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Background: The ankle is prone to injury during drop landingwith usual residual

symptoms, and functional ankle instability (FAI) is the most common. Vision

guarantees the postural stability of patients with FAI, and visual deprivation (VD)

increases their risk of injury when completing various movements. This study

explored injury risk during drop landing in patients with FAI under VD through

the kinetics of lower extremities.

Methods: A total of 12 males with FAI participated in the study (age, 23.0 ±

0.8 years; height, 1.68 ± 0.06 m; weight, and 62.2 ± 10.4 kg) completed single-

leg drop landings under visual presence (VP) and VD conditions. Ground

reaction force (GRF), time to peak GRF, joint torque, and vertical length

variation (ΔL) were measured.

Results: Significant effects were detected in the group for time to peak

lateral GRF (p = 0.004), hip extensor torque (p = 0.022), ankle

plantarflexion torque (p < 0.001), ankle varus torque (p = 0.021), lower

extremity stiffness (p = 0.035), and ankle stiffness (p < 0.001). Significant

effects of conditions were detected for vertical GRF, time to peak vertical

and lateral GRF, loading rate, hip extensor torque, knee extensor torque,

hip varus torque, knee varus torque, lower extremity stiffness, and ankle

stiffness (p < 0.05). ΔL was affected by VD with a significant difference (p <
0.001).

Conclusion: In patients with FAI, an unstable extremity has a higher injury

risk than a stable extremity, and VD increases such risk. However, because

the influence of the central nervous system on hip strategy is also affected,

the effect on the unstable extremity is more significant and more likely to

result in injury. Deepening the squat range may be an effective preventive

measure for reducing injury risk of unstable extremities during drop

landing.
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Introduction

Ankle sprain is the most common and severe injury in sports

(Mckay et al., 2001). Repeated ankle injuries lead to chronic ankle

instability (CAI), which is mainly caused by old injuries to ankle

ligaments. CAI symptoms include local pain, decreased postural

control, and decreased proprioception. CAI can be divided into

functional ankle instability (FAI) and mechanical ankle

instability (MAI) (Yu et al., 2022). Compared with individuals

without a history of ankle injury, individuals with ankle injury

history reported significant deficits in foot proprioception and in

their static and dynamic balance (Alghadir et al., 2020), and over

half of them did not seek professional treatment (Mckay et al.,

2001). Muscle force and movement control are impaired if the

injured ankle does not receive prompt and professional

rehabilitation treatment, resulting in FAI (Freeman, 1965; Kim

et al., 2021). Patients with FAI are almost five times more likely to

sustain repeated episodes of ankle instability and recurrent ankle

sprains than are healthy individuals (Mckay et al., 2001;

Kaminski et al., 2003; Raymond et al., 2012; Gouttebarge

et al., 2017), leading to irreversible damage to ankle stability

(Hong et al., 2021).

Human sensory systems play essential roles in adjusting

postural control and preventing injury, including the

proprioception (Horak et al., 1990; Delahunt et al., 2006;

Imbimbo et al., 2021; Oosterman et al., 2021), vestibular

(Gosselin and Fagan, 2014; Brown et al., 2021; Kalinina et al.,

2021; Morawietz and Muehlbauer, 2021), and visual systems.

Patients with FAI usually exhibit proprioceptive impairment,

which is the principal consideration for recurrent sprains, and

visual information provides positional sensation and feedback to

the motor system to offset deficits in proprioception and

maintain their postural stability (Doherty et al., 2014; Toth

et al., 2017; Raffalt et al., 2019; Han et al., 2022). Therefore,

once patients with FAI transit from a visual presence (VP) to a

visual deprivation (VD) condition, visual information cannot be

transmitted and their postural stability becomes more

challenging (Raffalt et al., 2019; Rosen et al., 2021). Some

studies related to gait in VD suggest that VD is the main

cause of falls in elderly individuals and of increased injury

rates in athletes (Isakov and Mizrahi, 1997; Duggan et al.,

2017; McDonough et al., 2017). Nonetheless, the research on

VD among patients with FAI is relatively deficient, especially

when patients are completing challenging tasks.

In addition, drop landing is one of the most challenging

motion forms in daily physical activities and professional

training. It is commonly seen in sports such as basketball and

volleyball, and even in the process of stepping down during daily

life. Ankle injuries from drop landing can be as high as 45%.

Some studies have shown that patients with FAI have

significantly decreased local muscle activity and deficits in

postural instability (Delahunt et al., 2006; Rosen et al., 2013).

Postural stability during drop landing requires rapid visual and

position sensation integration. However, protective strategies in

patients with FAI during drop landing with VD remain unclear,

and the risk factors associated with VD in patients with FAI must

be identified. This paper aimed to characterize the effects of VD

and compensatory mechanisms under VD in patients with FAI

during drop landing, through the kinetics of lower extremities. It

hypothesized the following: 1) differences exist in the kinetics of

patients with FAI during drop landing on stable and unstable

extremities, 2) the injury risk among patients with FAI increases

with VD during drop landing, and 3) VD affects unstable

extremities during drop landing in patients with FAI.

Materials and methods

Participants

A total of 12 males with FAI participated in the study, and all

provided informed consent. The Soochow University Ethics

Committee Board approved this study. The demographic

information of the participants is shown in Table 1. Self-

reported instability and function were determined using the

ankle joint functional assessment tool (AJFAT) (Ross et al.,

2008; Ibrahim and Abdallah, 2020). Participants’ inclusion

criteria were as follows: 1) one unstable extremity, with

AJFAT scores ≤26 (Delahunt et al., 2006; de Noronha et al.,

2008; Kim et al., 2021; Rosen et al., 2021); 2) one stable extremity,

with AJFAT scores >26; 3) no vestibular, visual, or neurological

disease; 4) no lower extremity injuries for ≥6 months; and 5) only

one side of the lower extremities suffering from FAI.

Experimental procedure

Participants had had no strenuous activities or muscle fatigue

within 24 h before the experiment. Initially, participants warmed

TABLE 1 Sociodemographic characteristics at baseline.

Characteristic Patients with FAI (n = 12)

Age (years) 23.00 ± 0.78

Height (m) 1.68 ± 0.06

Weight (kg) 62.15 ± 10.44

Unstable extremity Left 9/75%

Right 3/25%
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up on a treadmill at 2.2 m/s for 3–5 min and stretched. In a single

session, each participant with FAI wore experimental shorts and

shoes and completed random drop landing trials without initial

speed under four conditions, consisting of all combinations of

each leg (unstable and stable extremities) and two conditions (VP

and VD). Subsequently, participants completed a tiptoe slide

from the platform’s edge at a height of 30 cm, with instructions to

place the hands akimbo to reduce the influence of arm swing.

Two examiners provided safety assistance throughout the

experiment. Landing on a single leg and bending knees

instinctively and toe-first is illustrated in Figure 1. The two

visual conditions were tested randomly. The participants were

required to wear black blindfolds when testing under VD

conditions (Shoja et al., 2020).

Each condition repetition was recorded by one examiner,

who was blinded to the AJFAT scores, with a rest of 30 s between

landings until the participant had completed three successful

trials. Successful trials were defined as those performed without

any extraneous movement during the 3 s prior to the hop and

with the participant subsequently remaining upright during the

2 s after the drop landing, with the tested extremity within the

boundary.

Data processing

Lower extremities’ kinetic data were collected at 100 Hz using

a 3D motion capture system equipped with eight infrared

cameras (Vicon Motion Analysis, United Kingdom) by

tracking 18 infrared-reflective balls (reflective markers) of

14 mm diameter. Ground reaction force data were sampled at

1000 Hz using a 3D Kistler force measuring platform (model:

9287B, 90 cm × 60 cm×10 cm, Kistler, Inc., Switzerland). The

plug-in gait was modeled using Visual3D (Version 6, C-Motion,

Inc., United States) to calculate joint kinetics.

The following kinetic data were analyzed: ground reaction

force (GRF, including vertical GRF [vGRF], medial GRF [mGRF],

and lateral GRF [lGRF]), time to peak GRF (T_GRF, including

time to peak vertical GRF [T_vGRF], time to peak medial GRF

[T_mGRF], and time to peak lateral GRF [T_lGRF]), loading rate

(LR), joint torque in the sagittal plane and the frontal plane, hip

joint vertical length variation (ΔL), lower extremity stiffness

(Kleg), and ankle stiffness. LR was calculated using Eq. 1. Kleg

was calculated using Eq. 2.

LR � VGRF/T vGRF, (1)
Kleg � vGRF∕ ΔL. (2)

Statistical analysis

The normality of each variable was determined using the

Shapiro–Wilk test. Descriptive and dependent measures were

calculated as mean ± SD. Dependent measures were used to

examine the interaction effects of groups (unstable and stable

extremities of patients with FAI) and conditions (VP and VD)

that served as the repeated measure. Simple effect analysis was

performed when significant interactions were found. If the

simple effect analysis suggested a statistically significant

difference in a metric in both groups between VP and VD,

then the difference between VP and VD in each group was

determined using the independent samples t-test. All statistical

analyses were performed using a statistical software package

(IBM SPSS Statistics, IBM, NY, United States), and the level

of statistical significance was set at 0.05.

FIGURE 1
Participants landed toe first on one leg from a 30-cm-high step onto a force platform and were instructed to regain postural stability as quickly
as possible.

Frontiers in Physiology frontiersin.org03

Meng et al. 10.3389/fphys.2022.1074554

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1074554


Results

GRF, T_GRF, and LR

The experimental data are shown in Table 2. No significant

interaction effects in the group were detected for GRF, T_GRF,

and LR. Significant effects of the condition were detected for

vGRF (p = 0.041), T_vGRF (p = 0.001), T_lGRF (p < 0.001), and

LR (p = 0.001). A significant effect in the group was detected for

T_lGRF (p = 0.004).

Joint torque
The experimental data are shown in Table 3. No significant

interaction effect between the group and the condition was

detected for joint torque. Significant effects of the condition

were detected for hip extensor torque (p = 0.025), knee extensor

torque (p = 0.016), hip varus torque (p = 0.025), and knee varus

torque (p = 0.002). Significant effects in the group were detected

for hip extensor torque (p = 0.022), ankle plantarflexion torque

(p < 0.001), and ankle varus torque (p = 0.021).

Stiffness
The experimental data are shown in Table 4. A significant

interaction was detected for ΔL, and a statistically significant

difference in ΔL was found between VP and VD in both groups.

The ΔL of the groups decreased with VD, and VD affected

unstable and stable extremities (unstable extremity, 0.236 ±

0.003 to 0.118 ± 0.003, p < 0.001; stable extremity, 0.256 ±

TABLE 2 GRF, T-GRF, and LR of the unstable and stable extremities during landing with and without visual deprivation.

Variable Group Group Condition Condition × group

Unstable extremity Stable extremity p-value p-value p-value

Direction of Ground Reaction Force (N)

Vertical GRF

VP 3.45 ± 0.48 3.62 ± 0.36 0.221 0.041 0.184

VD 3.92 ± 0.52 3.91 ± 0.46

Medial GRF

VP 0.27 ± 0.04 0.29 ± 0.02 0.311 0.959 0.647

VD 0.27 ± 0.03 0.28 ± 0.02

Lateral GRF

VP −0.30 ± 0.02 −0.29 ± 0.02 0.999 0.195 0.999

VD −0.30 ± 0.02 −0.29 ± 0.03

Time to Peak Ground Reaction Force (ms)

T_vGRF

VP 59.00 ± 4.11 59.33 ± 2.93 0.229 0.001 0.186

VD 54.25 ± 5.60 57.17 ± 2.44

T_mGRF

VP 60.75 ± 3.52 60.92 ± 1.73 0.909 0.085 0.588

VD 60.08 ± 3.68 59.67 ± 2.46

T_lGRF

VP 58.17 ± 3.71 60.42 ± 1.83 0.004 <0.001 0.180

VD 54.33 ± 3.20 58.33 ± 2.31

Loading rate (ms−1)

VP 60.63 ± 8.56 61.12 ± 5.40 0.964 0.001 0.676

VD 66.69 ± 9.98 65.93 ± 7.18

“−” represents the value of lGRF.
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TABLE 3 Joint torque (hip, knee, and ankle) in the sagittal and frontal planes during landing with and without visual deprivation.

Variable Group Group Condition Condition × group

Unstable extremity Stable extremity p-value p-value p-value

Joint torque in the sagittal plane (Nm/kg)

Hip

VP −1.40 ± 0.23 −1.16 ± 0.40 0.022 0.025 0.461

VD −1.64 ± 0.41 −1.29 ± 0.33

Knee

VP 1.32 ± 0.20 1.15 ± 0.29 0.090 0.016 0.913

VD 1.49 ± 0.29 1.34 ± 0.30

Ankle

VP −1.76 ± 0.16 −1.54 ± 0.27 <0.001 0.825 0.091

VD −1.90 ± 0.26 −1.44 ± 0.29

Joint torque in the frontal plane (Nm/kg)

Hip

VP −0.66 ± 0.12 −0.69 ± 0.14 0.398 0.025 0.205

VD −0.88 ± 0.23 −0.76 ± 0.25

Knee

VP 0.05 ± 0.34 0.21 ± 0.50 0.223 0.002 0.757

VD 0.37 ± 0.51 0.59 ± 0.35

Ankle

VP 1.53 ± 0.20 1.40 ± 0.24 0.021 0.291 0.153

VD 1.81 ± 0.34 1.36 ± 0.62

“−” represents hip extensor torque, ankle plantarflexion torque, hip varus torque, and knee eversion torque.

TABLE 4 Stiffness of FAI during landing with and without visual deprivation.

Variable Group Group Condition Condition × group

Unstable extremity Stable extremity p-value p-value p-value

ΔL (m)

VP 0.236 ± 0.003 0.256 ± 0.003 <0.001 <0.001 <0.001

VD 0.118 ± 0.003 0.127 ± 0.002

Kleg (BW/m)

VP 16.63 ± 2.19 14.56 ± 1.18 0.035 <0.001 0.693

VD 30.18 ± 3.20 28.52 ± 2.53

Ankle stiffness (N*m/Δθ)

VP −0.038 ± 0.005 -0.032 ± 0.006 0.001 0.002 0.263

VD −0.047 ± 0.011 -0.036 ± 0.004
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0.003 to 0.127 ± 0.002, p < 0.001). The unstable extremity

revealed a shorter ΔL than the stable extremity, whether

under VD or VP conditions (VP, 0.236 ± 0.003 to 0.256 ±

0.003, p < 0.001; VD, 0.118 ± 0.003 to 0.127 ± 0.002, p < 0.001).

Furthermore, significant effects of the condition were detected

for Kleg (p < 0.001) and ankle stiffness (p = 0.002). Significant

effects in the group were detected for Kleg (p = 0.035) and ankle

stiffness (p < 0.001).

Discussion

In this study, we focused on the effects of VD on patients with

FAI during drop landing from the perspective of kinetics. We

found differences between stable and unstable extremities in

patients with FAI during drop landing. VD has a negative impact

on patients with FAI, and the impact on the unstable extremity is

more pronounced, which is consistent with our hypothesis.

Differences in kinetics between unstable
and stable extremities

The results show that the T_lGRF was earlier in the unstable

extremity than in the stable extremity, suggesting that the

protective strategy for the unstable extremity may need to be

sufficiently activated. Our results are similar to those of previous

studies of patients with FAI during single-extremity jump

landings, in that the severity of ankle instability correlates with

the earlier frontal stabilization time (Ross et al., 2008). Some

scholars (Lephart et al., 1998; Svinin et al., 2019) have

suggested mechanisms responsible for the earlier T_lGRF in the

unstable extremities and that the severity of ankle instability

correlates with the shorter time to frontal stabilization. The

proprioceptors in the ankle provide joint position sensation and

motion signals along the sensory nerves to the spinal cord, where

other sensory neurons may process and then transmit them to the

brain for further processing. The proprioceptors damaged by

recurrent sprains in the unstable extremities of patients with

FAI may cause delayed signal transmission resulting in

abnormal feedback (Lephart et al., 1998; Eechaute et al., 2009;

Song et al., 2016; Ludvig et al., 2017; Ibrahim and Abdallah, 2020).

This abnormal feedback may not be able to activate the protective

strategy for landing in a timely, effective manner to reduce the

injury risk. Moreover, studies (Horak et al., 1990; Patla et al., 2002;

Chaudhry et al., 2005; Delahunt et al., 2006; Ergen andUlkar, 2008;

Kabbaligere et al., 2017; Ibrahim and Abdallah, 2020) have

suggested that movement impairment could be modified by

correcting muscle activations. Impaired proprioception causes a

delay in the conduction of the afferent signal, and the consequent

delay in the efferent signal causes a delay in the corrective muscle

activation, which leads to a higher injury risk in the unstable

extremity.

Higher hip extensor and ankle torque in the sagittal and frontal

planes were revealed in the unstable extremity as compared with the

stable extremity. Our results are similar to research on the effect of

proprioceptive training on postural stability, that is, they show that a

higher hip extensor torque increases ankle sprain risk (Hietamo

et al., 2021). Joint torque represents the buffering function of energy

absorption on the ground reaction force through muscle strength.

The higher the hip extensor torque is, the less GRF is absorbed

through themuscles, whichmeans that the role ofmuscle strength in

reducing ground reaction force is minor; the higher the load is, the

less the extremity is buffered during drop landing. Based on kinetic

chain theories, insufficient hip muscle function increases the

likelihood of uncontrolled ankle displacements and ankle injury.

Previous studies have showed poor postural stability in ankle

sprain patients (Delahunt et al., 2006; Doherty et al., 2014).

Postural stability decreases when the unstable extremity is forced

to support itself during drop landing. Corresponding to our

results, studies have found that Kleg is larger in the unstable

extremity than in the stable extremity. A study related to ankle

and knee proprioception found that postural swing and center of

body mass changes increase among ankle-injured individuals

compared with the uninjured group and that a larger Kleg

response might increase postural swing and center of body

mass changes during movement (Lephart et al., 1998). Some

studies (Ito and Gomi, 2020) have suggested the mechanisms of

postural swing and center of body mass changes, in which

impaired proprioception in the unstable extremity makes

accurate adjustment signal transmission for joint position

sense abnormal, then blocks joint pressure and tension

feedback and further affects the nerve fiber processing of

sensory information, thus aggravating postural instability.

The greater ankle stiffness in the stable extremity compared

with the unstable extremity also supports the view that the

unstable extremity has a higher injury risk. Ankle stiffness

reduces energy consumption caused by joint activity through

the rigid lever, and stored energy is released to cushion the

ground impact force; ankle stiffness can prevent joint instability

during drop landing (Gao et al., 2022). Ludvig et al. (2017) has

suggested mechanisms for deficient levels of ankle stiffness, in

which proprioception is impaired in the unstable extremity,

leading to the muscle not activating. The ligaments and

tendons become slack due to recurrent ankle sprain, resulting

in energy consumption caused by joint activity. The energy

available for cushioning the ground impact force is reduced,

causing higher injury risk.

Effect of visual conditions on patients
with FAI

The result of increased vGRF and LR under VD in our paper

shows the higher impact force and injury risk in the lower

extremities of patients with FAI during drop landing with VD
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(Rosen et al., 2013). Under VD, the protective strategy may not

be sufficiently activated to buffer load and reduce injury risk. Our

results show that earlier T_vGRF and T_lGRF appear under VP

than under VD. Previous studies have found that visual

conditions affect postural stability (Zipori et al., 2018), and

our research further found that VD increases the risk of

injury in patients with FAI. Under VD, the brain is unable to

conduct environmental image analysis and deliver control signals

generated by visual information transfer to achieve a series of

postural control outputs, such as muscle tension adjustment and

joint angle change.

Moreover, our results show deficits in postural control in

patients with FAI, revealing that hip and knee torque in the

sagittal and frontal planes increase with VD and that the hip and

knee strategies mobilize when the ankle is unresponsive. This

phenomenon shows that the dynamic defense system of the joint

is further limited due to the proprioception impairment caused

by the recurrent ankle sprain, which leads to abnormal ankle

strategies in postural control (Alghadir et al., 2020). In our paper,

neither the unstable nor the stable extremities buffered the load

through ankle torque. This result could reflect the inability of the

unstable extremity to overcome the loss of two sources of sensory

information (Song et al., 2016): proprioception, which is altered

due to repeated ankle sprain, and visual inputs, which are lost

under VD. Palm et al. (2009) studied the effects of vision and

hearing on postural stability and suggested that other senses,

such as proprioception and vestibular sense, can compensate for

postural instability when visual information input is abnormal.

Zipori et al. (2018) also suggested that proprioception

dependence in individuals increases when visual information

inputs are abnormal. However, our paper found that even the

stable extremity, without proprioception impairment, does not

show special performance compared with the unstable extremity

during VD. Therefore, as for the stable extremity, proprioception

dependence is reduced under the long-term influence of the

unstable extremity deficits (Eechaute et al., 2009; Song et al.,

2016).

Our results show that Kleg is larger under VD than under VP,

indicating an increased instability and injury risk in the lower

extremities. As mentioned previously, a larger Kleg may increase

center of body mass changes and postural swing during drop

landing. Eechaute et al. (2009) have supported this view and

suggested that the center of body mass is used to maintain

balance during motion. Palm et al. (2009) suggested that

when visual control information decreases, postural control

ability decreases and the lower extremity injury risk increases

accordingly. In addition, muscle stiffness regulation is the first

reflex mechanism to adjust posture stability. Neurofeedback

modulates systems and adjusts muscle tone to adapt to

changes in the spatial environment. A possible explanation for

the lower ankle stiffness under VD could be that missed visual

inputs impede information transmission, which activates the

muscles (McKeon and Hertel, 2008; Ibrahim and Abdallah,

2020). Miller et al. (2018) have further reported the

importance of visual feedback, which may allow users to

receive external joint position cueing, which is also conducive

to sending the protection strategy’s activation signal. The motion

system subsequently manipulates ankle positioning and stiffness.

When patients with FAI lose their normal perception of the

external environment, ankle stiffness cannot be adjusted

correctly.

Practical implications

Patients with FAI are highly dependent on vision in postural

control. Vision plays an essential role in protective strategy

activation for providing assistance information during drop

landing among patients with FAI. The results reported here show

that theΔL adopted is larger under VP than under VD. TheΔL is the
vertical length change of the hip, reflecting the cushioning ability of

lower extremities to the ground impact force, which could be

considered a hip strategy that patients with FAI enable. The

visual system supplies the central nervous system with

continuous information about the body’s position in the

environment and activates the protection strategy. The hip

strategy undertakes most of the buffering load tasks. Studies of

postural strategies related to the loss of proprioception and vestibular

function have found that the hip strategy is adoptedmore when joint

instability occurs (Horak et al., 1990; Lee and Bo, 2021; Lee et al.,

2022). Furthermore, the body mainly relies on the ankle strategy to

adjust postural stability when interferences are few or when

environmental information changes, but the hip strategy also

dominates for large changes. Therefore, the human body

prioritizes adjusting hip activities to reduce the load during drop

landing, such as by increasing hip flexion to maintain postural

stability. One study (Palm et al., 2009) has indicated, by analyzing

biofeedback mechanisms through a trial of the effects of visual and

auditory inputs on posture control, that postural stability increases

with an increasing degree of visual control. The unstable extremity

relies more on visual inputs for postural control than does the stable

extremity. In support, studies related to visual use have suggested an

explanation for postural control deficits in patients with FAI: their

reliance on visual information has increased due to decreased

somatosensory information from the ankle complex (Song et al.,

2016; Nobusako et al., 2021). Our results are similar, and we found a

shorter ΔL on the unstable and stable extremities under VD than

under VP. Still, the unstable extremity was shorter, indicating that

vision plays an important role inmaintaining the postural stability of

patients with FAI; the effect of VD on the unstable extremity is more

significant, which means that the hip strategy on the unstable

extremity is more difficult to activate through increasing hip and

knee flexion. Furthermore, in our study, lower ankle stiffness, in

which the ankle cannot form a more stable structure, was revealed

under VD. However, a more vertical and protective landing strategy

to minimize injury risk has been proposed that provides greater
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mechanical protection by generating a close-packed position in the

ankle or by increasing hip flexion to provide stability for an

uncertain landing. To sum up, increasing hip flexion to increase

ΔL by deepening squat range might be an effective precaution in

reducing injury risk in the unstable extremity during drop landing.

Miller et al. (2018) have found that individuals with lower ankle

stiffness would utilize a more protective landing strategy that

increases hip and knee flexion to provide stability for an

uncertain landing.

In addition, Ibrahim and Abdallah (2020) have suggested

that proprioception training improves balance and shortens

reaction time in postural stability, which further proves that

the later T_lGRF in the stable extremity in our paper arises from

self-protection. Hence, the extension of T_GRF can also be used

as a breakthrough in precautions for patients with FAI. The

current paper also mentions the benefits of repeated practice. As

one repeats these activities, a feedforward mechanism occurs

unconsciously through the activation of the stabilizing joint

muscles and through the buffered load by activated muscle

strategies absorbing energy.

Limitations

As an indicator of postural stability, ankle muscle strength

plays a vital role in postural stability. This limitation is also a

characteristic of our paper, which evaluated only kinetics during

this protocol, so the possibility of an unknown kinetic effect of

the muscle activation response on the lower extremities cannot

be determined. Therefore, surface electromyography (sEMG)

could be combined in future research on patients with FAI

under VD to validate the dependence on vision and to

determine what strategies the muscles take, whether

protection strategies through the muscles are adopted by the

unstable extremity to reduce the risk of injury, and whether

warming up in advance can help muscles to activate faster as a

precaution against ankle injury.

Conclusion

Unstable extremities have additional injury risks compared with

stable extremities in patients with FAI, and vision plays an important

role in maintaining postural stability in these patients. VD increases

the injury risk for both the unstable and stable extremities, but the

effect on the unstable extremities is more significant and more likely

to result in injury, as the control of the central nervous system on hip

strategy is also affected. Deepening the squat range and avoiding

prolonged reaction time might be effective precautions for reducing

injury risk in patients with FAI during drop landing. In the future,

muscle strength and training could be studied and combined with

sEMG to evaluate precautions from a muscular perspective.
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