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This review details the role of dystrophin and the dystrophin associated proteins

(DAPs) in the vascular smooth muscle. Dystrophin is most comprehensively

studied in the skeletal muscle due to serious symptoms found related to the

skeletal muscle of patients with muscular dystrophy. Mutations in the

dystrophin gene, or DAPs genes, result in a wide range of muscular

dystrophies. In skeletal muscle, dystrophin is known to act to as a

cytoskeletal stabilization protein and protects cells against contraction-

induced damage. In skeletal muscle, dystrophin stabilizes the plasma

membrane by transmitting forces generated by sarcomeric contraction to

the extracellular matrix (ECM). Dystrophin is a scaffold that binds the

dystroglycan complex (DGC) and has many associated proteins (DAPs).

These DAPs include sarcoglycans, syntrophins, dystroglycans, dystrobrevin,

neuronal nitric oxide synthase, and caveolins. The DAPs provide

biomechanical support to the skeletal or cardiac plasma membrane during

contraction, and loss of one or several of theseDAPs leads to plasmamembrane

fragility. Dystrophin is expressed near the plasma membrane of all muscles,

including cardiac and vascular smooth muscle, and some neurons. Dystrophic

mice have noted biomechanical irregularities in the carotid arteries and

spontaneous motor activity in portal vein altered when compared to wild

type mice. Additionally, some studies suggest the vasculature of patients and

animal models with muscular dystrophy is abnormal. Although the function of

dystrophin and the DAPs in vascular smooth muscle is not thoroughly

established in the field, this review makes the point that these proteins are

expressed, and important and further study is warranted.
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Introduction

Dystrophin

Dystrophin is the largest known human gene and is located

on the X chromosome (Tennyson et al., 1995). The gene contains

79 exons, codes for a 14 kb mRNA and a 427 kDa protein

(Hoffman et al., 1987; Koenig et al., 1988). The dystrophin

protein is comprised of four domains: 1) the actin-binding

domain (ABD) at the amino terminal domain 2) the central

rod domain that contains 24 triple helical spectrin-like repeats

(SR) combined with four hinge domains 3) the cysteine-rich

domain 4) the carboxy-terminal domain (Koenig et al., 1988).

The dystrophin protein is known to be associated with the

dystroglycan complex (DGC) and thus links the extracellular

matrix (ECM) to the underlying actin cytoskeleton (Campbell

and Kahl, 1989). Dystrophin is also known to act to as a

cytoskeletal stabilization protein and defends cells against

damage due to contraction (Weller et al., 1990). Dystrophin

stabilizes the plasma membrane by transmitting forces generated

by sarcomeric contraction to the ECM (Weller et al., 1990; Moens

et al., 1993; Vilquin et al., 1998). Skeletal muscles lacking

functional dystrophin are mechanically vulnerable; and

contraction of the cells results in membrane damage (Weller

et al., 1990).

Dystrophin is expressed at the plasma membrane of all

muscles, including cardiac, smooth, and skeletal muscle, as

well as some neurons (Arahata et al., 1988; Hoffman et al.,

1988; Byers et al., 1991; Ahn and Kunkel, 1993). Mutations in

the dystrophin gene lead to either Duchenne Muscular

Dystrophy (DMD) or Becker Muscular Dystrophy (Hoffman

et al., 1987; Bonilla et al., 1988). Out-of-frame mutations of 1 or

several of the 79 exons in the full-length dystrophin gene results

in a lack of a functional protein, causing the DMD phenotype

(Hoffman et al., 1987; Bonilla et al., 1988). DMD is inherited in

an X-linked recessive manner and therefore is most prevalent in

males however female carriers can also have symptoms due to

X-inactivation (Nozoe et al., 2016). The majority of DMD

mutations are inherited; however spontaneous mutations

account for 30% of DMD cases (Dent et al., 2005). DMD is

fatal and currently incurable (Khurana and Davies, 2003).

Dystrophin associated proteins

Dystrophin is also an important scaffold for dystrophin

associated proteins (DAPs) including sarcoglycans,

syntrophins, dystroglycans, dystrobrevin, neuronal nitric oxide

synthase (nNOS) and caveolins (Winder, 2001; Khurana and

Davies, 2003). DAPs provide biomechanical support to the

muscle plasma membrane during contraction, and loss of 1 or

several of these proteins leads to plasma membrane fragility

(Winder, 2001). Sarcoglycans, syntrophins, dystroglycans,

dystrobrevin, and neuronal nitric oxide synthase comprise the

dystroglycan complex (DGC) (Winder, 2001; Khurana and

Davies, 2003) (Figure 1). Genetic mutations in DAPs can

result in other types of muscular dystrophies such as Limb

Girdle Muscular Dystrophy (Khurana and Davies, 2003). The

widely expressed α and β dystroglycans are key proteins in the

DGC, linking laminin-2 and dystrophin (Ehmsen et al., 2002).

Both dystroglycans are from a single post-translationally

modified polypeptide and are heavily glycosylated prior to

being sorted to their extracellular and transmembrane

locations (Ehmsen et al., 2002). Sarcoglycans are additional

DAPs expressed in both skeletal and smooth muscle (Straub

et al., 1999; Ehmsen et al., 2002). Some sarcoglycans have been

shown to be expressed in smooth muscle while others have been

shown to be strictly expressed in skeletal muscle (Yamamoto

et al., 1994; Straub et al., 1999). There are multiple sarcoglycans;

some bind dystrophin directly, others bind indirectly (Ehmsen

et al., 2002). Other DAPs include dystrobrevins, syntrophins,

neuronal nitric oxide synthase (nNOS) and caveolins.

Dystrobrevins bind dystrophin and indirectly interact with

sarcoglycans (Ehmsen et al., 2002). There is very limited

literature on dystrobrevins in smooth muscle, but α-
dystrobrevin-1 was observed in vascular smooth muscle cells

(VSMCs) (Loh et al., 2000). There are three syntrophin isoforms

in skeletal muscle. Syntrophins are hypothesized to act as

modular adaptors recruiting signaling proteins to the

sarcolemma and DGC (Eisenberg et al., 2007). Another DAP

is nNOS which interacts with syntrophin, and it is lost in several

muscular dystrophies including DMD (Ehmsen et al., 2002).

nNOS is an enzyme that produces nitric oxide which is important

for increasing local blood flow to match the increased metabolic

load of contracting muscles (Ehmsen et al., 2002). nNOS

interacts directly with spectrin-like repeats 16 and 17 in the

central rod domain of dystrophin (Lai et al., 2009; Tidball and

Wehling-Henricks, 2014; McGreevy et al., 2015). Caveolins are

also essential proteins involved in caveolae vesicular

invaginations of the plasma membrane and are found in most

cell types (Cohen et al., 2004). Cav-3 is muscle specific however

Cav-1 is required for caveolae formation in smooth muscle

(Cohen et al., 2004). Caveolins have been hypothesized to

interact with dystroglycan and mutations in Cav-3 are

associated with types of muscular dystrophy (Galbiati et al.,

2001). Sharma et al. (2010) demonstrated that Cav-1 interacts

with β-dystroglycan in airway smooth muscle.

Pubmed searches indicate that only approximately four

percent of published papers on dystrophin are studies in

smooth muscle. The lack of published papers addressing

dystrophin in smooth muscle demonstrates the need for

research in this area. Dystrophin is expressed near the plasma

membrane of all muscles, including cardiac and vascular smooth

muscle, as well as some neurons (Arahata et al., 1988; Hoffman

et al., 1988; Byers et al., 1991; Ahn and Kunkel, 1993). Dystrophin

is most comprehensively studied in the skeletal muscle due to
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serious symptoms found related to the skeletal muscle of patients

withmuscular dystrophy. Dystrophin is an important scaffold for

dystrophin associated proteins (DAPs) in skeletal muscle

(Winder, 2001; Khurana and Davies, 2003). In skeletal muscle,

the DAPs provide biomechanical support to the muscle plasma

membrane during contraction, and loss of one or several of these

proteins leads to plasma membrane fragility (Winder, 2001).

DAPs have been studied extensively in skeletal muscle and

different types of muscular dystrophies, but more research

needs to be conducted on DAPs in smooth muscle. Due to

the lack of studies on dystrophin and DAPs in vascular smooth

muscle, and some contradictions in the field, it is currently

unknown if dystrophin and DAPs have the same role in

vascular smooth muscle as that they do in skeletal muscle. It

may be hypothesized that these proteins may have different

functions in the vascular smooth muscle because smooth

muscle and skeletal muscle are inherently different, especially

in the unique the mechanisms involved in contraction. This

review examines dystrophin and the DAPs in the vascular

smooth muscle.

Vascular smooth muscle differentiation

Dystrophin has been proposed to be a marker of VSMC

differentiation. Lees et al. demonstrated that dystrophin

could be used as a marker of functional cultured rat

VSMCs because it was only expressed in contractile

VSMCs and not proliferative VSMCs (Lees et al., 1994)

(Table 1). In the last few years, there has been some

increase in studying dystrophin in VSMCs. Turczynska

et al. (2015) treated murine VSMCs with an actin-

stabilizing agent, jasplakinolide, and analyzed the cells by

microarrays. This group concludes that expression of

dystrophin seems to be a differentiation marker, similar to

expression of alpha actin or Myh11, which is upregulated by

an increased F/G actin ratio. Interestingly, these authors

noted that changes in the F/G actin ratio could not be

demonstrated in VSMCs from mdx mice (Turczynska

et al., 2015). These findings suggest actin regulates

dystrophin in VSMCs and dystrophin may be a maker of

VSMC differentiation.

FIGURE 1
A. Schematic representation of Dystrophin and the Dystrophin-Associated Proteins in muscle including: Dystroglycans, Sarcoglycans,
Syntrophins, Caveolins and more. Created with biorender.com.
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Biomechanical properties of vascular
smooth muscle

Dystrophin has been shown to be associated with

biomechanical properties of the vascular smooth muscle.

Rivier et al. demonstrated that small arteries expressed the

long form of dystrophin, whereas small veins did not

(Table 1) (Rivier et al., 1997). This suggests that dystrophin

may have a unique role in the arteries that is not required in the

veins. The authors further propose that dystrophin has a

TABLE 1 Key papers highlighting connection between dystrophin and vascular smooth muscle.

Authors Article Journal Important findings

Mendell et al.
(1971)

Duchenne muscular dystrophy: functional ischemia
reproduces its characteristic lesions

Science 1971 Grouped necrosis in the muscles of dystrophy patients
could be due to compromised capillary blood supply and
ischemia

Bradley et al.
(1975)

Failure to confirm a vascular cause of muscular dystrophy Arch Neurol 1975 No obvious differences in blood flow or arterial occlusion
are detected in human muscular dystrophy patients

Engel and
Hawley. (1977)

Focal lesions of muscle in peripheral vascular disease Neurol 1977 Two patients were studied and determined to have lesions
in skeletal muscle due to ischemia caused by peripheral
vascular disease essentially identical to the early muscle
lesions of DMD patients and carriers of the disease

Koehler. (1977) Blood vessel structure in Duchenne muscular dystrophy. I.
Light and electron microscopic observations in resting
muscle

Neurology 1977 Skeletal muscle blood vessels from eight patients with
documented Duchenne type muscular dystrophy were
examined by microscopy concluding vascular
abnormalities are minimal and nonspecific

Miike. (1987) Vascular endothelial cell injury and platelet embolism in
Duchenne muscular dystrophy at the preclinical stage

Neurol Sci 1987 Capillaries in DMD patients were almost completely
obstructed, they had narrow lumens, there was replication
of the basement membrane around the vessels, and
degenerating and regenerating capillaries were also
observed

Sugino et al.
(1991)

Vascular alterations in Fukuyama type congenital
muscular dystrophy

Brain Dev 1991 Abnormalities are evident in blood vessel structure in a
unique form of muscular dystrophy (Fukuyama)

Lees et al. (1994) Dystrophin (Xp21), a new phenotype marker of cultured
rat aortic myocytes

Exp Cell Res 1994 Dystrophin can be used as a marker of functional cultured
rat vascular smooth muscle cells (VSMCs) because it is
only expressed in contractile VSMCs and not proliferative
VSMCs

Lees et al. (1995) Parallel expression level of dystrophin and contractile
performances of rat aortic smooth muscle

Exp Cell Res 1995 There is increased expression of dystrophin in the rat
aortic arch and increased contractility compared to the rat
aortic diaphragm

Rivier et al.
(1997)

Different utrophin and dystrophin properties related to
their vascular smooth muscle distributions

FEBS Lett 1997 Small arteries express the long form of dystrophin,
whereas small veins do not

Mancinelli et al.
(1999)

Mechanical properties of smooth muscle portal vein in
normal and dystrophin-deficient (mdx) mice

Exp Physiol 1999 The dystrophic process alters the spontaneous motor
activity of the mdx mouse portal vein

Loufrani et al.
(2004)

Absence of dystrophin in mice reduces NO-dependent
vascular function and vascular density: total recovery after
a treatment with the aminoglycoside gentamicin

Arteriosclerosis, thrombosis,
and vascular biology 2004

Immunostaining of arterioles in gracilis muscle and
whole-mount imaging of tibialis anterior muscle, show a
decrease in the vasculature of mdx mice in comparison to
wild-type

Ito et al. (2006) Smooth muscle-specific dystrophin expression improves
aberrant vasoregulation in mdx mice

Human Molecular Genetics
2006

SMTg/mdx mice demonstrate that restored dystrophin
expression in the vascular smooth muscle partially
corrects the abnormal α-adrenergic vasoconstriction in
exercising skeletal muscle

Dye et al. (2007) Altered biomechanical properties of carotid arteries in two
mouse models of muscular dystrophy

J. Appl Physiol 2007 There are biomechanical differences of the carotid arteries
of two mouse models of muscular dystrophy

Turczynska et al.
(2015)

Regulation of smooth muscle dystrophin and
synaptopodin 2 expression by actin polymerization and
vascular injury

Arteriosclerosis, thrombosis,
and vascular biology 2015

Actin regulates dystrophin in VSMCs. It is also shown that
dystrophin is highly expressed in differentiated smooth
muscle compared to synthetic smooth muscle

Buscher et al.
(2019)

The long dystrophin gene product Dp427 modulates
retinal function and vascular morphology in response to
age and retinal ischemia

Neurochem Int 2019 Retinal function is reduced with age in male mdx mice

Lopez et al.
(2020)

Contribution of TRPC Channels to Intracellular Ca (2 +)
Dyshomeostasis in Smooth Muscle From mdx Mice

Front Physiol 2020 VSMCs from mdx mice have a dysregulation of
intracellular calcium due to overactivation of transient
receptor potential canonical channels

Kodippili et al.
(2021)

Dystrophin deficiency impairs vascular structure and
function in the canine model of Duchenne muscular
dystrophy

J Pathol 2021 Dystrophin plays a crucial role of maintaining structure
and function of the vascular endothelium and smooth
muscle in large mammals
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mechanical function in the arteries and may provide protection

from muscle membrane degradation (Rivier et al., 1997). This

hypothesis agrees with the proposed role of dystrophin in

skeletal muscle. Future studies are needed to fully address

the differences in expression of dystrophin in arteries and

veins. Mancinelli et al. (1999) investigated the biomechanical

properties of smooth muscle from the portal vein. They noted

severely reduced spontaneous contraction waves in response to

increased stretch, reduced contractile response to acetylcholine

and normal passive stress strain relationships were noted in the

mdx mouse portal vein (Mancinelli et al., 1999). It was

concluded from multiple biomechanical experiments that the

dystrophic process alters the spontaneous motor activity of the

mdx mouse portal vein (Mancinelli et al., 1999). These finding

suggest that dystrophin is important to the biomechanical

properties of the vascular smooth muscle. Additionally, Dye

et al. (2007) concluded there were biomechanical differences of

the carotid arteries of two mouse models of muscular

dystrophy, the mdx model and a sarcoglycan deficient mouse

model (Table 1). This group noted that in both models, the

dystrophic mice had decreased distensibilities in pressure-

diameter tests, elevated axial loads and stresses in axial

force-length tests, and decreased in vivo axial stretches

compared to wild-type mice (Dye et al., 2007). Taken

together Dye et al. (2007) suggests that the loss of DAPs

may result in adaptive biomechanical changes so that overall

wall mechanics are maintained in response to normal pressures.

Further studies are needed to more fully understand these

proposed vascular adaptations noted in the carotid arteries

of both mdx and sarcoglycan deficient mice. These studies

demonstrate that dystrophin is important to the

biomechanical properties of the vascular smooth muscle but

still leave questions unanswered.

Contractile response to depolarization
and calcium handling

Dystrophin has been shown to be associated with the

contractile response to depolarization in the vascular smooth

muscle. Lees et al. (1995) showed that there was an increase in

expression of dystrophin in the aortic arch and this is associated

with an increase in contractility compared to the diaphragmatic

part of the rat aorta (Table 1). Lees et al. (1995) exclusively

studied depolarization-induced contraction via response to

potassium chloride, while other mechanisms of contraction,

such as receptor-mediated contraction were not investigated in

this study. This interesting finding may suggest that dystrophin

plays a role in the contractile response to depolarization of

vascular smooth muscle. Turczynska et al. (2015) also reported

functional aspects of mdx vessels such as impaired KCl-induced

contraction and impaired alpha1-adrenoceptor-mediated

contraction. Future studies are needed to more thoroughly

understand the mechanisms underlying the relationship

between dystrophin and the contractile response to

depolarization in vascular smooth muscle. Most recently, a

group has determined that VSMCs from mdx mice have a

dysregulation of intracellular calcium due to overactivation of

transient receptor potential canonical channels (Lopez et al.,

2020). Lopez et al. (2020) demonstrated that mdx VSMCs have

not only increased calcium but also increased sodium. These

authors claim that mechanical stretch was able to induce the

increased cation influx in addition to pharmacological

activation of TRPC channels with 1-oleoyl-2-acetyl-sn-

glycerol (OAG). These data suggest that the lack of

dystrophin in mdx VSMC makes these cells more susceptible

to contraction induced damage which is again consistent with

the findings in skeletal muscle (Lopez et al., 2020). These results

are seemingly contradictory to the reduced contraction

observed by other groups (Rivier et al., 1997; Mancinelli

et al., 1999; Dye et al., 2007; Turczynska et al., 2015). This

contradiction could be due to the fact that VSMC contractility is

not solely based on calcium handling, but alternative proposed

mechanisms include actin availability and cytoskeletal

remodeling (Kim et al., 2008). As VSMC contractility is a

complicated phenomenon, and there are contradictions in

the field about the effects of dystrophin on VSMC

contractility, additional studies are needed to address these

interesting questions.

Vasoconstriction and vasorelaxation

Lack of dystrophin has been studied in the context of

vasoconstriction and vasorelaxation. Turczynska et al. (2015)

reported reduced ability of VSMCs from mdx mice to relax

with nitric oxide stimulation during isometric force

measurement. Kodippili et al. (2021) studied the vascular

endothelium and smooth muscle in a large animal model of

muscular dystrophy (Table 1). These authors report

significantly reduced maximum tension induced by

vasoconstrictors phenylephrine and endothelin-1 in the

canine model of muscular dystrophy (Kodippili et al.,

2021). Additionally, acetylcholine-mediated endothelial

dependent vasorelaxation was significantly decreased, while

exogenous nitric oxide induced vasorelaxation was

significantly increased (Kodippili et al., 2021). These

findings suggest that dystrophin may play a crucial role in

maintaining structure and function of the vascular

endothelium and smooth muscle. Some of these findings

contradict the results of Turczynska et al. (2015),

specifically the response to nitric oxide. These

contradictions might be due to endothelium playing a role

and the different models used, mdx mice compared to the

canine model. Due to the contradictions in the field, future

studies are needed to fully explain the relationship between
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dystrophin and the structure and function of the vascular

endothelium and smooth muscle.

Contribution of vascular defects to DMD
pathology

Some studies suggest that angiogenesis, the formation of

new blood vessels, is important to the pathology of muscular

dystrophy (Mendell et al., 1971; Engel and Hawley, 1977;

Miike et al., 1987; Sugino et al., 1991; Loufrani et al., 2004). In

1977, two patients were studied and determined to have

lesions in skeletal muscle due to ischemia caused by

peripheral vascular disease essentially identical to the early

muscle lesions of DMD patients and carriers of the disease

(Engel and Hawley, 1977). This suggests grouped necrosis in

the muscles of dystrophy patients could be due to

compromised capillary blood supply and ischemia (Mendell

et al., 1971; Engel and Hawley, 1977). The theory that

dysfunctional vasculature contributes to muscular

dystrophy was debated in the field and some groups

determined there was no direct evidence for severe

abnormalities in blood vessel morphology and blood flow

(Bradley et al., 1975; Koehler, 1977). Other groups debate

that there is validity to the theory that dysfunctional

vasculature contributes to the muscular dystrophy

phenotype (Miike et al., 1987; Sugino et al., 1991; Loufrani

et al., 2004). One group studied abnormalities in blood vessel

structure in muscle biopsy specimens from DMD patients

(Miike et al., 1987). They concluded that the capillaries in

DMD patients were almost completely obstructed, they had

narrow lumens, there was replication of the basement

membrane around the vessels, and degenerating and

regenerating capillaries were also observed (Miike et al.,

1987). The same group also demonstrated abnormalities in

blood vessel structure in a unique form of muscular dystrophy

(Sugino et al., 1991). More recent work focuses on the

vasculature in muscles of mdx mice (Loufrani et al., 2004).

Immunostaining of arterioles in gracilis muscle and whole-

mount imaging of tibialis anterior muscle, show a decrease in

the vasculature of mdx mice in comparison to wild-type mice

(Loufrani et al., 2004). These studies highlight that the

vasculature of patients and animal models with dystrophy

is abnormal and suggests that dystrophin may be important to

the vascular system (Mendell et al., 1971; Engel and Hawley,

1977; Miike et al., 1987; Sugino et al., 1991; Loufrani et al.,

2004) (Table 1). More recently, Bucher et al. (2019) studied

retinal function and vascular morphology in response to age

and retinal ischemia in mdx mice. This group concluded that

retinal function was reduced with age in male mdx mice

(Bucher et al., 2019). These studies indicate that the

vascular system, and more importantly angiogenesis, are

clearly affected in the absence of dystrophin. Other

symptoms of muscular dystrophy such as cognitive

impairment and cardiomyopathy could be associated with

vascular smooth muscle dysfunction. Mutations in

dystrophin and sarcoglycans result in different muscular

dystrophies and can be associated with cardiomyopathy

(Towbin, 1998; Melacini et al., 1999). One group

determined in a mouse model that depletion of the

sarcoglycan-sarcospan complex in vascular smooth muscle

perturbs vascular function, initiates cardiomyopathy, thereby

worsening muscular dystrophy (Coral-Vazquez et al., 1999).

This finding suggests that the lack of DAPs in the vasculature

may contribute to the DMD phenotype and the DAPs may

have a functional role in vascular smooth muscle. Another

interesting symptom of muscular dystrophy that may relate to

vascular smooth muscle disfunction is cognitive impairment.

One group studied cerebral perfusion in patients with DMD

(Doorenweerd et al., 2017). It was concluded that globally

reduced cerebral perfusion is found in DMD (Doorenweerd

et al., 2017). Another group came to the same conclusion, that

cerebral perfusion was reduced, in the mdx model mice

(Goodnough et al., 2014). Although these authors did not

directly investigate the molecular function of dystrophin in

the vasculature in the brain, these studies suggest that

dystrophin may be important to vascular function in the

brain. Thus, not only does muscular dystrophy result in

defective skeletal muscle and impaired vascular function

but additional symptoms such as cardiomyopathy and

cognitive impairment might also suggest that dystrophin

and the DAPs may be important to vascular smooth muscle.

Therapeutic strategies for DMD should
consider role of dystrophin in vascular
smooth muscle

Additionally, studies suggest that it may be possible to

therapeutically recover patients’ poor vascular function

ultimately improving the muscular dystrophy phenotype.

Recently, an mouse model was generated to study smooth

muscle and dystrophin. Ito et al. (2006) generated transgenic

mdx mice that expresses dystrophin only in smooth muscle

(SMTg/mdx). These SMTg/mdx mice demonstrated that

restored dystrophin expression in the vascular smooth muscle
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partially corrects the abnormal α-adrenergic vasoconstriction in

exercising skeletal muscle (Ito et al., 2006). These findings suggest

that dystrophin in vascular smooth muscle might be functionally

important. This also argues that therapeutic strategies for DMD

should consider the role of dystrophin in the vascular smooth

muscle. This review highlights that there is a major need for more

research investigating the role of dystrophin in vascular smooth

muscle, which could ultimately add to therapeutics for muscular

dystrophies.
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