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Global warming is becoming the future climate trend and will have a significant

impact on small mammals, and they will also adapt at the physiological levels in

response to climate change, amongwhich the adaptation of energetics is the key

to their survival. In order to investigate the physiological adaptation strategies in

Tupaia belangeri affected by the climate change and to predict their possible fate

under future global warming, we designed a metabonomic study in T. belangeri

between two different places, including Pianma (PM, annual average temperature

15.01°C) and Tengchong (TC, annual average temperature 20.32°C), to analyze

the differences of liver metabolite. Moreover, the changes of resting metabolic

rate, body temperature, uncoupling protein 1content (UCP1) and other energy

indicators inT. belangeri between the twoplaceswere alsomeasured. The results

showed that T. belangeri in warm areas (TC) reduced the concentrations of

energy metabolites in the liver, such as pyruvic acid, fructose 6-phosphate, citric

acid, malic acid, fumaric acid etc., so their energy metabolism intensity was also

reduced, indicating that important energy metabolism pathway of glycolysis and

tricarboxylic acid cycle (TCA) pathway reduced in T. belangeri from warmer

habitat. Furthermore, brown adipose tissue (BAT)mass, UCP1 content and RMR in

TC also decreased significantly, but their body temperature increased. All of the

results suggested that T. belangeri adapt to the impact of warm temperature by

reducing energy expenditure and increasing body temperature. In conclusion,

our research had broadened our understanding of the physiological adaptation

strategies to cope with climate change, and also provided a preliminary insight

into the fate of T. belangeri for the future global warming climate.
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1 Introduction

Global warming has become a hot topic among people all

over the world (Hansen et al., 1999; Comiso, 2006; Morice et al.,

2021). According to statistics, the global temperature has shown a

significant upward trend since the industrial revolution, and it

increased at a rate of 0.2°C/10 years in the past 30 years (Hansen

et al., 2006). With the further intensification of human activities,

the global temperature has risen even faster in the past decade

than in previous decades, experts predicted that the next century

could be the most “rampant” century of global warming (Cox

et al., 2000; Hansen et al., 2010; Betts et al., 2011; Wang et al.,

2017). Climate change had a significant impact on ecosystems

and organisms (Walther et al., 2002; Peñuelas et al., 2013; Antão

et al., 2020), such as coral reefs, one of the most significant

indicators of climate change, were currently experiencing large-

scale bleaching, and it was estimated that more coral reefs in the

world have died (Hughes et al., 2017). Persistent climate change

not only increased the impact of abiotic stress on organisms

(Erasmus et al., 2002), but also make some key species decline

rapidly or even die out, resulting in rapid reduction of global

species diversity and genetic diversity, there was no doubt that

this trend would affect every living organisms on the earth in the

future (Thomas et al., 2004).

Animals adjusted their physiological changes to meet the

challenge of global warming, and energetics adaptation is one of

the most important aspects (Parmesan, 2006; Pörtner and

Farrell, 2008; Huey et al., 2012). In the process of coping

with climate shocks, whether animals can reach a new

balance in energetics is crucial to their survival, and whether

they can effectively use energy is related to the predation risk

caused by animals going out for food (Hanna and Acclimat,

2015; Kordas et al., 2022). Shortly, it was very important to

research the energy adaptation strategies in mammals to cope

with global warming. This can not only clarify the energy

adaptation mechanism of biological response to climate

change, but also help to judge the fate of animals in the

future global warming (Pörtner, 2002). Nevertheless, our

understanding and research on this problem were still in the

initial stage, the research on some important and typical species

is very important, with the gradual deepening of these studies,

an effective way to solve this problem will eventually be

provided. It has been found that warm domesticated animals

had a phenomenon of reducing thermogenic capacity (Tan

et al., 2016). Moreover, it was found that higher temperature

exposure during lactation would hinder the growth of offspring

and reduce the reproductive performance in females (Bao et al.,

2020).

Liver is one of the important organs for animal heat

production, liver energy metabolism often changes to adapt

to the environmental variations. In previous studies, we also

found that the liver mass and metabolic intensity of the tree

shrew increased when it adapted to the cold temperature

(Zhang et al., 2012). Brown adipose tissue (BAT) is also an

energy metabolism organ of animals (Cannon and Nedergaard,

2004). BAT mainly exists in scapular space of animals

(Nedergaard et al., 2007), because of the large amount of

uncoupling protein 1 (UCP1) contained in the mitochondrial

inner membrane, it plays a role of uncoupling in the

transmission of respiratory chain, therefore, thermogenic

capacity of BAT is very important for animals to adapt to

complex climate change (Kozak and Harper, 2000). For

example, the tree shrew increased its BAT mass and

UCP1 content when adapting to the cold environment

(Zhang et al., 2012). Metabolic rate is the most direct

evidence of animal energy expenditure, resting metabolic rate

(RMR) is an important indicator of energy consumption, and it

is an important indicator to evaluate the ability of animals to

adapt to the environment. Finally, body temperature is very

important for energy regulation and it also a core physiological

indicator in animal energetics (Ayres, 2020). Analysis of animal

temperature can also reflect the energy adaptation of animals

from the perspective of heat dissipation. For example, body

temperature of birds raised 0.22°C for every 1°C increase in

ambient temperature (Nilsson et al., 2016). In brief, liver, BAT,

RMR and body temperature together constitute the central issue

in studying the energy adaptation strategies of animals to adapt

to the environment. Furthermore, metabonomics is a new

discipline following genomics, transcriptomics and

proteomics. Because it can provide terminal information to

reflect the changes of all metabolites and metabolic pathways in

organisms, it has become an important research technology to

explore the energy adaptation mechanism of organisms.

Tupaia belangeri belongs to Scandentia, Tupaiidae, Tupaia.

It originally originated from Borneo and was a specific small

mammal to the Oriental realm (Roberts et al., 2011), which is

believed to be the closest relative of primates, therefore, it had a

unique position in the research of evolution, and has been

widely studied as a model for the early stage of primate

evolution (Janecka et al., 2007; Fan et al., 2013). Moreover,

T. belangeri had the characteristics of small size, easy feeding,

short breeding cycle, lower maintenance cost and higher brain

body mass ratio; it has been developed as an important medical

model and widely used in a variety of human disease models

(Cao et al., 2003). Such as tumor animal model (Yang et al.,

2005), virus infection model (Feng et al., 2017), pulmonary

fibrosis animal model (Che et al., 2021), and depression model,

etc. (Fuchs, 2005). Furthermore, it was worth noting that T.

belangeri is also a valuable model for studying brain function

and neurodegenerative diseases, because it had a large ratio of

brain to body mass, the results of brain slices showed that the

degree of differentiation of its brain structure is consistent with

that of primates (Wong and Kaas, 2009; Römer et al., 2018). In

the general trend that the use of primates is limited increasingly,

T. belangeri showed great development prospects and had been

introduced by many laboratories. In general, in view of the key

Frontiers in Physiology frontiersin.org02

Feng et al. 10.3389/fphys.2022.1068636

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1068636


role of T. belangeri in evolutionary issues and various human

disease models, it had become an extremely important animal

resource. In the previously study, our research team found that

the proportion of non shivering thermogenesis (NST) in the

total heat production in T. belangeri decreased with the

extension of cold acclimation time, while the proportion of

RMR increased, indicating that the liver metabolism played a

very important role in the process of spreading from south to

north (Zhang et al., 2012). In order to clarify the energetics

strategies in T. belangeri to adapt to warmer temperature, the

present study captured 10 and 11 T. belangeri in two regions

with different annual average temperatures respectively,

Pianma (PM, annual average temperature is 15.01°C, low

temperature region) and Tengchong (TC, annual average

temperature is 20.32°C, warm temperature region). We first

analyzed the liver metabonomics from the two regions, and

screened the energy related differentially expressed metabolites

to analyze the differences in energy metabolism pathways.

Secondly, we further studied the energy related indicators of

the two regions, such as RMR, body temperature, UCP1, etc.

Finally, we clarify the energy adaptation strategies in T.

belangeri to warmer temperature under the climate pattern

of global warming. The research results not only involve the

understanding of the internal mechanism of animal adaptation

to warmer temperature, but also can preliminarily speculate the

possible fate of this important species in the future climate

change.

2 Materials and methods

2.1 Sample collection

T. belangeri were captured by rat cage in Pianma (26.03N,

98.38E, annual average temperature 15.01°C, n = 10 5\, 5_) and

Tengchong (24.38N, 98.30E, annual average temperature

20.32°C, n = 11 5\, 6_) in July 2019. Animals were healthy

adult individuals in the non-reproductive period. All animal

procedures were within the rules of Animals Care and Use

Committee of School of Life Science, Yunnan Normal

University. This study was approved by the Committee (13-

0901-011).

2.2 Measurement of body mass and RMR

After capture, body mass and RMR were measured in the

field, bodymass is weighed by LT502 electronic balance (accurate

to 0.01 g). And the individuals tested before RMR were measured

fasted for 2–3 h and left in the respiratory chamber for 0.5 h.

Portable breathing apparatus (FMS-1901-03, United States) is

used for measurement, select 10 consecutive stable minimum

values to calculate RMR (Vincent et al., 2014).

2.3 Body temperature measurement and
infrared imaging

Use a digital thermometer to measure the animal’s core

temperature. Before measurement, disinfect and apply

Vaseline to lubricate the probe, then insert the probe into the

anus for about 2 cm and hold it for 1 min before reading.

Measure three times continuously and take the average value.

The infrared imager (WIC640-SUW; workswell, Roznov, Czech)

was used to image the animals to obtain the animal surface

temperature map (shooting distance 1 m) (Tattersall and

Cadena, 2010).

2.4 Measurement of liver and BAT mass

After RMR measurement, the animals were euthanized by

intraperitoneal injection of pentobarbital sodium (50 mg/kg) to

avoid or limit pain/distress. Then liver and BATwere obtained by

dissection, liver and BAT were weighed with an analytical

balance. Liver and BAT were stored in ultralow temperature

refrigerator (−80°C) for subsequent metabonomics and

UCP1 content determination.

2.5 Measurement of liver metabonomics

2.5.1 Sample preparation of metabolic group
Take 100 mg of liver and put it into a 2 ml centrifuge tube,

add 1,000 μl of methanol water solution (−20°C), and then add

steel balls. Put it into a high-throughput tissue grinder for

homogenization, then add 2-chlorophenylalanine (0.2 mg/ml)

and heptadecanoic acid (0.2 mg/ml) as internal standards, and

then vortex oscillate for 30 s. Ultrasonic treatment at room

temperature for 30 min, and then standing on ice for 30 min.

After centrifugation at 14,000 r/min at 4°C for 10 min, take 800 μl

of supernatant and transfer it to a new 1.5 ml centrifuge tube.

Add 60 μl methoxy solution and vortex for 30 s, and then react

for 2 h at 37°C. Add 60 μl BSTFA reagent containing 1%

trimethylchlorosilane and react at 37°C for 90 min, then

centrifuge at 12,000 r/min at 4°C for 10 min, then take the

supernatant to obtain the sample to be tested.

2.5.2 Computer detection of metabolome
In the present study, the non targeted metabolome was

determined by gas chromatography-mass spectrometry

(7890A-5975C, Agilent, American). Chromatographic

conditions: chromatographic column HP-5MS capillary

column (5% phenyl methyl silox: 30 mx250um i.d., 0.25-

um; agile J and W scientific, Folsom, CA); the injection

volume is 1 μl, and the split injection (20:1); the

temperature of the ion source is 250°C, the temperature of

the injection port is 280°C, and the interface temperature is
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150°C. The program starts at 70°C and keeps it for 2 min, then

rises to 300°C at 10°C/min and keeps it for 5 min. The carrier

gas is helium, the flow rate is 1 ml/min, and the total operation

time is 30 min. MS condition: electron bombards ion source

with electron energy of 70 eV; Full scanning mode,

quadrupole scanning range m/z35~780.

2.6 Measurement of UCP1 using
immunofluorescence

After the slices were obtained, they were sealed at room

temperature with 5% donkey serum for 60 min and the excess

liquid was removed. Add UCP1 primary antibody (1:500;

PV9000, Abcam), 4°C overnight. After rewarming at 37°C for

45 min, wash with 0.01 mol/L PBS for 4 times, and then add

fluorescent labeled secondary antibody (1:500; PV9000, Abcam)

to incubate at room temperature for 4 h. Wash it with 0.01 mol/

LPBS for 4 times, then wash it with distilled water in dark for

3 times, absorb the excess water with filter paper, and then add

50 drops on each tissue slice μL anti quenching sealing tablets

(including DAPI) and incubated in dark at room temperature for

5 min. Add sterile and clean cover glass, keep away from light,

and observe and take photos under fluorescence microscope

immediately after drying in shade.

2.7 Statistical analysis

Use the XCMS program (www.bioconductor. org/) of the R

package v 3.3.2 (R core team) to preprocess the data of the

original documents obtained by the Agilent 7890A/5975C gas

chromatography-mass spectrometer (Dailey, 2017). First, the

original gas chromatography-mass spectrometry data obtained

from the Agilent MSD Chem Station workstation is converted

to the Common data format (CDF). Then, the XCMS program

was used for peak identification, peak filtering, and peak

alignment, and each parameter was investigated and

optimized one by one. The accuracy of the results was

verified by manually extracting any mass chromatographic

peak, and finally each parameter of XCMS was determined.

Differential metabolites were screened using t-test probability

values (p < 0.05) and log 2 values of ploidy changes exceeding 1.

5 or less than 0.667. Physiological data were analyzed with

SPSS22.0 software analysis package (IBM, Armonk, NY,

United States), and all data were in accordance with normal

distribution. There is no significant difference in the relevant

indicators between male and female in T. belangeri, so the

analysis is combined in the analysis. The regional differences of

various physiologies were analyzed by independent sample

t-test. Mean ± SD represents the results, p < 0.05 represent

significant differences.

3 Results

3.1 Effect of warmer temperature on body
mass and liver mass

Body mass in T. belangeri from TC (warm temperature area)

was lower than that of PM (t = 2.71, p < 0.05, Figure 1A), which

decreased by 1.73%. Mass of liver in TC decreased significantly

compared with that of PM (t = 19.77, p < 0.01, Figure 1B), which

decreased by 24.6%. Moreover, the relative weight of liver also

decreased significantly (t = 18.59, p < 0.01, Figure 1C), which

decreased by 23.3%.

FIGURE 1
Changes of body mass (A), liver mass (B) and the relative weight of liver (C) in Tupaia belangeri between TC and PM *: p < 0.05; **: p < 0.01.
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3.2 Effect of warmer temperature on liver
differential metabolites and metabolic
pathways

The total ion flow diagram of the metabolic groups in the

two regions showed that there were significant differences in

liver metabolites (Figure 2A). 92 metabolites in total were

detected, and further analysis found that 38 metabolites were

differentially expressed, which were mainly involved in the

metabolism of sugar, fat and amino acids. We further

screened 7 metabolites involved in glycolysis and

tricarboxylic acid cycle (TCA) (the two most important

energy metabolism pathways), including pyruvate, fructose 6-

phosphate, glyceryl 3-phosphate, L-malic acid, citric acid,

succinic acid, and fumaric acid (Figures 2B–H). Metabolic

pathway analysis of these 7 different metabolites showed that

two of them were involved in the glycolysis pathway, and five of

them were involved in TCA cycle. More interesting is that the

differential metabolites enriched in these two energy

metabolism pathways is down regulated in TC compared

with that of PM.

3.3 Effect of warmer temperature on BAT
mass and UCP 1 immunofluorescence
imaging

Difference of BAT mass between the two regions was

extremely significant (t = 43.55, p < 0.01, Figure 3A), and the

reduction amount reached 65.9% in TC compared with PM.

Difference in the relative weight of BAT between the two regions

was also extremely significant (t = 42.96, p < 0.01, Figure 3B),

FIGURE 2
Changes of the total ion flow diagram (A), pyruvate (B), fructose 6-phosphate (C), glyceryl 3-phosphate (D), L-malic acid (E), citric acid (F),
succinic acid (G), and fumaric acid (H) in Tupaia belangeri between TC and PM *: p < 0.05; **: p < 0.01.
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with a decrease of 65.2% in TC. Moreover, the

immunofluorescence imaging of UCP1 in BAT in the two

regions also found that the content of UCP1 in TC decreased

significantly (Figure 3C).

3.4 Effect of warmer temperature on RMR,
core temperature and surface body
temperature

It showed that RMR in TC decreased significantly, with a

decline rate of 40.4% (t = 18.75, p < 0.01, Figure 4A). Core

temperature in TC was significantly higher than that in PM (t =

26.45, p < 0.01, Figure 4B), with an increase rate of 5.7%. Body

surface temperature in TC area also increased, we also found that

the main heat dissipating parts of the tree shrews were

concentrated in the head, while the relative temperature of the

tail was very low (Figure 4C).

4 Discussion

Liver and BAT are two important energy producing organs,

and their energy producing status is of great significance for

animals to adapt to the environment. For example, Cricetulus

barabensis can respond to the impact of the high temperature

environment by down regulating the metabolic ability from liver

and BAT (Tan et al., 2016). Combined liver and BAT weights, as

well as RMR and UCP1 content between the two regions, it

showed that T. belangeri adapted to the warmer temperature

environment by reducing metabolic intensity and energy

consumption. In the warm temperature environment, heat

dissipation is more important, the liver does not need to

produce more energy, so the liver mass and RMR decreased.

Reduction of BATmass and UCP1 content can reduce the energy

producing capacity of BAT, thereby weakening its heat

production capacity, which is beneficial for T. belangeri to

adapt to warm temperature environment. Decrease of

FIGURE 3
Changes of BATmass (A), the relative weight of BAT (B) and UCP 1 immunofluorescence imaging (C) in Tupaia belangeri between TC and PM **:
p < 0.01.
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thermogenic capacity in two important organs lead to the

decrease of animal metabolic rate (Zhou et al., 2015; Luo

et al., 2017). This is a very smart and economical energy

adaptation strategy, which not only reduced the heat

dissipation pressure under higher temperature, but also

reduced energy consumption (Ravussin et al., 2012).

Therefore, the metabolic intensity of the liver and BAT would

decrease accordingly to adapt to global warming (Padfield et al.,

2016; Tan et al., 2016). On the other hand, lower energy

consumption means that animals can survive with less basic

energy expenditure, which means that animals can survive only

by spending less time foraging than before, which not only avoids

the increased risk of predation, but also helpful for animals to

survive the period of food shortage (Mónus and Barta, 2016;

Shiratsuru et al., 2021). In general, T. belangeri adapted to the

warm temperature environment by reducing energy

consumption. This energy adaptation strategy to deal with

climate change is efficient and is a model of physiological

adaptation. It can be predicted that the energy adaptation

strategy in T. belangeri is conducive to cope with the climate

impact of global warming in the future.

Energy metabolites were intermediates in the energy

metabolism pathway. Through the analysis of the

concentration of intermediates, we can speculate the intensity

of the energy metabolism pathway, so as to understand the

energy strategy of animals to adapt to the environment. It

found that its metabolism reduced through metabonomic

analysis of coccinella cyst in cold and dark conditions, and

Changchun snail adapted to higher temperature environment

through metabolic inhibition (Guo et al., 2021). In our study, we

found that the metabolic intensity of the two most important

energy metabolism pathways (glycolysis and TCA cycle) of T.

belangeri in warm temperature areas decreased, indicating that

the basic heat production of the liver in warm temperature

environment decreased. The results of metabolome study were

consistent with those of liver mass and RMR.

Body temperature is a core physiological indicator of animal

energetics (Ayres, 2020). Animals can adapt to environmental

FIGURE 4
Changes of RMR (A), core temperature (B) and surface body temperature (C) in Tupaia belangeri between TC and PM **: p < 0.01.
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changes by changing their body temperature. For example, rats

adapt to cold and high-altitude environment through body

temperature decreasing (Cadena and Tattersall, 2014), birds

coped with the impact of high temperature environment by

raising their body temperature (Nilsson et al., 2016). Our

research shows that T. belangeri raised body temperature in

TC, suggesting that T. belangeri responded to warmer

temperature by increasing body temperature, raising body

temperature is another effective energetics strategy for

adapting to high temperatures (Nilsson et al., 2016), because

reasonable increase of body temperature can increase the

temperature difference between animals and the external

environment, which is conducive to heat dissipation

(Vejmělka et al., 2021). But the interesting thing about this

conclusion is that maintaining a high body temperature

requires more energy, which seems to contradict the above

results on reducing energy consumption (Vejmělka et al.,

2021). Why is there a waste of energy while saving energy

consumption? Because reducing energy consumption is the

real and more economical way to adapt to warmer

temperature. Why does T. belangeri use this “waste” energy

instead of more economical way to achieve its goal? We

speculated that this may be related to the fact that T.

belangeri were still in the evolutionary process of adapting to

warmer temperature. When T. belangeri faced the impact of high

temperature, they cannot immediately reduce the metabolic rate

to the level of extremely low energy consumption in a short

period of time. At this time, it is an efficient energy treatment

method to dissipate the excessive energy generated by raising

body temperature (Bennett and Lenski, 2007). Although T.

belangeri wasted some energy, it can at least survive under the

impact of warmer temperature. In the later stage of continuous

adaptation to the high-temperature environment, by

continuously reducing the metabolic intensity of the

production organs, T. belangeri may eventually no longer be

necessary to heat up in the “expensive” way of raising body

temperature, so as to reduce body temperature and achieve the

most perfect use of energy in the high-temperature adaptation

strategy (Kordas et al., 2022). In general, high temperature

stimulated repeatedly the physiological reaction of T. belangeri

to dissipate heat, so as to improve the heat resistance by gradually

reducing the physiological pressure, which represented a state in

which the ability to improve body temperature. Therefore,

thermal adaptation is a process (Somero, 2010; Hoffmann and

Sgrò, 2011). Furthermore, how animals mediate high body

temperature under obesity is another unresolved issue,

because the thermoregulatory center of animals is in the

hypothalamus, we speculated that the activity of

hypothalamus neurons in TC may have changed. Of course,

this needs further study.

In conclusion, we found that T. belangeri adapt to the warm

temperature environment by reducing energy consumption,

including reducing RMR and differential metabolites, and

increasing body temperature, so as to maintain their survival.

Moreover, we speculated that T. belangeri may continue to

spread northwards under the impact of future global warming.
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