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Flumethrin is a widely used acaricide, but its improper use often leads to residue

accumulation in honeybee colonies, thus threatening the health of honeybees,

especially at the larval stage. Therefore, this study aimed to describe the direct

toxicity of flumethrin on honeybee (Apis mellifera) larvae by conducting bioassays

for immune and detoxification-related enzymes and transcriptome sequencing to

determine the potential effects on newly emerged adults who were exposed to

flumethrin during the larval stage. Results showed that the higher the concentration

of flumethrin the honeybee larvae were exposed to, the greater the damage to the

physiology of honeybee larvae and the newly emerged worker bees. When

honeybee larvae were exposed to flumethrin concentrations higher than

0.01mg/L, the activities of glutathione sulfur transferase and carboxylesterase

were affected, and the metabolism-related genes in the head of newly emerged

honeybees exposed to flumethrin during the larval stage were down-regulated.

Flumethrin concentration higher than 0.1mg/L significantly increased mixed-

functional oxidase content in honeybee larvae, reduced the larval survival rate,

and down-regulated the expression levels of olfactory-related and antioxidant-

related genes in newly emerged honeybees. Furthermore, a flumethrin

concentration of 1mg/L significantly down-regulated the expression levels of

immune and detoxification-related genes in newly emerged honeybees. These

findings provide a comprehensive understanding of the response of honeybee

larvae to sublethal flumethrin toxicity and could be used to further investigate the

complex molecular mechanisms in honeybees under pesticide stress.
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1 Introduction

The honeybee is a very important pollination insect (Kevan et al., 1990). It has huge

economic value in global agriculture and plays an important role in maintaining

ecological diversity (Potts et al., 2010). The Varroa mite is one of the most

threatening pests in apiculture, causing huge economic losses to apiculture worldwide
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(Ghasemi et al., 2011). In honeybee colonies, Varroa mites

damage the health of honeybees by sucking the fat and

hemolymph from honeybee larvae and adults (Ramsey et al.,

2019). At present, acaricides, such as flumethrin, are commonly

used to control Varroa mites. Flumethrin is a second-generation

pyrethroid insecticide used against Varroa mites through

application within honeybee hives. Its main insecticidal

mechanism is to delay the closure of ion channels and

interfere with the normal physiological functions of the

nervous systems of insects (Lund and Narahashi, 1981),

causing symptoms such as excitement, convulsions, spasms,

and even death (Catterall, 2001; Soderlund et al., 2002;

Raymond-Delpech et al., 2005; Shafer et al., 2005). Flumethrin

kills the mites but also affects the health of honeybees. When

insecticides are used according to the manufacturer’s

instructions, latent toxin interactions from insecticides and

fungicides can affect the health of honeybee colonies and have

sublethal effects in honeybees (Frost et al., 2012). In recent years,

researchers have been paying attention to sublethal doses or

concentrations of pesticides. Pesticides administered below the

sublethal dose can still increase the susceptibility of honeybee to

pathogens, cause certain damage to the learning, memory, and

behavioral abilities of honeybees, and affect the development of

the whole honeybee colony (El Hassani et al., 2005; Wu et al.,

2011; Gill et al., 2012; Frost et al., 2012; Williamson et al., 2013;

Doublet et al., 2015).

The adverse effects of flumethrin on honeybees through

multiple life stages are well documented. Honeybee (A.

mellifera) larvae exposed to flumethrin have been shown to

have increased mortality, developmental failure, physiological

changes, and low immunity in larval, pupal, and adult stages

(Qi et al., 2020). Exposure of honeybee larvae to a sublethal dose of

flumethrin has been shown to affect larval development, pupation

and adult emergence rates, and the activities of key enzymes and

related gene expression levels ofA. mellifera (Niu, 2019). The toxic

stress on honeybee larvae caused by flumethrin is alleviated by

microorganisms, which play a role in intestinal barrier function

and protect the larvae to some extent (Ramya et al., 2016). In

addition, honeybee larvae can activate immune and detoxification

systems to defend against the threat of increasing flumethrin

concentrations (Yu et al., 2021). Flumethrin was shown to

adversely affect the lifespan, immune function, and forage

behavior of worker bees (A. mellifera) (Wu et al., 2023), and

chronic exposure to sublethal concentrations of flumethrin was

shown to negatively affect the development, olfactory learning, and

memory of worker bees (A. mellifera; Li et al., 2022). The ingestion

of a sublethal dose of sugar water containing flumethrin

significantly affected the longevity and acquisition behavior of

Apis cernana (Tan et al., 2013). Flumethrin has also been shown to

affect the detoxification pathways of A. cernana (Jiang et al., 2016).

Together, these studies show how flumethrin can affect honeybee

development, immune and detoxification-related enzyme activity,

behavior, and lifespan.

Due to the high lipophilic nature of flumethrin, its residues

are often a problem in bee products (Niu, 2019). In one study, the

residual concentrations of flumethrin detected in beeswax during

a honey-flowing period ranged from 0.03 to 0.13 mg/kg, while

residual concentrations as high as 3 mg/kg have been detected in

older beeswax samples (Bogdanov, 2003; Johnson et al., 2010;

Rosenkranz et al., 2010). A previous study reported a detection

rate of flumethrin in honey samples of 75.3%, with a maximum

concentration of 0.126 mg/kg (Yu et al., 2015). According to

regulations put forth by the Chinese agricultural industry, the

maximum residue limit (MRL) value of flumethrin in bee

products is 0.01 mg/kg (Song et al., 2021). The European

Union stipulates that flumethrin cannot be used with animals

that provide milk for human consumption (Mutinelli, 2016).

Recently, the issue of pesticide residues and their effects on

human health have attracted more and more attention. This

study aimed to investigate the impact of residual flumethrin

levels in bee products on the physiological functions of honeybee

larvae and newly emerged honeybees exposed to flumethrin

during the larval stage. The findings from this study will fill

the knowledge gap related to the chronic effects of flumethrin on

honeybee development and provide new ideas for comprehensive

risk assessments and application technology for acaricides in

beehives.

2 Materials and methods

2.1 Honeybee and chemicals

Honeybees were obtained from the Honeybee Research

Institute of Jiangxi Agricultural University (Jiangxi, China).

The sucrose solution containing flumethrin was formulated

according to the residual levels of flumethrin in bee products

(Bogdanov, 2003; Johnson et al., 2010; Rosenkranz et al., 2010).

Flumethrin (98.5% pure) was purchased from ANPEL

Laboratory Technologies Inc. (Shanghai, China). Flumethrin

was dissolved with acetone then diluted with a 50% sucrose

solution (Xilong Scientific, Shantou, China) to get the following

concentrations (1, 0.1, and 0.01 mg/L) for the three experimental

groups. Sucrose solution (50%) was prepared for the control

group.

2.2 Larva treatment

A new foundation was put into the experimental hive and the

queen was kept to lay eggs on the new comb for 12 h when the

new comb was being constructed. After the larvae hatched, they

were equally divided into four groups with approximately

100 larvae per group. All larvae were from the same honeybee

colony. From 2 days of age, experimental larvae were fed daily

with 2 µl of sucrose solution containing flumethrin at
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concentrations of 1, 0.1, and 0.01 mg/L, while the control group

was fed 50% sucrose solution until capped. The number of larvae

was recorded daily before feeding. Because worker bees remove

any dead larvae, the reduction in larvae count is equal to the

number of dead larvae.

2.3 Enzyme content assay

Seven-day-old larvae (just capped) were frozen with liquid

nitrogen and placed at −80°C for subsequent determination of

related enzyme activities. Each sample contained a whole larva,

and each group had five replicates. Protein concentrations were

measured using a BCA Protein Assay Kit (BL521A, Biosharp,

Anhui, China). The activities of glutathione sulfur transferase

(GST), carboxylesterase (CarE), and mixed-functional oxidase

(MFOs), as well as the total antioxidant capacity (T-AOC), were

determined using kits A004-1-1, A33-1-1, H452-1, and A015-1,

respectively (Nanjing Jiancheng Bioengineering Institute,

China). All assays were performed according to the

manufacturer’s instructions.

2.4 RNA isolation, library preparation, and
sequencing

Honeybee larvae were treated according to the methods in

Section 2.2 then were transferred to an incubator maintained at

34.5°C and 75% relative humidity for emerging once they had

been capped for 12 days. The newly emerged honeybees were

immediately frozen with liquid nitrogen and placed at -80°C for

RNA isolation, library preparation, and sequencing. The head of

the honeybee were put into an Eppendorf tube with 200 µl

TransZoL Up (ER501-01, TransGen Biotech, Beijing, China)

and fully ground with an electric micro-tissue crusher. Each

tube was filled with 800 µl TransZoL Up. Total RNA was

extracted as previously described (Qin et al., 2012). The RNA

purity was determined using a nucleic acid protein tester

(NanoPhotometerTM P300, Implen GmbH, Munich,

Germany). Total RNA was reverse transcribed with a

PrimeScript TR Reagent kit according to manufacturer’s

instructions (RR047A, Takara Bio, Beijing, China), and the

resulting complementary DNA (cDNA) was stored at -80°C.

Sequencing work was completed by Novogene using the Illumina

NovaSeq 6,000 sequencing platform (Illumina, San Diego, CA,

United States).

2.5 Raw data acquisition and statistical
analysis

After obtaining sequence reads, it was necessary to filter the

raw data. Reads with adapter sequences, containing N (indicating

that base information cannot be determined), or of low-quality

(=20 bases representing more than 50% of the total read length)

were removed. The expression level of each gene was normalized

as fragments per kilobase of transcript sequence per millions

mapped reads (FPKM) based on the gene length and the number

of reads mapped to each gene (Mortazavi et al., 2008). An

absolute value of log2Ratio ≥1 (twofold change) and false

discovery ratio (FDR) ≤ 0.05 were set as significance

thresholds and used to filter the differentially expressed genes

(DEGs; Anders and Huber, 2012). ClusterProfile software (ver.

3.4.4) was used for Gene Ontology (GO) functional enrichment

analysis and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis of differential gene sets.

2.6 Validation by quantitative real-time
PCR (qRT-PCR)

Four genes related to immunity, detoxification, and olfaction

were analyzed by qRT-PCR with three biological and three

technical replicates. These four genes were selected because

honeybees resist insecticides through activation of their

immune and detoxification pathways; insecticides also cause

damage to the nervous system and impair the olfactory ability

of honeybees. The gene-specific primers used in this study are

presented in Table 1. Glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) was used as an internal control gene. Ct values of target

and reference genes were collected, and the relative expression

levels of each target gene were calculated (Huang et al., 2012).

2.7 Data analysis

The Statistical Package for the Social Sciences (SPSS) 17.0 was

used to analyze the differences in enzyme activity and gene

expression of the four groups. One-way analysis of variance

(ANOVA) was used to compare the differences in enzyme

activity and gene expression between the treatment and control

groups. At p < 0.05, the least significant difference (LSD) test was

used to determine differences between groups. GraphPad Prism

5 software (GraphPad Software, SanDiego, CA, United States) was

used to plot the survival curve of honeybee larvae and analyze the

differences between each group by Kaplan-Meier analysis.

3 Results

3.1 Flumethrin affects honeybee larval
survival

Honeybees were exposed to 1, 0.1, 0.01, or 0 mg/L of

flumethrin during the larval stage from day 2 to day 5. The

mortality rates of honeybee larvae in the 1 and 0.1 mg/L groups
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were significantly higher than those in the control group (1 mg/L

vs control, p < 0.0001; 0.1 mg/L vs control, p < 0.0001; Figure 1);

however, there was no significant difference in the mortality rates

of honeybee larvae between the 0.01 mg/L and control groups

(p = 0.3325).

3.2 Effects of flumethrin on immunity and
detoxification-related enzyme activities of
larvae

The activity trends of MFO, GST, CarE, and T-AOC in

honeybee larvae exposed to different concentrations of

flumethrin are shown in Figure 2. MFO content in the larvae

increased gradually with an increase of flumethrin concentration

(Figure 2A). The content of MFO in the 1 (17.90 ± 10.06 ng/g) and

0.1 mg/L groups (14.60 ± 10.28 ng/g) was significantly higher than

in the 0.01 mg/L (8.344 ± 4.592 ng/g) and control groups (3.666 ±

2.473 ng/g; p < 0.05). There was no significant difference in

T-AOC among the four groups (Figure 2B). The trends for

CarE and GST (Figure 2C, Figure 2D) activities were similar.

There was a significant decrease in the activities of GST and CarE

in the 0.01 mg/L group compared with the control group (p <
0.05). On the other hand, GST and CarE activities in the 1 mg/L

group were significantly higher than those in the control group

(p < 0.05). There were no significant differences in the activities of

GST and CarE between the 0.1 mg/L and control groups.

3.3 Raw RNA-Seq data analysis

The transcriptome sequencing statistics for all samples are

summarized in Supplemental Table S1. The raw reading included

4.03 × 107–4.79 × 107 reads. The clean reading segment included

3.98 × 107–4.71 × 107 reads after removing the invalid reading

segments. Among the 11 libraries, more than 96.82% were Q20,

and more than 91.83% were Q30. These results indicated that the

data quality was good and was therefore used for subsequent

analysis. The whole sequencing dataset was deposited in the

National Center for Biotechnology Information (NCBI)

Sequence Read Archive (accession number: PRJNA866287).

As shown in Figure 3A, with the increase in flumethrin

concentration, the number of DEGs increased gradually. A total

of 785 DEGs were identified between the 0.01 mg/L and the control

groups. Of these, 260were upregulated, and 525were downregulated.

A total of 1,083 DEGs were identified between the 0.1 mg/L and

control groups, of which 538 DEGs were upregulated, and 545 DEGs

were downregulated. In total, 2,214 DEGs were identified between

the 1 mg/L and control groups, of which 1,006 DEGs were

upregulated, and 1,208 DEGs were downregulated. The common

DEGs are shown in Figure 3B and Table 2. There were 43 common

DEGs, including loc102656552, Cox6c, rpl39, loc725432,

loc100578551, and Apd-2, in the pesticide treatment group. In

addition, as flumethrin concentration increased, more DEGs were

produced. An additional 326 common DEGs, including olfactory-

related genes (CSP2, CSP3, OBP17, OBP3) and an antioxidant gene

(SOD1), were found in the 1 and 0.1 mg/L groups comparedwith the

control group, as shown in Supplemental Table S2 (excluding the

DEGs in Table S3). A total of 1,702 unique DEGs, including

detoxification-related genes (GSTs1, loc406081) and an

antioxidant gene (MsrA), were found in the 1 mg/L group

compared with the control group (Supplemental Table S3).

The functions of the 43 common DEGs in the pesticide group

were analyzed according to the GO database. The enriched terms in

the biological process category included drug metabolic processes,

TABLE 1 Gene-specific primers used in quantitative real-time PCR.

Gene name Forward primer (5′-3′) Reverse primer (5′-3′)

CSP1 AACGTGGACATATGCTGAGGAAC CCGGAGTTAAACAAGAGCCTGC

OBP13 GTCAGTTTGCGCCGAAGAAAATGG ACCCTTCTTAACGTCGTCTGCTTTC

LOC406081 GCTCGGTGAACACTCCTCAACTG TGATTGTGAAGGTTCTCGCCAACTC

LOC406105 GATACCGTTCGCAACACCTCCTG TGGCTGACGCTGAGAGCAGTAAT

GAPDH GCTGGTTTCATCGATGGTTT ACGATTTCGACCACCGTAAC

FIGURE 1
Effect of flumethrin on the survival of honeybee larvae.
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oxidation-reduction processes, and ion transport. In the cellular

component category, the enriched terms included plasma

membrane part, plasma membrane protein complex, and

membrane part. In the molecular function category, the enriched

terms included receptor regulator activity, receptor ligand activity,

and GTPase activity (Figure 4). In addition, these 43 commonDEGs

FIGURE 2
Effect of flumethrin on the content of immune and detoxification-related enzymes in honeybee larvae. The same letter above the bars means
no significant difference. (A–D) represent the content of MFO, T-AOC, CarE, and Gst measured in each group, respectively.

FIGURE 3
Effect of flumethrin on gene expression of newly emerged honeybees. (A) Numbers of DEGs of A. mellifera larvae treated with flumethrin. Up-
and down-regulation indicates higher or lower expression of these genes in the treatment groups. (B) Venn analysis of DEGs. The sum of the
numbers in each large circle represents the total number of DEGs in the comparative combinations, while the overlapping part of the circles
represents the DEGs shared by the combinations. GA, GB, GC, and GD represent 1, 0.1, 0.01, and 0 mg/L groups, respectively.
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TABLE 2 The fragments per kilobase of exon per million mapped fragments (FPKM) of common DEGs between treated groups and control group.

gene_name 1 mg/L 0.1 mg/L 0.01 mg/L Control gene_description

LOC100577725 92.55 80.04 131.71 205.50 probable chitinase 10

LOC724114 108.93 139.66 179.12 234.74 uncharacterized LOC724114 transcript variant X2

LOC413048 8.54 10.16 12.30 16.06 bifunctional 3′-phosphoadenosine 5′-phosphosulfate synthase 2 transcript variant X2

Rpl39 79.80 79.10 110.85 154.25 ribosomal protein L39

LOC725432 634.60 739.29 890.81 1123.68 60S ribosomal protein L37a

LOC727025 50.25 49.75 62.43 87.11 DNA-directed RNA polymerases I II and III subunit RPABC4

Cox6c 320.31 296.78 380.02 498.62 cytochrome c oxidase subunit VIc transcript variant X5

LOC102656552 7.10 6.50 8.31 15.48 hypertrehalosaemic prohormone transcript variant X1

LOC551861 309.33 305.35 376.68 490.39 ATP synthase subunit e mitochondrial

LOC100578551 64.42 69.92 89.92 113.99 39S ribosomal protein L34 mitochondrial

LOC413391 2.17 2.24 2.69 3.76 homeobox protein MSX-2

LOC102656354 1135.16 1232.38 1298.24 1717.68 uncharacterized LOC102656354

LOC408525 11.31 13.15 13.64 17.96 neuronal acetylcholine receptor subunit alpha-10

LOC552685 1074.65 1022.31 1330.61 1757.53 pupal cuticle protein

LOC724851 5.70 6.20 6.28 7.92 LIM domain only protein 3 transcript variant X3

LOC412768 15.29 17.66 16.70 24.84 protein takeout

LOC410555 6.80 6.23 7.24 9.74 insulin-like growth factor-binding protein complex acid labile subunit

LOC725548 39.95 36.78 42.34 52.37 protein FAM151B transcript variant X2

LOC100642173 0.66 0.72 0.67 1.14 uncharacterized LOC100642173

Apd-2 7665.40 6357.81 7740.82 12370.28 apidermin 2 transcript variant X1

LOC725415 9.65 9.18 9.08 12.73 BTB/POZ domain-containing protein KCTD16 transcript variant X2

LOC100578090 12.23 10.28 12.37 16.51 uncharacterized LOC100578090

LOC725765 2.33 2.11 2.57 3.42 uncharacterized LOC725765 transcript variant X4

LOC726286 44.42 90.32 107.95 61.27 uncharacterized LOC726286

LOC113218735 2348.87 1956.31 2095.88 3492.02 uncharacterized LOC113218735

LOC410577 11.60 10.82 10.34 15.37 acid sphingomyelinase-like phosphodiesterase 3a transcript variant X3

LOC409058 0.12 0.07 0.10 0.25 L-threonine ammonia-lyase-like transcript variant X2

LOC100576700 27.23 16.52 13.76 42.92 class A basic helix-loop-helix protein 15 transcript variant X2

LOC551369 603.03 460.69 571.13 797.40 actin clone 205

LOC100577548 3.01 2.41 2.65 4.37 tubulin beta chain transcript variant X2

LOC725190 1.06 1.05 0.85 1.46 protein snail transcript variant X2

LOC411564 1.09 8.60 5.79 2.18 nose resistant to fluoxetine protein 6 transcript variant X2

LOC550673 10.90 11.92 12.14 8.92 inosine-5′-monophosphate dehydrogenase 1b

LOC551772 1.71 1.46 1.46 2.36 zeta-sarcoglycan transcript variant X1

LOC102654344 3.23 1.76 1.60 2.50 glutamine-rich protein 2

LOC113219007 3.36 2.84 2.27 4.92 zinc finger protein 524-like

(Continued on following page)
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TABLE 2 (Continued) The fragments per kilobase of exon per million mapped fragments (FPKM) of common DEGs between treated groups and control group.

gene_name 1 mg/L 0.1 mg/L 0.01 mg/L Control gene_description

LOC409000 6.69 6.20 5.54 8.41 cell adhesion molecule 2 transcript variant X2

LOC726150 0.04 0.03 0.03 0.11 transcription factor Sox-21-B

LOC100578519 1.97 2.37 2.23 1.54 uncharacterized protein PF11_0207

FIGURE 4
GOclassification of DEGs shared by the 3 comparative combinations. The abscissa in the figure is GO terms; the ordinate is the significance level
of GO Term enrichment, which is represented by -log10 (padj), and different colors represent different functional categories. BP: DEGs enriched for
biological process; CC: DEGs enriched for cellular components; MF: DEGs enriched for molecular function. The same is below.
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were related to enrichment in nine KEGG pathways, including

ribosome function, purine metabolism, and oxidative

phosphorylation (Figure 5).

3.4 Validation of target DEGs by qRT-PCR

The expression patterns of the selected 4 DEGs verified by

qRT-PCR (Figure 6A) were similar to those of RNA-seq

(Figure 6B) indicating that the abundance of the Illumina

reads closely mirrored the actual expression levels of the

DEGs. The validation results for the 4 DEGs indicated that

the qPCR data correlated well with the transcriptome data

and further confirmed the significance of flumethrin induced

downregulation of genes involved in immunity, detoxification,

and olfaction in the heads of honeybees.

4 Discussion

Each honeybee goes through four life stages: egg, larva, pupa,

and adult. The normal growth and development of larvae are the

FIGURE 5
KEGG pathway enrichment analysis of DEGs. The abscissa in the figure is the ratio of the number of differential genes annotated to the KEGG
pathway to the total number of differential genes. The ordinate is the KEGG pathway. Count: Number of DEGs annotated to the KEGG pathway. Padj:
p-value corrected for multiple hypothesis testing.
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basis of the entire colony. However, larvae may be exposed to

pesticides through activities such as living in contaminated hives

and eating food containing pesticide residues, including royal

jelly and honey (Tavares et al., 2017). In this study, the detection

of immune and detoxification-related enzyme activities and

RNA-Seq technology were used to investigate the toxic effects

of flumethrin on honeybees.

There are three major immune and detoxification-related

enzymes in insects, namely cytochrome P450 monooxygenase

(P450), GST, and CarE (Claudianos et al., 2010). The core

enzyme system of MFO determined in this study was the

cytochrome P450 monooxygenase system. These enzymes

have a direct impact on the detoxification and metabolism of

insects and participate in the formation of drug resistance in

insects (Enayati et al., 2005; Oakeshott et al., 2010). This study

showed that the MFO activity increased with the increase in

flumethrin concentration (Figure 2A). The MFO activity of

larvae in the 1 and 0.1 mg/L groups was significantly higher

than in the 0.01 mg/L and control groups, while there was no

significant difference in larval MFO content between the

0.01 mg/L and control groups. These results indicate that

residual levels of flumethrin (less than 0.01 mg/L) in the larval

diet would not affect the activity of MFO. In contrast, MFO

content could increase when honeybee larvae encounter residual

flumethrin concentrations above 0.1 mg/L and could exert its

detoxification effects to decompose toxic substances. With an

increasing concentration of flumethrin, the activities of CarE and

GST showed an initial decrease followed by a gradual increase

FIGURE 6
qRT-PCR verification (A) and RNA Seq data (B) of DEGs on the head of newly emerged honeybees in flumethrin-treated and control groups,
respectively.
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(Figure 2C,D). It is possible that the activities of CarE and GST in

the 0.01 mg/L group decreased due to using the larva’s CarE and

GST enzymes neutralizing the negative effects of flumethrin.

When the residual level of flumethrin in the larval diet was higher

than 0.01 mg/L, more CarE and GST enzymes were produced to

resist the toxic effect of pesticides; the concentration of these two

enzymes rises to help prevent any harm to the body caused by

flumethrin. Nielsen et al. (2000) measured the detoxification

enzyme GST in larvae, pupae, and adult honeybees collected

from flumethrin-treated colonies. They found significantly

increased GST activities in the late fifth larval and pupal

instars. T-AOC is an indicator of the antioxidant capacity in

the reactive organism (Ghiselli et al., 2000). In this study, the

content of T-AOC was not significantly different among the four

treatment groups (Figure 2B), indicating that flumethrin might

not affect the T-AOC of honeybee larvae. However, the

mechanism should be further investigated.

The DEGs found in the present study reflect the multifaceted

influence of flumethrin on honeybee physiology. There were

huge differences in the number of DEGs in different dose groups

compared with the control group (Figure 3). The number of

DEGs increased with the increase in flumethrin concentration in

the treatment groups, which showed that the higher the

concentration of flumethrin, the greater the impact on and

damage to honeybees. We found 43 common DEGs, including

loc102656552, Cox6c, rpl39, loc725432, loc100578551, and Apd-

2, in three of the treated groups. The expression level of the gene

loc102656552, which is related to hypertrehalosemic hormone,

was significantly downregulated. Hypertrehalosemic hormone

can promote fat and glycogen decomposition in the body and

increase the concentrations of lipids and trehalose in the blood

(Rockstein, 1998). Trehalase converts trehalose stored in insects

into glucose which is metabolized through glycolysis or the

pentose phosphate pathway (Becker et al., 1996). The

downregulated expression of loc102656552 could affect the

synthesis of trehalose in honeybees, resulting a reduced

trehalose content and affecting the growth, development, and

resproduction of honeybees. Chen (2021) found that both

carbendazim and Nosema ceranae could lead to the

upregulated expression of genes encoding trehalose

transporters and trehalase in honeybees, reducing blood

trehalose levels. Cytochrome oxidase (Cox) plays an important

role in the oxidative phosphorylation process of cells (Barazzoni

et al., 2000). The expression of Cox6c was significantly

downregulated after honeybee larvae received flumethrin,

indicating that it could affect the process of oxidative

phosphorylation, even at very low concentrations. The

oxidative phosphorylation pathway is considered to be the

most important biochemical process in animal cells. It mainly

occurs in the inner membrane of mitochondria. As the final

metabolic pathway of the respiratory chain, oxidative

phosphorylation can provide adenosine triphosphate for a

variety of basic cellular pathways, such as neural activity,

material synthesis, and bioelectrogenesis (Byrne, 2009). The

expression levels of ribosomal protein-related genes (rpl39,

loc725432, and loc100578551) were significantly

downregulated with flumethrin exposure. Ribosomal protein is

an important part of the ribosome that plays an essential role in

protein synthesis and translation (Byrne, 2009). Downregulated

expression of these genes suggests that flumethrin exposure may

affect energy metabolism and inhibit protein synthesis of

honeybees. A recent study showed that sublethal doses of

thiamethoxam caused the downregulation of genes related to

oxidative phosphorylation and ribosomes in honeybees (Shi,

2020). The apidermin (APD) protein family is a newly

discovered family of structural epidermal proteins in insects.

Apd-2 belongs to the APD protein gene family and controls the

main components of exoskeleton proteins in honeybees (Sun

et al., 2012). Therefore, the downregulated expression of this

epidermal gene may be a morphological manifestation of

developmental delay. A previous study found that the

expression levels of some epidermal protein family genes in

the brain of honeybees exposed to carbendazim were

downregulated (Fan, 2020). The present study showed that in

all flumethrin-treated groups, genes involved in metabolism and

biochemical processes in honeybee heads were significantly

downregulated.

Annotation of enriched GO terms revealed that genes

associated with the oxidation-reduction process and ion

transport were significantly downregulated with exposure to

flumethrin, which could lead to the generation of reactive

oxidative species (ROS) (Figure 4). Increased oxidative stress

was observed in neonicotinoid-exposed honeybees due to the

excessive production of ROS (James and Xu, 2012). Iron plays an

important role in redox reactions, the downregulation of genes

involved in iron ion binding may indicate altered iron

homeostasis in the brains of flumethrin-treated honeybees. A

sublethal dose of imidacloprid has been shown to lead to

downregulated expression levels of genes associated with the

oxidation-reduction process and ion transport (Li et al., 2019).

KEGG pathway analysis showed that most of the altered

pathways were related to biological metabolic processes and

biochemical reactions of the body (Figure 5). Together, these

results show that flumethrin concentrations above 0.01 mg/L can

affect the expression levels of genes related to biochemical

processes and metabolism of substances in the heads of

honeybees, affecting the growth and development of honeybees.

With the increasing flumethrin concentrations, the

expression levels of olfactory-related genes, including CSP2,

CSP3, OBP17, and OBP3, decreased significantly in the 1 and

0.1 mg/L groups compared to controls (Table S2). OBP17 and

OBP3 belong to the odorant binding protein family, which are a

class of water-soluble proteins that can bind odor molecules and

help insects identify odors of a small molecular mass (Mu and

Dong, 2004). CSP2 and CSP3 belong to the family of

chemosensory proteins, whose main function is identifying,
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binding, and transporting non-volatile molecules (Xie et al.,

2016). Imidacloprid can significantly reduce the expression of

olfactory-related genes in the honeybee brain (Li et al., 2019). The

down-regulation of olfactory-related genes may indicate an

impaired olfactory function in honeybees exposed to

flumethrin, leading to dysfunctional behaviors. The honeybee’s

sense of smell is closely related to all of its life activities. For

example, worker bees sense queen pheromones through smell,

which helps to stabilize the whole colony; the drone senses the

queen by smell and copulates with her (Xie et al., 2016). The

changes in olfactory-related gene expression levels observed here

may affect the recognition of informative materials and the

exchange of information between honeybees, thus affecting

the function of the entire colony. The antioxidant gene

SOD1 was significantly downregulated in the 1 and 0.1 mg/L

groups compared to controls. SOD1 can remove excess ROS in

insects and protect the body from environmental stress (Mccord

and Fridovich, 1969).

The higher the concentration of flumethrin in the treatment

group, the higher the number of DEGs observed. Some DEGs,

such as immune and detoxification-related genes (GST,

loc406081) and antioxidant gene (MsrA), were differentially

expressed only in the 1 mg/L group (Table S3). These three

genes had significantly downregulated expression in the 1 mg/L

group. GSTs are a multifunctional super gene family of enzymes

that can metabolize various endogenous and exogenous

substances and participate in the body’s detoxification of

exogenous substances (e.g., pesticides). In the insect body,

loc406081 can regulate the oxidation of glucose, produce

energy and oxidation reactions to promote detoxification

functions, and produce H202, which has an antibacterial

function (Bucekova et al., 2014). Methionine sulfoxide

reductase A (MsrA) belongs to the methylthionine sulfoxide

reductase family, which are antioxidant and protein-repair

factors in organisms with indirect antioxidant effects (Gong

et al., 2012). Compared with the 0.01 and 0.1 mg/L groups,

1 mg/L flumethrin had a considerable impact on the

expression levels of immunity, detoxification, and antioxidant

genes of honeybees and a negative impact on the survival of

honeybees.

5 Conclusion

This study showed that the residues of flumethrin at honey-

relevant levels could affect the physiology of honeybee larvae and

newly emerged worker honeybees (A. mellifera) exposed to

flumethrin during the larval stage, and that with increases

residual concentrations, the impact would be greater.

Therefore, in beekeeping, we should pay close attention to the

residues of flumethrin in bee products to ensure the health of

honeybees and the production of high-quality bee products. In

addition, the mechanisms through which honeybees can repair

this damage after becoming adults remains to be further studied.
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