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Phytocannabinoids, found in the plant, Cannabis sativa, are an important class

of natural compounds with physiological effects. These compounds can be

generally divided into two classes: psychoactive and non-psychoactive. Those

which do not impart psychoactivity are assumed to predominantly function via

endocannabinoid receptor (CB) -independent pathways and molecular targets,

including other receptors and ion channels. Among these targets, the voltage-

gated sodium (Nav) channels are particularly interesting due to their well-

established role in electrical signalling in the nervous system. The

interactions between the main non-psychoactive phytocannabinoid,

cannabidiol (CBD), and Nav channels were studied in detail. In addition to

CBD, cannabigerol (CBG), is another non-psychoactive molecule implicated as

a potential therapeutic for several conditions, including pain via interactions

with Nav channels. In this mini review, we provide an update on the interactions

of Nav channels with CBD and CBG.

KEYWORDS

cannabidiol (CBD), cannabigerol (CBG), voltage-gated sodium (Nav) channels,
excitability, pharmacology

Introduction

The cannabis plant contains over 120 active phytocannabinoids (Morales et al., 2017).

Among these molecules, there are some that are psychotropic, and others that are not.

Cannabidiol (CBD) is the primary non-psychotropic phytocannabinoid (Pertwee, 2008;

Ghovanloo and Ruben, 2021). CBD has received extensive attention in recent years due to

many anecdotal and some clinically substantiated reports of efficacy against various

conditions (Billakota et al., 2019; Ghovanloo and Ruben, 2021). The interest in CBD has

increased since the success of Epidiolex (therapeutic CBD) in large-scale clinical trials
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against Dravet and Lennox-Gastaut syndromes, which are severe

pediatric-onset epileptic encephalopathies (Devinsky et al., 2017;

Devinsky et al., 2018). However, despite its clinical efficacy, the

exact mechanism of action for CBD remains undetermined.

In contrast to CBD, the main psychotropic

phytocannabinoid, Δ9-tetrahydrocannabinol (THC), has a

relatively clearcut mode of action. THC is a potent agonist at

the human endocannabinoid (CB) receptors (~13–90 nM)

(Turner et al., 2017). The physiological function of these

receptors is to respond to endogenous lipid agonists,

anandamide and 2-arachidonoylglycerol (Devane et al., 1988;

Devane et al., 1992; Vogel et al., 1993; Howlett, 2005; Di Marzo,

2008). Similar to CBD, THC has been shown to possess

anticonvulsant properties in animal models; however, the

noted psychotropic effects of this compound make it a less

than ideal therapeutic candidate (Lynch et al., 2004; Pinsger

et al., 2006; Russo and Guy, 2006; Mechoulam et al., 2007;

Skrabek et al., 2008; Johnson et al., 2010; Ware et al., 2010).

CBD has low affinity for the CB receptors, where it has

mild antagonistic effects (Tham et al., 2019). Therefore, CB-

independent targets are the most likely molecular mechanisms

underlying CBD’s efficacy. CBD was shown to interact with

GPR55 receptors (Sylantyev et al., 2013; Kaplan et al., 2017),

which are proteins that are expressed in excitatory and

inhibitory synapses and which modulate synaptic plasticity.

CBD is also a modulator of several TRP channels (De

Petrocellis et al., 2011; De Petrocellis et al., 2012; Hassan

et al., 2014; Pumroy et al., 2019), 5-HT1A receptors (Campos

and Guimarães, 2008; Fogaça et al., 2014; Marinho et al.,

2015), and an inhibitor of adenosine reuptake by voltage-

dependent anion channel 1 (Rimmerman et al., 2013).

Importantly, CBD is an inhibitor of voltage-dependent

sodium (Nav) channels (Ghovanloo et al., 2018; Ghovanloo

and Ruben, 2021; Zhang and Bean, 2021), some potassium

channels (e.g., Kv2.1) (Ghovanloo et al., 2018; Orvos et al.,

2020), calcium channels (Ross et al., 2008) and, in contrast, an

activator of Kv7 channels in the nanomolar range (Zhang

et al., 2022). Additionally, CBD directly modulates the

biophysical properties of the bio-membrane itself

(Ghovanloo et al., 2021; Ghovanloo et al., 2022b; Guard

et al., 2022), which may facilitate an allosteric modulation

of membrane proteins including, but not limited to, those

noted above.

Among the CBD targets, the family of Nav channels are

particularly interesting for three reasons. First, Dravet syndrome,

the most notable condition for which CBD is efficacious, is

commonly linked to genetic mutations in Nav1.1 (Yu et al.,

2006; Kalume et al., 2007, 2015; Dravet, 2011; Devinsky et al.,

2014; Peters et al., 2016; Gorman et al., 2021; Fouda et al., 2022).

Nav1.1 is a key regulator of excitability in inhibitory circuits

within the central nervous system. Second, CBD is reputed to

have therapeutic value, substantiated by preclinical and animal

studies, for a variety of excitability related disorders including

pain, seizures, muscular problems, and arrhythmias, among

others (Wade et al., 2004; Iannotti et al., 2019; Ghovanloo and

Ruben, 2021). Dysfunction of various Nav channels in different

tissues could trigger any of the noted conditions (Ghovanloo

et al., 2016; Fouda et al., 2022). Third, amphiphilic compounds

(e.g., Triton X-100) (Lundbæk et al., 2010) that modulate

membrane elasticity (with properties that are similar to CBD)

have been shown to allosterically stabilize Nav channel

inactivation (Lundbæk, 2005; Lundbæk et al., 2010;

Ghovanloo et al., 2021; Ghovanloo et al., 2022b). These

reasons prompted us and others to study effects of CBD on

Nav channels in detail over the past several years. CBD is now

established as an effective Nav channel inhibitor (Ghovanloo

et al., 2018; Fouda et al., 2020; Sait et al., 2020; Ghovanloo et al.,

2021; Ghovanloo and Ruben, 2021; Zhang and Bean, 2021).

Furthermore, these investigations suggested Nav channels are a

promising pathway for cannabinoid-mediated reductions in

macro excitability, with a substantial therapeutic potential.

This pathway could be explored not just with CBD, but also

with other compounds with similar physicochemical properties.

A common precursor for THC and CBD is cannabigerol

(CBG) (Nachnani et al., 2021). Like THC (ChEMBL-calculated-

LogD = 5.94) and CBD (ChEMBL-calculated-LogD = 6.60), CBG

(ChEMBL-calculated-LogD = 7.04) is also a highly hydrophobic

compound. Although CBG is less well studied than THC or CBD,

the existing literature suggests that CBG’s pharmacological

profile falls in between these two cannabinoids. Importantly,

while CBG’s affinity for CB receptors is higher than CBD, CBG is

non-psychotropic (Nachnani et al., 2021). This suggests that

CBG could work through both CB-dependent and CB-

independent (e.g., Nav channels, TRP channels, etc.) pathways

without THC’s unwanted psychoactive effects (Muller et al.,

2019; Ghovanloo et al., 2022a). With this combination of

properties, CBG offers the potential to be a superior

therapeutic compound than either CBD or THC. A

comparison of the key targets between CBD and CBG is

provided in Table 1.

Much of the molecular details of CBD’s interactions with Nav

channels is reviewed in Ghovanloo and Ruben, 2021. In this short

report, we provide new important updates on Nav channel

mediated-cannabinoid pathway with a focus on CBD and CBG.

Cannabidiol—Mechanism of action
on sodium channels

We previously found that CBD is a non-selective Nav

channel inhibitor. Using voltage-clamp experiments, we found

that CBD inhibits all human Nav1.1-7 from the inactivated

states, with potencies ranging from 1.9 to 3.8 µM, and steep

Hill slopes of ~3. We also found that CBD imparts similar effects

on Nav gating: inhibiting Gmax without changing voltage-

dependence of activation, but hyperpolarizing steady-state
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inactivation and slowing recovery from inactivation (Ghovanloo

et al., 2018). Furthermore, we found that when Nav channels

enter deeper inactivated states, CBD slows the recovery kinetics

even further, consistent with state-dependent Nav channel

inhibition. CBD has an approximately 10-fold state-

dependence, which makes it a moderately state-dependent

Nav channel inhibitor (Ghovanloo et al., 2018; Ghovanloo

and Ruben, 2021). From a molecular perspective, it may be

theoretically conceivable to use CBD against Nav

channelopathies that greatly impair inactivation (Ghovanloo

et al., 2020).

The effects of CBD on Nav channels are the result of

interactions at the interface of the channel pore and fenestrations

in which CBD directly blocks the pore (in part via the local

anesthetic phenylalanine), and alterations to the membrane

elasticity which indirectly stabilizes Nav channel inactivation

(Figure 1A). These results were elucidated using structural- (Sait

et al., 2020), functional- (Ghovanloo et al., 2018, 2021), and

molecular dynamics simulation-based (Ghovanloo et al., 2021)

studies. It is important to note that the drug pathway from the

membrane phase and through the Nav channel fenestrations is

pharmacologically important, and has been elucidated with various

drugs previously (Hille, 1977; Gamal El-Din et al., 2018).

One of CBD’s main proposed clinical application is in pain

treatment (Ward et al., 2014). There are several different Nav

channels within the peripheral sensory pathway (Rush et al.,

2007; Dib-Hajj et al., 2010), which include both tetrodotoxin-

sensitive (TTX-S) and resistant (TTX-R) (Nav1.8/9) subtypes

(Cummins et al., 2007; Bennett et al., 2019). In contrast to most

other Nav channels, the TTX-R channels have a hyperpolarized

voltage-dependence of slow inactivation relative to their fast

inactivation and a more rapid entry into slow inactivation

than other Nav channels (Vilin and Ruben, 2001; Blair and

Bean, 2003; Ghovanloo et al., 2016). Therefore, the slow

inactivation properties of these channels can limit repetitive

firing in their native environment. Because of these properties,

drugs that target slow inactivated states could be effective for

reducing repetitive firing in sensory neurons.

A recent study determined that CBD at 500 nM has tight

binding to the slow inactivated states of Nav1.8 (Zhang and Bean,

2021). These low concentrations of CBD had little effect on the

first several action potentials, but as the current injection became

larger, CBD reduced firing. Furthermore, CBD reduced the

action potential height, widened the action potential, reduced

afterhyperpolarization, and increased the propensity of entering

depolarization block (Zhang and Bean, 2021).

Another recent study has shown that CBD-dominant

nutraceutical products can inhibit Nav channels even more

potently than pure CBD (difference is in the order of

nanomolar to low micromolar range) (Milligan et al., 2022).

This suggests that individual components of these nutraceutical

products, such as other phytocannabinoids and terpenes, may

synergistically further modulate or inhibit Nav channels

(Milligan et al., 2022).

In addition to Nav channels, a new study showed that CBD at

sub-micromolar concentrations, hyperpolarizes the voltage-

dependence of Kv7.2/3. This shift results in an enhancement

of the M-current which has a powerful effect on dampening

down neuronal excitability and has previously been clinically

exploited by effective drugs such as Retigabine (Rundfeldt and

Netzer, 2000). This effect may be a key contribution to the

anticonvulsive and proposed analgesic activities of CBD,

independently of other ion channel modulating effects (Zhang

et al., 2022).

TABLE 1 Comparison of a list of key receptors and ion channel targets between CBD and CBG. See (Almeida and Devi, 2020; Ghovanloo and Ruben,
2021; Nachnani et al., 2021) for more extensive reviews of these targets.

Target CBD CBG References

CB1 Inverse agonist/
antagonist

Weak agonist (Cascio et al., 2010; Pollastro et al., 2011; Muller et al., 2019)

CB2 Inverse agonist Partial agonist (Cascio et al., 2010; Pollastro et al., 2011; Muller et al., 2019)

GPR55 Antagonist Unknown (Kaplan et al., 2017; Harding et al., 2018)

Nav Inhibitor Inhibitor (Ghovanloo et al., 2018; Sait et al., 2020; Ghovanloo et al., 2021; Zhang and Bean, 2021; Ghovanloo et al., 2022a)

TRPA1 Agonist Agonist (De Petrocellis et al., 2011; Pollastro et al., 2011; Muller et al., 2019)

TRPV1 Agonist Agonist (De Petrocellis et al., 2011; Pollastro et al., 2011; Muller et al., 2019)

TRPV2 Agonist Agonist (De Petrocellis et al., 2011; Pollastro et al., 2011; Muller et al., 2019)

TRPV3 Agonist Agonist Muller et al. (2019)

TRPV4 Agonist Agonist Muller et al. (2019)

TRPM8 Antagonist Antagonist (De Petrocellis et al., 2011; Pollastro et al., 2011; Muller et al., 2019)

Kv7 Potentiator Unknown Zhang et al. (2022)

Kv2.1 Inhibitor Unknown Ghovanloo et al. (2018)

Cav Inhibitor Inhibitor (Ross et al., 2008; Mirlohi et al., 2022)

Biomembrane Modulator Unknown Ghovanloo et al. (2021)
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FIGURE 1
Cartoon summary of CBD and CBG effects on Nav channels. This figure is a redrawn version of our previously published papers (Ghovanloo and
Ruben, 2021; Ghovanloo et al., 2022a). (A) Shows the pathway of CBD from the lipid phase through the mammalian Nav fenestration and into the
pore, where it interacts to some extent by the local anesthetic (LA) site with the pore phenylalanine (F) residue. (B) Cartoon representation of the
concentration-dependent modality of CBG effects on Nav channels. CBG, like CBD is a state-dependent Nav inhibitor with an increased affinity
for the inactivated state. Overall, however, CBG causes a reduction in total conductance/channel opening more potently than inactivation is
stabilized in the presence of CBG.
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Cannabigerol—A potentially
promising avenue for pain treatment
via sodium channels

The role of Nav1.7 in the pain pathway is well-established

(Dib-Hajj et al., 2013). Many gain- and loss-of-function

mutations in Nav1.7 have been identified. Hyperexcitability in

this channel has been shown to elicit several pain syndromes

(Dib-Hajj et al., 2005, 2013; Fertleman et al., 2006), whilst

hypoexcitability in this channel is linked with complete

insensitivity to pain, which is not accompanied with any

cognitive, cardiac, or motor defects (Cox et al., 2006;

Goldberg et al., 2007). These findings highlight the

importance of Nav1.7 as an excellent target for pain therapy;

however, the efforts that have gone into developing small

molecules for Nav1.7 inhibition have thus far been

unsuccessful. This lack of success has been attributed to

problems in achieving optimum channel occupancy and, thus,

problems in effective target engagement (Bankar et al., 2018). To

get around this problem, in vivo treatments with many folds

above IC50 could be utilized, but at these high dosages, this would

cause unwanted side effects.

A potential advantage of highly hydrophobic compounds like

cannabinoids is that they might more readily get absorbed into

the lipid dense neuronal tissues and nerve membranes. This

would require the mode of administration of the compound to

reduce exposure in the central nervous system and increase the

probability of distribution into the peripheral nerves, to avoid off

target effects in the CNS: central nervous system. If the

compound also had either structural or functional selectivity

for Nav1.7, then efficacy may be achievable. Whilst structural

selectivity would refer to a unique amino acid sequence or motif

that is present in one channel (Catterall and Swanson, 2015), but

not others, functional selectivity refers to the ligand’s (in this case

CBG) increased affinity for the channel that occupies one

particular state within its local environment (Kuo and Bean,

1994). As the resting membrane potential of sensory dorsal root

ganglion (DRG) neurons is considerably more depolarized than

the availability voltage-dependence of Nav1.7 (relative to other

sensory Nav channels), Nav1.7 in these neurons accumulates a

lot more inactivation than other Nav channels (Amir et al., 1999;

Ghovanloo et al., 2022a). Thus, the state-dependent drug that has

a higher apparent potency for the inactivated states of these

channels, would be predicted to more effectively inhibit

Nav1.7 in DRG neurons than the other Nav channels.

CBD and CBG are both highly hydrophobic compounds with

very high distribution coefficients for the hydrophobic phase. In

fact, CBG (ChEMBL-calculated-LogD = 7.04) is even more

hydrophobic than CBD (ChEMBL-calculated-LogD = 6.60),

which suggests that CBG may have a higher propensity to

enter and remain within the lipid membranes. However,

neither compound has much structural selectivity for Nav

channels. As noted above, CBD has been shown to bind at

the Nav channel pore, which is a highly conserved region of

the channel (Catterall and Swanson, 2015; Ghovanloo and

Ruben, 2021). Thus, like the other classic pore blockers that

bind this region (Hille, 1977; Bean et al., 1983; Gamal El-Din

et al., 2018), CBD is not structurally selective. Although CBG has

not been functionally tested for its binding site on the Nav

channel, it likely interacts within the same site at the pore-

fenestration interface.

Because CBG was implicated as an analgesic (Evans, 1991;

Mammana et al., 2019), we investigated its effects on Nav

channels. We determined that CBG is also a moderately

state-dependent Nav channel inhibitor, and shares (CBG is

slightly less potent than CBD) many of the same features in its

modulation of Nav channels with CBD (Ghovanloo et al.,

2022a). We found that CBG does not alter the voltage-

dependence of activation or alter open-state inactivation, it

hyperpolarizes inactivation curves, slows recovery from

inactivation (with this effect becoming more pronounced as

the channels enter deeper inactivated states, e.g., slow

inactivation), accelerates onset of closed-state fast

inactivation, and reduces spontaneous firing of DRG

neurons. Importantly, we found that CBG inhibits total

channel conductance more potently than it stabilizes the

inactivated state of channels (inactivation shift potency =

13.3 ± 1.0 µM, Gmax inhibition potency=3.4 ± 1.0 µM)

(Ghovanloo et al., 2022a) (Figure 1B). As Nav1.7 is known

as the threshold channel for peripheral firing (Dib-Hajj et al.,

2013), these results suggest that CBG may be more effective in

preventing pain episodes from initiating. Given that poly-

pharmacological compounds will display more promiscuity

in their interactions with various targets at higher

concentrations (hence toxicity), the best therapeutic window

for CBG’s potential therapeutic efficacy will occur by taking

advantage of the Nav channel Gmax block at the low to sub-

micromolar concentrations where CBG’s hyperpolarization of

inactivation would be physiologically inconsequential

(Ghovanloo et al., 2022a). Finally, the noted mechanism

could, in principle, work in concert with CBG’s CB-

dependent (without psycho-activity) pathways to target pain.

We suggest that the development of CBD/CBG as Nav

channel-targeting drugs may be achievable via exploring

various modes of administration. For instance, with respect to

pain, if the compound could be localized to the nociceptors, then

given the physicochemical properties of the compound, along

with local resting membrane potential and the availability

voltage-dependences of the local Nav channels, the channel

that is most inactivated would be most modulated (as noted

above, Nav1.7 (Ghovanloo et al., 2018; 2022a)). We also note that

the concentrations at which CBD targets slow inactivation of

Nav1.8 and Kv7.2/3, on the low end are comparable (Zhang and

Bean, 2021; Zhang et al., 2022). Studies suggest that in the case of

CBD, mode of administration can substantially alter

pharmacokinetics and bioavailability, and hence tissue
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distribution of the drug (e.g., local administration to work

alongside compound hydrophobicity to accumulate in tissues

with high lipid content (Ghovanloo et al., 2022a)) (Millar et al.,

2018; Lim et al., 2020); however, even then, the drug effect on

phenotype would not likely be able to be attributed to activity on

a single target (e.g., Na or K currents, TRP channels, etc.), but we

propose that Nav channels are likely an important part of the

pleiotropic pharmacology of CBD. These considerations would

be critical in translation of using these compounds from the

bench to the bedside.

Concluding remarks

CBD and CBG, and indeed other cannabinoids and terpenes

are intriguing molecules with highly complex pharmacological

profiles. Despite enormous progress in recent years, the precise

mechanism of clinical efficacy remains unknown. The Nav

channel family is vital to nervous system signalling, and it is

likely an important receptor for these molecules. Future

investigations into the intricate interactions between Nav

channels (and other receptors) and cannabinoids will facilitate

unravelling how cannabinoids impart their effects on physiology,

which could aid the identification of novel therapeutics for

various disorders of neuronal excitability.
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