonic transducer. With

the purpose of giving the rise to a dipole field, 0.9% NaCl solution

was poured over two platinum electrodes (S+, S-). The recording

electrode (R) was employed to detect the AE signal. The AE

signal was acquired and amplified by SynAmps2 system

(Neuroscan, United States), and sampling rate was 20 kHz.

2.5 Experimental design

Three experiments with various features, including a single

source with various frequencies, a pair of sources with various

frequencies and amplitudes, and a three source with various

frequencies were implemented for the experiment of decoding

performance evaluation.

FIGURE 4
The decoded timing signal results for the 1-source with different frequencies, including (A) 8 Hz, (B) 10 Hz and (C) 13 Hz. The injected low
frequency current signal (Vi). Detected AE signal (Vae) with an amplifier. Decoded result of DAE (DAE). Decoded result of aDAF (aDAF).
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2.5.1 1-Source with different frequencies
The diagram for the 1-source experiment is shown in

Figure 2A. A pair of stimulation electrodes were submerged in

saline for the 1-source experiment. The anode source is the

precise focus of the ultrasonic transducer. Three groups of 1-

source studies at various frequencies, such as 8 Hz, 10 Hz, and

13 Hz, were conducted. Along with that, matching AE signals are

measured.

FIGURE 5
The decoded frequency spectrum results for multi-source with different frequencies, including (A) 2-source and (B) 3-source. In (A), Black and
red curve represent the spectrum corresponding to S1+ (7 Hz) and S2+ (13 Hz) respectively. In (B), Black, blue and red curve represent the spectrum
corresponding to S1+ (7 Hz), S2+ (10 Hz) and S3+ (13 Hz), respectively.

FIGURE 6
Imaging result of the 2-source with (A) DAE and (B) aDAF (hot colors, 5-dB dynamic range).
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2.5.2 2-Source with different frequencies and
amplitudes

The diagram for the 2-source experiment is shown in

Figure 2B. In saline water, two sets of stimulation

electrodes were submerged. To measure the AE signal, the

focused ultrasound is first focused on one anode, S1+. The

concentrated ultrasound is then focused on anode S2+, where

the AE signal is measured. The frequencies of S1+ and S2+

were set in saline water for the experiment with two sources

with different frequencies and the same amplitude (100 mV).

Two groups of experiments with the same frequency were

created for the experiment with two sources of varying

amplitudes (10 Hz). The signals amplitudes of two source

in the first group experiment were 100 mV (S1+) and

50 mV (S2+), respectively. In another group experiment,

the amplitudes of the two source signals were 150 mV

(S1+) and 50 mV (S2+), respectively.

2.5.3 3-Source with different frequencies
The 3-source experiment diagram is depicted in Figure 2C. In

saline, three sets of stimulation electrodes were submerged. Three

anodes (S1+, S2+, and S3+) were focused on by focused

ultrasound, which measures the corresponding AE signal. The

frequencies of S1+, S2+, and S3+ were 7 Hz, 10 Hz, and 13 Hz,

respectively, with the same amplitude (100 mV).

Imaging experiments, including 2-source and 3-source

imaging experiments, were carried out to test the decoding

performance further.

2.5.4 2-Source imaging experiment
The 2-source scanning zone is the yellow area (10 × 5 focal

spots) in Figure 3. The ultrasonic transducer scanned a distance

of 9 mm (x = −9 mm ~ 0 mm) along the x direction in steps of

1 mm, generating a total of 10 focus spots. It scanned 4 mm in the

y direction (y = −2 mm ~ 2 mm), producing a total of 5 focal

points. Anode sources S1+ (−8 mm, 0 mm) and S2+ (−2 mm,

0 mm) were separated by 6 mm. The recording electrode was

situated halfway between the two anode sources

(−5 mm, −7.5 mm). Not in the scanning area were the

corresponding cathodes S1- (−8 mm, −15 mm), and S2-

(−2 mm, -15 mm). The sources had an amplitude of 100 mV

and a frequency of 10 Hz.

FIGURE 7
Line profiles of the decoded signal along the white dashed lines m, n1 and n2 marked in (A) along line m, (B) along line n1, (C) along line n2.
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2.5.5 3-Source imaging experiment
The 3-source scanning region is shown by the green area

(24 × 5 focal spots) in Figure 3. The transducer scanned an

area of 23 mm in the x direction (x = 0 mm–23 mm), resulting

in a total of 24 focus points. And it scanned 4 mm in the y

direction (y = 2 mm–2 mm), producing a total of 5 focal

points. Anode sources S1+ (5 mm, 0 mm) and S2+ (13 mm,

0 mm) were separated by 8 mm. Furthermore, there was a

6 mm spacing between anode sources S2+ (13 mm, 0 mm) and

S3+ (19 mm, 0 mm). The three anode sources were arranged

in a triangle, with the recording electrode (12 mm, −7.5 mm)

in the center. S1- (5 mm, -15 mm), S2- (13 mm, -15 mm), and

S3- (19 mm, −15 mm) cathodes, respectively, were not in the

scanning area. The sources had an amplitude of 50 mV and a

frequency of 10 Hz.

2.6 Signal processing

The obtained original signal was, first, down sampled at a

rate of 5 KHz. After that, a third-order band-pass filter was

exploited to filter the down sampled signal, the filtering range

was between PRF-30 Hz and PRF+30 Hz. The filtered AE

signal was decoded by applying DAE and aDAF to

compare the performance the two had. The associated

matrix of the decoded signal was interpolated at 0.01 to

reconstruct the ABI in accordance with the known focal

point coordinate. Decibels were put to use in the signal-to-

noise ratio (SNR) calculation. The following is an expression

for the SNR calculation formula:

SNR � 10 log10
signal

noise
( ) (18)

3 Results

3.1 Decoding results

3.1.1 1-Source with different frequencies
Figure 4 displays the results of the decoded timing signal

from 1-source at various frequencies (8 Hz, 10 Hz, and 13 Hz).

FIGURE 8
Line profiles of the decoded signal along the white dashed lines m, n1, n2 and n3 marked in (A) along line m, (B) along line n1, n2 and n3.
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It could be determined that the decoded timing signal of the

aDAF contained the same frequency and phase information as

the source signal for the 1-source with 8 Hz (Figure 4A).

Additionally, the source signal had a positive correlation

with the corresponding amplitude. The DAE decoded result

were represented by the blue curve. The source signal and the

decoded timing signal of DAE exhibited a positive correlation

amplitude characteristic of the overall trend. But, the decoded

timing signal fluctuated, and its frequency and phase were

different from those of the source signal, as indicated by the

green arrows. The correlation coefficient here between the

source signal and the decoded result of the aDAF is 0.99 in

digits. And there was a 0.79 correlation coefficient between the

original signal and the decoded DAE result. The correlation

coefficient of aDAF raised by 25.31% when compared to DAE.

It was plain that aDAF was more efficient for decoding AE

signals.

The results of 1-source with 10 Hz and 13 Hz decoding

served to further substantiate the findings. It was seen in

Figures 4B,C, the decoded timing signal of aDAF could

characterize the frequency, phase, and amplitude details of

the source signal more precisely than DAE. The correlation

coefficients of aDAF and DAE for the single source at 10 Hz

were 0.99 and 0.62, respectively. The correlation coefficients

of aDAF and DAE for the single source at 13 Hz are 0.99 and

0.83, in both. So, the average correlation coefficient of aDAF

for the three frequencies was 34.76% stronger than that of

DAE. The results of this experiment confirmed that aDAF

could extract the valid features of the source signal more

efficiently than DAE.

3.1.2 Multi-source with different frequencies
The frequency spectrum, which was determinded by

adopting FFT, of the decoded results for the multiple

sources with various frequencies was shown in Figure 5.

Figures 5A,B respectively displays the findings of the 2-

source and 3-source experiments. The results of the aDAF

were shown by the solid line. And the decoded DAE findings

were shown by the dotted line. The black curve in Figure 5A

displayed the frequency spectrum related to S1+ (7 Hz). It

was evident that the decoded signal for both aDAF and DAE

exhibited an apparent high amplitude response at 7 Hz,

which was compatible with the frequency of S1+. The

frequency spectrum related to S2+ is shown by the red

curve (13 Hz). The decoded signal of aDAF and DAE had

a proper high amplitude response in the frequency range of

13 Hz, which was consistent with the frequency of S2+. At

the same time, it was clear that for aDAF, the high amplitude

FIGURE 9
Imaging result of the 3-source with (A) DAE and (B) aDAF (hot colors, 5-dB dynamic range).
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response only arised at the frequency of the source signal and

that its amplitude was nearly zero at the frequency of the

non-source signal. Although the source signal frequency for

DAE had the strongest amplitude response, there was

amplitude response interference at the non-source signal

frequency. In contrast to DAE, the decoded result of

aDAF had a frequency spectrum that was devoid of

interference and could accurately retrieve the frequency

information of the source signal.

A 3-source experiment was implemented to further validate

the aDAF performance. The high amplitude responses for DAE

and aDAF were both visible at the relevant source signal

frequency, as shown in Figure 5B. While the spectrum result

of DAE is impacted by other non-source signal frequencies, the

spectrum result of aDAF was almost totally unaffected by

interference. Results from trials using multiple sources at

various frequencies showed that aDAF can distinguish the

frequency feature more clearly than DAE.

3.1.3 Multi-source with different amplitudes
Two groups of multi-source experiments with various

amplitudes are carried out to further examine the

performance of aDAF. The amplitude ratio (V1/V2) for

the first group was set at 2. And the decoded signal from

DAE had an amplitude ratio of 1.60, while from aDAF it was

1.82. The amplitude accuracy of the decoded signal from

aDAF was 13.75% better than that of DAE. The amplitude

ratio (V1/V2) was then adjusted to 3 for the second

group. DAE decoded the signal at an amplitude ratio of

3.32, while aDAF decoded the signal at an amplitude ratio

of 3.02. The decoded signal of aDAF had an improved

amplitude accuracy of 9.03% over DAE. The results of

multi-source studies with various amplitudes show that

aDAF could decode the amplitude characteristic more

aptly. When compared to DAE, aDAF provides an average

increase in amplitude accuracy of 11.39%.

3.2 Imaging results

3.2.1 2-Source imaging result
The 2-source imaging outcomes of employing the decoded

AE signal are exhibited in Figure 7. The imaging with DAE is

in Figure 6A, and Figure 6B shows the imaging with aDAF. It

can be noticed that the two sources can be separated for both

the imaging of DAE and aDAF. With the same dynamic range

(5 dB), the imaging of aDAF can clearly locate the source

position, while the imaging of DAE has artifacts. The SNR of

the imaging adopting aDAF was 18.61 dB, in digits, and other

has a SNR of 15.16 dB, the former is 22.75% higher than the

latter.

The white dashed lines m, n1, and n2 indicated in Figure 6

were utilized to display the line profiles of the decoded signal

in Figure 7. The sources positions in the x direction could be

detected along line m at x = −8 mm and x = −2 mm with a

strong signal. The position of sources in the y direction along

lines n1 and n2 can be determined with a strong signal at y =

0 mm. With the −3 dB peak of the decoded signal, the source

width of aDAF is 0.5 mm in both x and y directions.

Additionally, the source width of DAE was 1 mm in both

the x and y directions with the decoded signal of −3 dB peak.

The imaging resolution of aDAF is 50% higher than that of

DAE. In terms of the imaging resolution, then, aDAF is twice

that of DAE.

3.2.2 3-Source imaging result
The imaging outcomes for the 3-source imaging

experiment are displayed in Figure 8. As can be seen, for

both DAE (Figure 8A) and aDAF (Figure 8B) images, all three

sources can be clearly distinguished. Marked with blue circles,

the SNR of the imaging with aDAF was 20.96 dB, which was

greater than that with DAE of 16.92 dB. The SNR is boosted

for the 2-source and 3-source imaging results by an average of

23.32%.

Figure 8 displays the line profiles of the decoded signal along

the white dashed lines m, n1, n2 and n3 marked in Figure 9.

Along line m, the sources positions in the x direction can be

located with strong signals at x = 5 mm, x = 13 mm and x =

19 mm. Along lines n1, n2 and n3, the sources positions in the y

direction can be located with a strong signal at y = 0 mm. With

the −3 dB peak of the decoded signal, the source width of aDAF is

0.5 mm in both x and y direction. And, with the −3 dB peak of the

decoded signal, the source width of DAE is 1 mm in both x and y

directions. Compared with DAE, the imaging resolution of aDAF

is also improved by 50%, which is consistent with the result of 2-

source imaging.

4 Conclusion

The spatial resolution and decoding precision of ABI have a

tangible improvement by applying the algorithm we suggested,

giving the rise to advancements in the field of neural imaging.

The greatest harmonic component adaptive selection and

multiple harmonics decomposition of the AE signal envelope

are also outstanding advantages of the aDAF, which is critical for

applications in both clinical severe cases, especially for

emergency-cases and brain computer interface of next-

generation.
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