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Introduction: Pulsed electric field (PEF) cardiac ablation has been recently

proposed as a technique to treat drug resistant atrial fibrillation by inducing cell

death through irreversible electroporation (IRE). Improper PEF dosing can result

in thermal damage or reversible electroporation. The lack of comprehensive

and systematic studies to select PEF parameters for safe and effective IRE

cardiac treatments hinders device development and regulatory decision-

making. Human induced pluripotent stem cell-derived cardiomyocytes

(hiPSC-CMs) have been proposed as an alternative to animal models in the

evaluation of cardiac electrophysiology safety.

Methods: We developed a novel high-throughput in vitro assay to quantify the

electric field threshold (EFT) for electroporation (acute effect) and cell death

(long-term effect) in hiPSC-CMs. Monolayers of hiPSC-CMs were cultured in

high-throughput format and exposed to clinically relevant biphasic PEF

treatments. Electroporation and cell death areas were identified using

fluorescent probes and confocal microscopy; electroporation and cell death

EFTs were quantified by comparison of fluorescent images with electric field

numerical simulations.

Results: Study results confirmed that PEF induces electroporation and cell

death in hiPSC-CMs, dependent on the number of pulses and the amplitude,

duration, and repetition frequency. In addition, PEF-induced temperature

increase, absorbed dose, and total treatment time for each PEF parameter

combination are reported.

Discussion: Upon verification of the translatability of the in vitro results

presented here to in vivo models, this novel hiPSC-CM-based assay could

be used as an alternative to animal or human studies and can assist in early

nonclinical device development, as well as inform regulatory decision-making

for cardiac ablation medical devices.
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1 Introduction

Cardiac catheter ablation is a standard electrophysiological

procedure for treatment of atrial fibrillation (AF) in patients who

are non-responsive to medications (Wilber et al., 2010; Khan

et al., 2014; Santangeli et al., 2014; Al-Khatib et al., 2020). AF can

lead to serious complications, including blood clots, stroke, and

heart failure. The number of people in the United States affected

by AF is projected to increase from 2.3 million to more than

10 million by the year 2050 (Chen and Shen, 2007). Annually,

approximately 75,000 people in the United States are estimated to

undergo cardiac ablation (Mansour et al., 2017).

Current state-of-the-art ablation modalities, including

radiofrequency (RF) ablation and cryoablation, rely on tissue

heating or cooling to destroy the aberrant arrhythmic cardiac

substrate (Habibi et al., 2021; Calvert et al., 2022). While these

modalities are relatively non-invasive and are considered safe and

effective, they have significant limitations. These include high AF

recurrence rates (Balk et al., 2010; Sultan et al., 2017), prolonged

procedure times, and rare but serious complications related to the

damage of off-target neighboring structures, such as pulmonary

vein (PV) stenosis, phrenic nerve paralysis, and fatal esophageal

fistula (Bertaglia et al., 2007; Spragg et al., 2008; Kearney et al.,

2014; Calkins et al., 2017; Steinbeck et al., 2018; Samuel et al.,

2019).

Pulsed electric field (PEF) cardiac ablation, also known as

pulsed field ablation (PFA), has been proposed as an alternative

to thermal ablation for its use of irreversible electroporation

(IRE) to achieve the therapeutic effect (Reddy et al., 2018; Maor

et al., 2019; Sugrue et al., 2019; De Potter et al., 2021; Verma et al.,

2021; Gunawardene et al., 2022). When PEF waveform

parameters such as pulse amplitude, duration, number, and

repetition frequency are properly selected, PEF results in non-

thermal cell permeabilization, also known as electroporation

(Davalos et al., 2005; Miklavcic and Davalos, 2015; Aycock

and Davalos, 2019). Cell electroporation produces changes in

ionic concentration gradients, and thus in the cell homeostasis,

that can reach sufficient duration or intensity to generate

irreversible structural changes, leading to either immediate

necrosis or programmed cell death processes (Batista

Napotnik et al., 2021). Taken together, PEF cardiac ablation,

by avoiding thermal effects, has the potential to improve patient

safety and enables the treatment of areas where procedures would

be challenging due to the risk of off-target damages associated

with thermal ablation approaches.

PEF preclinical studies on animals have been performed on

epicardium, PVs, endocardium, coronary vessels, cardiac ganglia,

and surrounding structures, such as the phrenic nerve and

esophagus (Lavee et al., 2007; Hong et al., 2009; Zager et al.,

2016; Stewart et al., 2019; Caluori et al., 2020; Stewart et al., 2021).

Recently, the first published report of acute clinical experience of

PEF cardiac ablation on humans in the United States suggested

that PEF-based PV ablation is clinically feasible (Reddy et al.,

2018). Nevertheless, several factors need to be addressed to

optimize PEF cardiac ablation and enable its widespread use

(Verma et al., 2021). Specifically, PEF parameters and electrode

configurations should be carefully selected to optimize

therapeutic effects and minimize potential risks, such as

undesired muscular contraction and thermal heating (Arena

et al., 2011). For example, studies have demonstrated that

short biphasic pulses (i.e., microsecond range) can reduce

electrolytic contamination (Kotnik et al., 2001),

neuromuscular stimulation, and pain (Fusco et al., 2021),

while maintaining electroporation efficacy; thus, this pulse

shape is commonly used in the clinic (Reddy et al., 2018;

Reddy et al., 2020a; Reddy et al., 2020b; Kawamura et al.,

2021a; Kawamura et al., 2021b; Nakatani et al., 2021; Reddy

et al., 2021; Verma et al., 2022). However, optimal treatment

protocols are yet to be determined.

Preclinical studies aimed at quantifying the electric field

threshold (EFT) for cardiac electroporation used various PEF

parameters and animal models (Xie et al., 2015; Xie and Zemlin,

2016; Semenov et al., 2018; Azarov et al., 2019; Neuber et al.,

2019; Heller et al., 2021). These publications suggest that EFTs

for electroporation are treatment dependent. However, the lack

of comprehensive and systematic investigations to assess EFTs of

cardiac tissues for a range of PEF parameters, together with the

lack of human in vitro models to evaluate PEF cardiac ablation

device safety and effectiveness, delays regulatory decisions and

places a significant burden on animal models (Harris et al., 2013).

A recent study in which AC16 cells were exposed to a limited

range of PEF treatments showed how human cardiomyocytes in a

monolayer culture could be used to determine the relationship

between ablation threshold and PEF parameters (Baena-Montes

et al., 2022). While the study supports the feasibility of in vitro

assessment of PEF cardiac ablation, AC16 expression patterns of

mRNA profile and cardiomyocyte markers showed low similarity

to primary cells regardless of the differentiation method adopted

(Gulyas-Onodi et al., 2022).

On the contrary, patient-derived human induced pluripotent

stem cells-derived cardiomyocytes (hiPSC-CMs) show

molecular, mechanical, electrophysiological, metabolic, and

ultra-structural properties similar to primary cells (Yang et al.,

2014; Ribeiro et al., 2015). In fact, recent results demonstrated

that hiPSC-CMs are amore appropriate model for in vitro studies

than cell lines due to their higher similarity to adult cardiac tissue

(Onodi et al., 2022). Both 2D and 3D formats have been

increasingly used as in vitro platforms for preclinical drug

screening and development. These approach has been

validated in multi-site studies (Blinova et al., 2018) including

chronic studies (Narkar et al., 2022a), and the best practice

recommendations for use of these methods in drug safety

assessment has been published (Gintant et al., 2020). More

recently, hiPSC-CMs have been proposed as a valid alternative

to animal models in the evaluation of cardiac electrophysiology

medical devices (Casciola et al., 2020; Feaster et al., 2021; Casciola
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et al., 2022; Feaster et al., 2022; Narkar et al., 2022b). Here, we

establish a novel, species-relevant, standard laboratory protocol

to evaluate and optimize PEF cardiac ablation parameters using

hiPSC-CMs in a high-throughput monolayer format.

This work is part of a larger effort to improve regulatory

decision-making and support safety and effectiveness studies

of cardiac electrophysiology medical devices. Here, we

demonstrate that hiPSC-CMs respond to changes in pulse

duration, number, amplitude, and repetition frequencies by

acute, i.e., reversible, and long term, i.e., irreversible,

electroporation. We systematically varied one parameter at

a time to quantify electroporation and cell death EFTs, as well

as possible thermal increase. This unique preclinical in vitro

assay provides a foundation for PEF cardiac ablation

treatment planning and optimization, with the potential to

accelerate device development and the regulatory review

process.

2 Materials and methods

2.1 Cell culture and maintenance

HiPSC-CMs, iCell Cardiomyocytes2 catalog # 01434

(Fujifilm Cellular Dynamics, Inc., Madison, WI), were

handled according to the manufacturer’s instructions

(fujifilmcdi, 2022). HiPSC-CMs used in this study were

derived from the hiPSC line, which was reprogrammed from

fibroblast donor tissue isolated from an apparently healthy

normal Caucasian female <18 years old (Ma et al., 2011;

Feaster et al., 2021). Briefly, hiPSC-CMs, in a concentration of

110,000–115,000 cells per well, were plated on 96-well Nanofiber

plates, catalog # 9602 (Nanofiber Solutions, Dublin, OH), coated

with Matrigel substrate, catalog # 356230 (Corning Inc.,

Somerville, MA), in a 1:60 DMEM dilution, catalog # 30-2006

(ATCC, Manassas, VA). Cells were maintained using iCell

Cardiomyocytes Maintenance Medium, catalog #M1003

(Fujifilm Cellular Dynamics, Inc.). Spontaneously beating,

100% confluent hiPSC-CM monolayers were used for PEF

treatment testing on days 7–14 after plating. Hoechst-33342

(Ho) (2.25 µM), catalog #H3570 (Invitrogen, ThermoFisher

Scientific, Waltham, MA) dye, labeling the nuclei of all cells,

was used to assess monolayer confluency and integrity before

pulsing (see Supplementary Figure S1). Two solutions were used

during cell staining, PEF treatment, and imaging: iCell

Cardiomyocytes Serum-Free Medium (iCM-SF), catalog

#M1038, (Fujifilm Cellular Dynamics, Inc.), or modified

Tyrode’s solution containing (in mM) 140 NaCl, 5 KCl,

2 CaCl2, 2 MgCl2, 5 HEPES, 10 Glucose, pH 7.4 with NaOH

and electric conductivity of 1.8 S/m at room temperature, and

2.3 S/m at 37°C. PH and conductivity were measured with an

S47 SevenMulti dual meter pH/conductivity (Mettler Toledo,

Columbus, OH).

2.2 PEF treatments delivery

A pair of custom stainless-steel needle electrodes (.61 mm

diameter, 1.7 mm distance center to center) were connected to an

electric pulse generator, model FPG 1B50-1UL10 (FID GmbH,

Germany) that was controlled with a digital delay generator,

model 577-4C (Berkeley Nucleonics Corporation, San Rafael,

CA). As in previous reports (Gudvangen et al., 2022), we used a

3D printer, model Anet A8 (Shenzhen Anet Technology Co.,

China), as an automated robotic arm for accurate positioning of

the electrodes orthogonally to the cell monolayer; the tip of the

electrodes was in contact with the bottom of the well. An

electrode holder, connected to the 3D printer, was equipped

with a spring system to minimize the pressure of the

electrodes on the bottom of the plate. The 3D printer was

programmed to move the electrodes to the center of each well

with a 15–50 s delay, depending on the PEF parameter

selection. The Anet A8 stage was heated to 50°C to adjust

the pretreatment temperature of the Tyrode solution to

37.5°C ± 1.0°C. A multi-well plate holder (Olympus,

Center Valley, PA) was secured, i.e., glued, to the 3D

printer stage to avoid relative movements between

electrodes and the multi-well plate. Pulse shape and

amplitude were monitored with an oscilloscope

(Tektronix, Beaverton, OR) connected to a 1:100 voltage

probe, model P2501 (Owon Technology Inc., China) and an

electric current probe, model TEK TCP 2020 (Tektronix).

A schematic of the experimental setup is reported in

Supplementary Figure S2. The biphasic electric pulses were

characterized by the following parameters: pulse repetition

frequency (PRF), defined as the inverse of the pulse

repetition period (PRP); number of biphasic pulses (p#)

delivered in a single train; phase amplitude (Vp); phase

duration (tp); and interphase delay (dp) (Figure 1A). For

each combination of PEF parameters, Vp was gradually

increased until a clear measurable electroporation

region was produced, while avoiding higher values of Vp

that caused cell detachment and monolayer dissociation

(see an example in Supplementary Figure S3). The

interphase delay was maintained for all the PEF

combinations at 1 µs.

2.3 PEF-induced temperature
measurements

Thermal changes due to PEF treatments were measured

using a non-metallic optic STB probe, catalog # L-00-

14500-01 (Advanced Energy Industries, Denver, CO) with

a response time of .25 s, sampling rate of .02 s, and diameter

of .5 mm. The STB probe was positioned adjacent and

parallel to one of the electrodes (Supplementary Figure

S2). To eliminate the influence of the STB probe on the
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PEF treatments, temperature measurements were carried out

in cell-free plates separately from the experiments used for

performing the PEF treatment analysis, as previously

described (Arena et al., 2012). A representative

temperature measure over time and the endpoints

defined as maximum temperature increase (ΔTmax), 50%

temperature recovery (ΔT50%), and time-to-50%-recovery

(Δt50%) are shown in Figure 1B.

FIGURE 1
Pulsed electric field (PEF) pulse parameters and temperature endpoints (A) Representative voltage waveform (Vp = 236 V, tp = 10 µs, dp = 1 µs,
PRP = .1 s), and relevant PEF parameters definition. The pulse repetition period is the inverse of the pulse repetition frequency reported in the text.
The voltage amplitude overshoot was 20%–60% of the phase amplitude. (B) Representative temperature measure in response to a PEF treatment
(Vp = 236 V, tp = 10 µs, p# = 100, PRF = 10 Hz) delivered at approximately 10 s from the beginning of the recoding; depicted are relevant
temperature endpoints, i.e., maximum PEF-induced temperature increase (ΔTmax), and time to 50% temperature recovery (Δt50%).

FIGURE 2
Human induced pluripotent stem cell-derived cardiomyocyte (HiPSC-CM) staining, electroporation, imaging, and analysis timeline. YP1 was
added to the modified Tyrode solution 30 min prior to PFE treatments. YP1 images were acquired 30 min after PFE treatment to evaluate the full
extent of cell electroporation. Immediately after imaging, cells were moved to a 37°C 5% CO2 incubator in iCM-SF. During this time, the plasma
membrane of cells reversibly electroporated resealed. Fifteen minutes prior the 4 h imaging, iCM-SF was substituted by modified Tyrode
solution containing PI staining permanently damaged cell membranes. Overlay of green and red channels showed a PI-stained area surrounding the
electrodes and a peripheral outer YP1-stained area of the electroporated cells. The transition between these regions was gradual, with a resulting
region where cells stained with YP1 and cells stained with PI were detected. Analysis was performed for YP1 and PI staining at the end of the
experiments to compare the areas identified by fluorescence staining to the area identified by electric field isolines (light blue). Gray circles indicate
the footprints of the electrodes positioned orthogonally to the cell monolayer.
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2.4 Fluorescence imaging

PEF-treated hiPSC-CM monolayers were stained with two

cell-impermeable fluorescent probes: YO-PRO-1 Iodide (YP1)

(5 µM) and Propidium Iodide (PI) (15 µM), catalog numbers

Y3603 and P3566, respectively, (Invitrogen, ThermoFisher

Scientific), at different times (Figure 2). 15 min before

experimental cells were washed with 200 µl per well of

dulbecco’s phosphate-buffered saline DPBS, catalog number

14190-144 (Gibco, ThermoFisher Scientific). DPBS was

immediately replaced with 100 µl per well of modified Tyrode

solution containing YP1. Stained cells by YP1 were imaged using

confocal microscopy 30 min after PEF treatment. After imaging,

the Tyrode solution was changed to iCM-SF, 100 µl per well, and

plates were returned to a 37°C, 5% CO2 cell culture incubator. To

stain dead cells, iCM-SF was substituted with Tyrode containing

PI 15 min prior imaging and imaged .5, 2, 4, 6, and 24 h after PEF

treatment. The PI-stained area increased up to 2–4 h after PEF

treatment, without further expansion at later time points

(Supplementary Table S1).

For all the experiments described here, the 2–4 h timepoint

was used to assess cell death areas. The laser scanning confocal

microscope, model FluoView 3000 (Olympus) (Supplementary

Figure S2) equipped with an environmental chamber (i.e., 37°C

and 5% CO2), model OKO-H301-OLY-IX3-SVR (Okolab stl,

Italy), was used to collect fluorescent images from multiple wells

using a 4X, NA/0.16 dry objective. The following settings and

conditions were chosen: resonant one-way scanning mode with

four times the average line and sequential scan per line (.067 µs/

pixel, 520.025 ms/frame); YP1 was excited with a 488 nm laser

and the emission of the dye was detected in the 488–540 nm

range (varied to maximize signal for each plate); PI emission was

excited with a 561 nm laser and detected in the 570–670 nm

range (all plates).

2.5 Analysis of electroporation and cell
death areas

To quantify the electroporated area, YP1-stained regions

were analyzed with ImageJ software (NIH, Bethesda, MD)

(Schneider et al., 2012). Images were converted to an 8-bit

binary format (background threshold 12% ± 1%). Stacks of

binary images were used as input to the Analyze Particle

function that identified and quantified the area of the YP1-

stained regions. The electrodes’ imprint area was quantified

from sham exposures, i.e., .94 ± .18 mm2, and subtracted from

the electroporated area when needed.

PI-stained regions were analyzed using a custom MATLAB

(MathWorks Inc., Natick, MA) code (Supplementary Appendix

S1) that accounted for the gradual decrease in PI fluorescence at

the border of the irreversibly electroporated region. Our code

discretized each image in a matrix of 128 × 128 elements; for each

element, the sum of red pixels with intensity above background

(i.e., approximately 5%–15% of maximum intensity) was

computed and normalized to 100%. The IRE area was

obtained according to Eq. 1, multiplying the total number (N)

of pixels (px) above a threshold value (th) by a conversion factor

pixel2 to mm2 (cf).

IRE area � cf∑
128x128

i�1 Ni px> th( ) (1)

In our analysis, to identify the margin of cell death area

excluding regions where both YP1 and PI staining were present,

th was set as 30% of the maximum density count (Supplementary

Figure S4).

2.6 Numerical simulations and estimation
of electroporation and cell death EFTs

The external edge of the electroporation and cell death areas

correspond to the minimum electric field, i.e., threshold,

necessary to induce the effect. In this study, electroporation

and cell death EFTs were identified by comparing the areas

identified by YP1 and PI staining, respectively, to the electric field

distribution from numerical simulations (Arena et al., 2012; Neal

et al., 2014; Aycock et al., 2021; Liu et al., 2021; Aycock et al.,

2022). The finite element analysis software Comsol Multiphysics

5.6 (COMSOL Inc., Stockholm, Sweden) was used to solve in

static conditions the applied electric field map in the cell

monolayer plane during pulsing. A 3D geometry of our pulse

delivery system was constructed with equivalent dimensions for

the electrodes and well used in the experimental setup

(Supplementary Figure S5).

Each treatment was performed in a single well of a 96-well

plate with a thickness of 1 mm and a radius of 3.5 mm.

Stainless-steel electrodes (4·106 S/m) were placed

perpendicular to the bottom of the well and inserted in a

2.75 mm thick layer of water with conductivity 2.3 S/m

mimicking the modified Tyrode solution at 37°C. The

geometry was surrounded by a cube of air (15 mm3 ×

15 mm3 × 15 mm3, 0 S/m). The “finer” mesh setting,

resulting in 166,212 elements, was used, with

5,910 elements for the electrodes (element volume ratio

.0419) and 27,357 elements for Tyrode solution (element

volume ratio 7·10−3). One electrode was set to an electric

potential equal to the phase amplitude of the PEF treatments,

while the other electrode was set to 0 V. Electric field contours

at varying magnitudes were created for each treatment, and

the surface area within each contour was integrated with steps

of 1 V/cm. Similarly to (Aycock et al., 2022), the curve fitting

tool in MATLAB was used to fit a two-term exponential

function to the resulting area versus electric field data.

Finally, measured electroporation and cell death areas were

used as inputs to this function to compute respective EFTs.
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To estimate the temperature increase in adiabatic conditions,

the adiabatic heating (AH, °C) was derived from the absorbed

dose (AD, mJ/g) calculated according to (Ibey et al., 2009).

Briefly, the following relationships were used:

AH � AD ∗ 0.24/1000 (2)

AD � σ
E2

ρ
· τ · 106 (3)

where τ = 2tp is the pulse duration (s), E is the electric field in the

solution (kV/cm) at the cell death threshold, ρ is the density of

the solution (~1 g/cm3), and σ is the conductivity of the solution

(mS/cm).

2.7 Statistical analysis

Data are presented as mean ± standard error. Electroporation

and cell death areas, as well as derived endpoints for a given set of

PEF parameters were calculated as an average for n = 3–8 per

group. In Figure 4, statistical analysis was performed using theMann

Whitney Test for unpaired data, significance was determined to be

p < .05 before Bonferroni correction. Temperature measurements

were calculated as an average for n = 3 per group.

3 Results

3.1 PEF treatments induce electroporation
and cell death in HiPSC-CMs

We first evaluated the effects of PEF treatments (Figure 1A)

in hiPSC-CMs. Robust electroporation and cell death of the

hiPSC-CM monolayers was observed by fluorescence staining

after PEF application (Figure 2). YP1 staining 30 min after

treatment in response to trains of p# = 300 delivered at PRF =

10, 100, and 1,000 Hz, Vp = 144, 236, and 472 V, and tp = 1, 5, and

10 µs, resulted in a PEF parameter-dependent uptake

(Figure 3A). In fact, the area of electroporation in hiPSC-CMs

varied with changes in PEF parameters. The cell death areas

indicated by delayed PI staining (Figure 3B) followed the same

PEF parameter-dependent trend as areas indicated by YP1

(Figure 3A). However, cell death areas, labeled PI, were

smaller than electroporated areas, labeled YP1, consistent with

the expectation that cells located further from the electrodes, and

therefore exposed to a lower electric field, would be more capable

of repair (reversible electroporation). These results demonstrated

that PEF treatments elicit detectable electroporation and cell

death in an in vitro human cardiomyocyte model.

FIGURE 3
Representative fluorescent images of PEF-induced electroporation in hiPSC-CM monolayers (A) The green areas between the electrodes
correspond to the location of electroporated hiPSC-CMmonolayers 30 min after treatment. (B) The red area between the electrodes correspond to
the location of dead hiPSC-CMs 4 h after treatment. The green staining at the edge of the electroporated area 4 h after treatment corresponds to the
reversibly electroporated cells. The 488 laser intensity was different in A and B to highlight YP1-stained cells at 4 h, thus background
fluorescence is more evident in (B). Two black circles on each image represent the imprints of the electrodes.
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3.2 Effect of PEF parameters on cell
electroporation and death in HiPSC-CMs

EFTs for electroporation and cell death of hiPSC-CMs were

evaluated from YP1 and PI staining, respectively, for a wide range of

PEF parameters. Pulses with tp = 1, 5, and 10 µs were delivered in

trains of p# = 50, 100, and 300 at PRF = 10, 100, and 1,000 Hz. The

EFT for cell death was inversely proportional to tp and p#, and

directly proportional to the PRF (Figure 4; Table 1). For example, we

found that for hiPSC-CMs an increase of tp from 1 to 5 µs (p# = 50,

PRF = 1,000 Hz) produced a decrease of EFT for cell death from

3.15 to 1.56 kV/cm. Increasing the p# in the train reduced the EFT

for cell death, with values down to 2.23 kV/cm for p# 300 (tp = 1 µs,

PRF = 1,000 Hz). The EFT for cell death increased from 2.86 to

3.15 kV/cm when the PRF increased from 10 to 1,000 Hz (tp = 1 µs,

p# = 50). The EFT for cell electroporation was consistently lower

than the EFT for cell death (Figure 4).

To assess the proportion of electroporated and dead cells, we

computed the ratio in percent of the EFTs determined by YP1 and

PI staining. The EFT ratio was between approximately 80%–100%,

showing a larger population of dead cells with increasing PRF and tp
(Table 1). As this ratio approaches 100%, the electroporation and cell

death areas reach a comparable surface, ideal for ablation treatments

where reversible effects are not desired.

Reduction in the EFT for cell death and in reversible

electroporation beyond the cell death region are only two of the

criteria to be considered when designing ablation strategies. PEF can

induce heating that should be minimized to avoid cell death by

thermal damage. Since temperature increase due to Joule heating is

proportional to the absorbed doses, energy delivery minimization

should be considered when selecting PEF treatment parameters.

To evaluate the energy deposition by combinations of PEF

parameters, we calculated the AD at the cell death EFT as

described in (Ibey et al., 2009). Variation in PEF parameters

produce significant changes in the AD that ranged from

approximately 20–80 J/g (Table 1). For all PEF combinations,

trains with lower p# achieved cell killing at lower doses,

i.e., 18.8–29.4 J/g for 50 p# compared to 46.8–79.9 J/g for

300 p#; for the same p# in the train, the reduction in tp and

PRF decreased the delivered dose due to the lower energy

deposition by shorter and less frequent pulse applications

(Figure 5A). High ADs might result in a non-negligible

temperature increase that should be considered a factor when

planning PEF treatments.

These results demonstrated that PEF parameters can be

modulated to reduce the EFT for cell death, undesired

reversible effects, as well as the energy deposition during

treatment. However, the high values of AD reached for certain

pulsing conditions indicated that temperature assessment is

suggested during PEF ablation.

3.3 Temperature changes during PEF
treatments

PEF-induced temperature changes (Figure 1B) were

measured in proximity to one of the electrodes

(Supplementary Figure S2). PEF treatments induced a ΔTmax

that ranged between 3°C and 11°C (corresponding to an absolute

increase in temperature from 37°C baseline to 40°C and 49°C) and a

Δt50% that ranged between 3.2 and 12.8 s. The highest ΔTmax

measured was 11°C and the maximum Δt50% 12.8 s when a train

FIGURE 4
Electroporation and cell death EFTs for various PEF parameters in hiPSC-CMs. Electroporation and cell death EFTs for all the combinations of
PEF parameters tested. Trains of 50, 100, and 300 pulses (left to right panels) and tp = 1, 5, and 10 µs were applied at PRF = 10, 100, and 1,000 Hz to
hiPSC-CMs. EFTs were calculated from electroporation and cell death areas that were quantified from the borders of YP1 and PI uptake 30 min and
4 h after PEF treatments, respectively. See text for more details. The error bars represent the standard error (95% confidence interval) for a
sample size of n = 3–8 for all data points, *,$,#p < .05, where * indicates the statistical analysis for electroporation, $ for cell death and # the statistical
analysis comparing electroporation and cell death.
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TABLE 1 Summary table reporting pulsed electric field treatment endpoints for the range of PEF parameters investigated in human induced pluripotent stem cell-derived cardiomyocytes. For all combinations of PEF
parameters tested, we reported the total treatment time (TT), electroporation (EP) and cell death (IRE) areas and EFTs, the EFTs ratio electroporation/cell death %, the measured maximum temperature change
(ΔTMax) and the 50% recovery time (t50%), the calculated absorbed dose (AD) and adiabatic heating (AH), the treatment ranking by WSM and TOPSIS methods. For all the endpoints tabled, we reported the average
and standard error.

Vp
(V)

tp
(µs)

p# PRF
(Hz)

TT
(s)a

EP area
(mm2)

IRE area
(mm2)

EP EFT
(kV/cm)

IRE EFT
(kV/cm)

EFTs
ratio%

ΔTmax (°C) Δt50% (s) AD (J/g) AH (°C) WSM TOPSIS

568 1 50 10 5 1.8 ± .12 1.56 ± .19 2.7 ± .07 2.86 ± .13 94.48 3.1 ± .1 5.8 ± .2 18.8 ± 1.7 4.5 ± .5 26 22

100 .5 1.62 ± .27 1.15 ± .21 2.83 ± .17 3.16 ± .16 89.56 3.6 ± .1 4.0 ± .2 22.9 ± 2.3 5.5 ± .6 17 26

1,000 .05 1.18 ± .24 1.16 ± .52 3.13 ± .18 3.15 ± .41 99.33 3.5 ± .1 4.0 ± .1 23.1 ± 6 5.5 ± 1.5 16 20

284 5 50 10 5 1.99 ± .26 1.78 ± .35 1.4 ± .11 1.5 ± .16 93.71 3.1 ± .1 5.7 ± .2 26 ± 5.4 6.2 ± 1.3 7 12

100 .5 1.84 ± .21 1.8 ± .31 1.47 ± .1 1.49 ± .14 98.68 3.6 ± .1 3.8 ± .2 25.6 ± 4.7 6.2 ± 1.2 5 5

1,000 .05 1.65 ± .2 1.63 ± .22 1.55 ± .1 1.56 ± .11 99.34 3.6 ± .1 3.7 ± .1 28.2 ± 3.7 6.8 ± .9 6 8

236 10 50 10 5 2.73 ± .17 2.52 ± .25 .96 ± .05 1 ± .08 95.4 3.7 ± .5 5.5 ± .2 23.2 ± 3.7 5.6 ± .9 2 2

100 .5 2.23 ± .18 2.28 ± .27 1.08 ± .06 1.07 ± .09 101.33 5.4 ± .7 3.4 ± .3 26.3 ± 4 6.3 ± 1 1 1

1,000 .05 2.1 ± .21 2.14 ± .45 1.11 ± .08 1.12 ± .15 99.41 5.9 ± .2 3.1 ± .2 29.4 ± 7.3 7 ± 1.8 3 3

568 1 100 10 10 2.49 ± .26 1.91 ± .38 2.31 ± .14 2.64 ± .25 87.46 4.5 ± .1 7.1 ± .1 32.4 ± 6.4 7.8 ± 1.6 23 27

100 1 1.82 ± .22 1.64 ± .32 2.69 ± .14 2.81 ± .22 95.85 5.6 ± .1 3.8 ± .2 36.5 ± 5.5 8.8 ± 1.4 20 23

1,000 .1 1.54 ± .14 1.47 ± .02 2.87 ± .1 2.92 ± .02 98.43 5.7 ± .1 3.5 ± .2 39.1 ± .4 9.4 ± .1 22 21

284 5 100 10 10 3.04 ± .28 2.71 ± .61 1.05 ± .08 1.16 ± .19 90.81 6.5 ± .1 6.6 ± .1 31.4 ± 9.9 7.5 ± 2.4 10 9

100 1 2.38 ± .21 2.27 ± .47 1.25 ± .08 1.29 ± .18 96.67 8.1 ± .2 3.5 ± .2 38.8 ± 10.9 9.3 ± 2.7 8 6

1,000 .1 2.15 ± .16 2.09 ± .19 1.33 ± .06 1.36 ± .08 98.19 7.6 ± .1 3.4 ± .2 42.5 ± 4.5 10.2 ± 1.1 12 10

236 10 100 10 10 3.68 ± .52 3.01 ± .82 .75 ± .08 .89 ± .19 84.71 6.9 ± .1 6.9 ± .3 37.1 ± 14.9 8.9 ± 3.6 9 11

100 1 2.96 ± .35 2.88 ± .42 .89 ± .09 .91 ± .11 97.98 9.5 ± .1 3.2 ± .2 38.6 ± 9.5 9.3 ± 2.3 4 4

1,000 .1 2.38 ± .52 2.36 ± .24 1.05 ± .14 1.05 ± .07 100.87 9.3 ± .4 3.2 ± .3 50.5 ± 6.2 12.1 ± 1.5 11 7

472 1 300 10 30 3.39 ± .27 2.77 ± .33 1.61 ± .1 1.85 ± .15 86.99 5.3 ± .1 10.9 ± .2 47.5 ± 7.5 11.4 ± 1.8 27 24

100 3 2.61 ± .21 2.15 ± .21 1.91 ± .09 2.13 ± .11 89.69 10.2 ± .2 4.3 ± .1 63 ± 6 15.1 ± 1.5 24 25

1,000 .3 1.95 ± .24 1.98 ± .22 2.24 ± .14 2.23 ± .12 100.65 8.8 ± .3 3.6 ± .2 68.7 ± 7.3 16.5 ± 1.8 25 19

236 5 300 10 30 4.03 ± .4 2.68 ± .34 .7 ± .07 .82 ± .05 84.59 5.5 ± .3 12.5 ± .7 46.8 ± 5 11.2 ± 1.2 21 16

100 3 2.73 ± .17 2.64 ± .25 .94 ± .04 .97 ± .07 97.35 11.1 ± .2 3.7 ± .1 65.2 ± 9.3 15.6 ± 2.3 13 14

1,000 .3 2.24 ± .12 2.26 ± .13 1.08 ± .04 1.07 ± .04 100.51 10.0 ± .2 2.6 ± .1 79.6 ± 5.7 19.1 ± 1.4 18 18

(Continued on following page)
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of p# = 300, PRF = 100 Hz, tp = 5 µs, and Vp = 236 V was applied.

For the longest train tested, i.e., p# = 300 at PRF = 10 Hz, the

recovery time was less than 30 s (Table 1). In general, ΔTmax

increased with p#, and tp, while PRF showed a variable trend

with often a peak at 100 Hz, suggesting that the temperature

probe, due to its response time, may underestimate the highest

temperature increase for high repetition rates, e.g., f = 1,000 Hz. To

estimate themaximum temperature increase possible independently

of specific environmental and experimental factors, we also

computed the AH at the cell death EFT, as described in (Ibey

et al., 2009). For low 50 and 100 p# the AHwasmoderate and ranged

between 4°C and 12°C (Figure 5B; Table 1). However, for higher PEF

doses, temperature values reached 20°C, likely resulting in some

thermal damage (Davalos et al., 2005).

3.4 Selection of PEF parameters for
ablation of HiPSC-CMs

Our results demonstrated that this assay allows for the

quantification of critical factors in the selection of PEF parameters

for cardiac ablation treatments. In order to select the optimal

parameters for PEF cardiac ablation among the combinations

studied in this work, we ranked the PEF treatments with two

multiple-criteria decision analysis methods. Both the Weight Sum

Model (WSM; also known as weighted linear combination or simple

additive weighting) and Technique for Order of Preference by

Similarity to Ideal Solution (TOPSIS) are multi-criteria decision

analysis methods used to rank the 27 various scenarios or

“alternatives” consisting of multiple metrics or “criteria”. The WSM

method uses aweighted sum to determine ranking, while TOPSIS uses

L2-distance to measure distance to a best-case scenario of the reported

criteria (Fishburn, 1967; Tzeng and Huang, 2011). Before processing

our data withWSM and TOPSIS, weights to each of the critical factors

considered were assigned arbitrarily considering relevance to clinical

applications: 5 to the EFT for cell death, 3 to AH, 2 to AD, 2 to ratio

electroporation/cell death EFTs, 1 to the total treatment time. Our

analysis using bothmethods ranked the following treatments as the top

two: i) p# = 50, tp = 10 µs, PRF = 100Hz, and ii) p# = 50, tp = 10 µs,

PRF = 10Hz. These PEF treatments were characterized by an EFT for

cell death equal to 1.07 and 1.00 kV/cm, an AH of 6.3°C and 5.6°C, an

AD of 26.3 and 23.2 J/g, respectively, a ratio electroporation/cell death

of 100% and 95%, and a total treatment time of .5 and 5 s (Table 1).

4 Discussion

4.1 Feasibility of PEF treatments in
HiPSC-CMs

In this study, we established a robust high-throughput

experimental protocol for efficient testing of a wide range of

PEF parameters in a commercially available in vitro humanTA
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cardiomyocyte model for cardiac ablation treatment

optimization. PEF-based cardiac ablation devices have been

gaining increasing interest for the treatment of AF in patients

that do not respond to pharmaceuticals. However, the lack of

preclinical standardized methods to optimize PEF parameter

selection for safe and efficient patient therapy has slowed

device development and regulatory decision-making. Previous

studies relied primarily on animal models or various cell lines

and reported a limited range of PEF parameters (Xie et al., 2015;

Xie and Zemlin, 2016; Semenov et al., 2018; Azarov et al., 2019;

Neuber et al., 2019; Heller et al., 2021; Baena-Montes et al., 2022).

Here, we report on an assay that enables the quantification of

electroporation and cell death in hiPSC-CM monolayers

following the application of PEF treatments with varying

pulse parameters. Combined with temperature measurements,

this approach can facilitate optimal PEF parameter selection

ensuring complete PEF-induced cardiac ablation while

minimizing undesired secondary effects (e.g., reversible effects

and thermal damage).

4.2 Considerations for parameters
selection in PEF treatments

Cell electroporation and cell death by PEF are threshold

phenomena for which reversible and irreversible cell

permeabilization occur only if the applied electric field in a

tissue reaches a certain value. While increasing Vp is the most

direct way to increase the ablation volume, it also increases the

chances of muscle contraction and temperature effects.

Minimization of the EFT for cell death by tuning different

pulse parameters enables achievement of the desired ablation

volume while keeping the Vp low (Sano et al., 2018).

Additionally, for ablation procedures, it is desirable to select

PEF parameters able to reduce the volume of reversible

electroporation that could cause stimulation outside the

ablation-targeted region or stunning and consequent

recurrence of AF. Finally, this parameter selection should

guarantee that the temperature of the tissue remains at or

below physiological ranges to avoid thermal damage.

In previous studies, needle electrodes producing a non-

uniform electric field distribution have been used to identify

the EFT of electroporation and cell death in cell monolayers and

in 3D in vitromodels (Arena et al., 2012; Sano et al., 2018; Aycock

et al., 2022; Gudvangen et al., 2022). These studies demonstrated

that the EFTs can be quantified by matching the area of the

stained surface obtained experimentally to the electric field map

obtained numerically. Using this approach, we quantified the

electroporation and cell death EFTs of hiPSC-CMs for biphasic

pulses with tp = 1, 5, and 10 µs delivered in trains of p# = 50, 100,

and 300 at PRF = 10, 100, and 1,000 Hz. Consistent with a

previous study on a different cell type (Gudvangen et al.,

2022), we found that for hiPSC-CMs tp was the PEF

parameter that mostly influenced the EFT for both

electroporation and cell death with an inversely proportional

relationship. As the tp increased by one order of magnitude, the

EFTs decreased non-linearly approximately 3 fold (see Table 1 for

absolute values). Conversely, increasing the number of pulses in the

train from 50 to 300 produced a decrease in the electroporation and

cell death EFTs of only 1.4–1.8 fold (see Table 1 for absolute values).

Preliminary data extending our results to p# = 500 resulted in

plateauing of the EFTs (data not shown), suggesting that adding

FIGURE 5
Absorbed dose and adiabatic heating at the EFT for cell death in hiPSC-CMs (A) Absorbed dose (AD) and (B) adiabatic heating (AH) calculated
from cell death EFTs for all the combinations of PEF parameters tested. Trains of 50, 100, and 300 pulses (left to right panels) and tp = 1, 5, and 10 µs
were applied at PRF = 10, 100, and 1,000 Hz to hiPSC-CMs. See text for more details. Symbols legend as labeled: p# = 50 light gray circles, p# =
100 gray squares, p# = 300 black triangles. The error bars represent the standard error for a sample size of n = 3–8 for all data points.
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pulses to the train only produced additional heating without further

widening of the electroporation and cell death areas, i.e., lowering of

the EFTs. In the range of the pulse parameters selected, increase of

the PRF by three orders of magnitude led to a moderate but

significant increase of the EFTs.

When designing a PEF-based ablation treatment, the EFT for

electroporation compared to cell death indicates possible transitory

effects, such as action potential (AP) generation, or stunning near

the ablation area. In our study, the minimum ratio of EFTs for

electroporation and cell death was 84%, showing generally a larger

population of dead cells than of reversibly electroporated cells.

Another consideration during the implementation of PEF

ablation treatments is the temperature increase due to Joule

heating. While it is often suggested that IRE ablation is a

thermal damage-free approach, PEF can produce thermal

effects if treatment parameters are not selected correctly. We

monitored temperature changes throughout the experiments and

measured a maximum temperature increase of 11°C and

maximum recovery time of 13 s. However, these

measurements are dependent on the specific experimental

environment. To estimate the worst-case scenario for

temperature increase, we computed the AH at the cell death

EFT. AH calculations, in fact, provide the maximum possible

temperature increase, since heat dissipation and heat losses are

not allowed. For low pulse numbers in the train, the AH ranged

between 4°C and 12°C, remaining below the threshold for instant

cell death by thermal damage (Davalos et al., 2005). While the

quantitative assessment of the actual thermal damage to PEF-

exposed cells was outside the scope of this paper, for higher doses

the AH reached 20°C, indicating that some degree of cell death by

thermal damage, especially close to the electrodes where the

electric field is higher, cannot be ruled out (Davalos et al., 2005;

Garcia et al., 2011; Long et al., 2014).

In summary, our results demonstrated that this assay allows

for the quantification of critical factors for the selection of PEF

parameters for cardiac ablation treatments, such as the EFT for

cell death, the ratio of EFT for electroporation/cell death, and the

temperature increase due to PEF treatment. For example, a train

of 300 pulses with tp = 10 µs, PRF = 10 Hz, with a total treatment

time of 30 s, resulted in the lowest EFT for cell death measured

(.59 kV/cm), with a ratio for EFT of electroporation/cell death at

94.4%; however, the AD was significant (48.9 J/g) as was the

temperature increase (4.3°C measured, 11.7°C calculated).

In fact, minimization of the EFT for cell death should not be the

only indicator for the selection of PEF treatments. One possible

criterion is the identification of the set of parameters that minimizes

the EFT for cell death andmaintains the ratio of electroporation/cell

death close to 100%, while reducing the AD, the thermal increase,

and the total treatment time. One way to do this is to rank PEF

treatments with a multiple-criteria decision analysis. Our analysis,

using both WSM and TOPSIS methods, indicted that the top two

PEF parameter combinations that best matched the selection

criterion above were p# = 50, tp = 10 µs, PRF = 10, and 100 Hz.

These two combinations, with respect to the one selected only based

on the minimum cell death EFT, showed a drastically reduced

treatment time, (i.e., 6-, 60-fold lower), up to 5% higher ratio of

electroporation/cell death EFTs, and an almost 50% reduction in

temperature increase and AD, with only a modest 1.8-fold increase

in EFT for cell death (see Table 1 for absolute values).

4.3 Study limitations and future work

One limitation of our study is the relatively restricted

range of PRF values investigated, due to the capabilities of our

pulse generator. Extending our results to higher PRF values

could cover common treatments in preclinical studies, such as

H-FIRE, i.e., high-frequency IRE, approaches that deliver tens

of pulses in the kHz–MHz range (Arena et al., 2011), and

cutting-edge nanosecond PEF approaches (Gudvangen et al.,

2022).

Cell detachment due to PEF application is often observed

during electroporation experiments, especially in excitable

cells with contractile properties. PEF can elicit APs by

either direct effects on voltage gated channels or as a

downstream effect of cell electroporation that leads to loss

of resting membrane potential (Casciola et al., 2019). In

cardiac cells, this ionic imbalance can lead to contraction

and eventual detachment from the plate. To enhance cell

adherence, and to avoid cell detachment and peeling of the

monolayer, we used patterned nanofiber plates. We cannot

rule out some degree of undesired membrane damage during

cell contraction induced by PEF application, which occurred

due to the limited elasticity of the plates used (Graybill et al.,

2021). This could be one possible explanation for the

unexpected gradual PI uptake we observed in our

experiments. To mitigate this limitation, future work will

investigate the impact of exposing hiPSC-CM monolayers

cultured on more flexible substrates, such as PDMS

(Herron et al., 2016), on PEF treatments.

While PFA has been mostly proposed for the treatment of

AF, our human model is composed of multiple cardiac cell

subtypes, (i.e., ventricular, atrial, nodal). Approximately 50%–

80% of the population is ventricular and the remaining 20%–50%

is a combination of nodal and atrial (Ma et al., 2011). To the best

of our knowledge, limited information is available on different

sensitivities of atrial and ventricular cardiomyocytes to PEF, with

some studies suggesting that atria are more susceptible to

electroporation than ventricles (Fedorov et al., 2008; Neven

et al., 2014). Currently, it is not clear if this difference results

from their decreased thickness and increased heterogeneity

(macroscopic tissue properties), or from different membrane

shape and structure (cellular properties). While this could be

relevant in the assessment of tissue specificity to PEF, we would

not expect significant changes in the general trends

reported here.
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Finally, our assay is based on a 2D in vitromodel, while clinical

applications involve 3D in vivo tissues. The quantitative results

presented here might differ for in vivo treatments, but general trends

regarding how the thresholds change with pulse parameters would

likely be maintained (Gudvangen et al., 2022). Additional studies

may be able to predict the ablated volume and corresponding EFTs

for specific PEF treatments in 3D tissues based on the results from

our 2D in vitro assay. To support translatability of the results

obtained with this in vitro assay to in vivo models, we are

currently implementing a computational, i.e., in silico, cardiac

model that will be coupled with the EFTs identified in this work

to predict specific ablation areas for combinations of PEF

parameters. The in silico results will be validated with

experiments on isolated perfused porcine hearts by histological

assessment of ablated tissues, justifying the in vitro assay as a

reliable surrogate for in vivo testing.

5 Conclusion

This work paves the way for a standard preclinical assay

supporting early non-clinical development of PEF-based cardiac

ablation devices and informing regulatory decision-making. Here,

we demonstrated several important findings, including: 1) hiPSC-

CMs respond to PEF treatments showing both acute (electroporation)

and long-term (cell death) effects; 2) variations in PEF parameters are

reflected in quantifiable variations of electroporation area size and

EFTs; 3) optimal PEF parameters can be selected by combining results

from EFTs and the assessment of temperature increase and reversible

effects. Furthermore, this assay can be translated to different cell types,

including tissues anatomically adjacent to the heart, to investigate

tissue specificity to PEF ablation.
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