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The calcium-sensing receptor (CaSR) is expressed in many cell types –

including immune cells and in particular circulating monocytes. Here, the

receptor plays an important physiological role as a regulator of constitutive

macropinocytosis. This review article provides an overview of the literature on

the role of the calcium sensing receptor in the context of inflammatory

processes. Special emphasis is laid upon the importance for monocytes in

the context of rheumatoid arthritis. We have shown previously, that stimulation

of the receptor by increased extracellular Ca2+ ([Ca2+]ex) triggers a pro-

inflammatory response due to NLRP3 inflammasome assembly and

interleukin (IL)-1β release. The underlying mechanism includes

macropinocytosis of calciprotein particles (CPPs), which are taken up in a

[Ca2+]ex-induced, CaSR dependent manner, and leads to strong IL-1β
release. In rheumatoid arthritis (RA), this uptake and the resulting IL-1β
release is significantly increased due to increased expression of the receptor.

Moreover, increased [Ca2+]ex-induced CPP uptake and IL-1β release is

associated with more active disease, while CaSR overexpression has been

reported to be associated with cardiovascular complications of RA. Most

importantly, however, in animal experiments with arthritic mice, increased

local calcium concentrations are present, which in combination with release

of fetuin-A from eroded bone could contribute to formation of CPPs. We

propose, that increased [Ca2+]ex, CPPs and pro-inflammatory cytokines drive a

vicious cycle of inflammation and bone destruction which in turn offers new

potential therapeutic approaches.

KEYWORDS

rheumatoid arthritis, calciprotein particle, inflammation, NLRP3 inflammasome,
monocytes, calcium-sensing receptor

OPEN ACCESS

EDITED BY

Martin Schepelmann,
Medical University of Vienna, Austria

REVIEWED BY

Taha Elajnaf,
University of Oxford, United Kingdom
Romuald Mentaverri,
University of Picardie Jules Verne,
France

*CORRESPONDENCE

Ulf Wagner,
ulf.wagner@medizin.uni-leipzig.de

SPECIALTY SECTION

This article was submitted to Membrane
Physiology and Membrane Biophysics,
a section of the journal
Frontiers in Physiology

RECEIVED 24 October 2022
ACCEPTED 17 November 2022
PUBLISHED 06 January 2023

CITATION

Werner LE and Wagner U (2023),
Calcium-sensing receptor-mediated
NLRP3 inflammasome activation in
rheumatoid arthritis
and autoinflammation.
Front. Physiol. 13:1078569.
doi: 10.3389/fphys.2022.1078569

COPYRIGHT

© 2023 Werner and Wagner. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Review
PUBLISHED 06 January 2023
DOI 10.3389/fphys.2022.1078569

https://www.frontiersin.org/articles/10.3389/fphys.2022.1078569/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.1078569/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.1078569/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.1078569/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.1078569/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.1078569&domain=pdf&date_stamp=2023-01-06
mailto:ulf.wagner@medizin.uni-leipzig.de
https://doi.org/10.3389/fphys.2022.1078569
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.1078569


Introduction

The calcium-sensing receptor (CaSR) is a multifunctional

receptor involved in a wide variety of (patho-) physiological

processes. It was first identified in bovine parathyroid cells in

1993 (Brown et al., 1993) and has since been found to be

functionally important for all vertebrates (Herberger and

Loretz, 2013). The receptor is central for the maintenance of

systemic calcium homeostasis since it is involved in the

regulation of parathyroid hormone, calcitonin, calcitriol, and

fibroblast growth factor-23 (FGF23) (Brown, 2013). Accordingly,

expression is high in chief cells of the parathyroid glands and

thyroid C cells (Garrett et al., 1995), but also in cells of the renal

tubules (Riccardi et al., 1995) and in various cell types of the small

intestine (Chattopadhyay et al., 1998). The receptor is also

involved in bone remodeling as well as bone resorption and is

important for osteoclast and osteoblast function (Chang et al.,

1999; Cianferotti et al., 2015). In addition to its importance in

calcium homeostasis and in calcitropic tissues, the receptor also

contributes to the coordination of numerous other cellular

mechanisms due to its expression in the cardiovascular and

gastrointestinal systems, pancreatic islet cells, and the central

nervous system (Hannan et al., 2018). The functionality of the

receptor is determined by its polyvalence. In addition to Ca2+,

other cations (such as Gd3+, Ba2+, and Mg2+) and various amino

acids (for example poly-L-arginine, amyloid-β-peptide,
polyamines) serve as ligands (Conigrave et al., 2000; Zhang

et al., 2016a; Geng et al., 2016). As recently summarized by

Gorkhali and colleagues, the receptor is involved in many other

processes such as cell proliferation, cell differentiation,

cytoskeletal rearrangements, regulation of certain ion channels

(Gorkhali et al., 2021), but also in neurotransmission (Lo Giudice

et al., 2019) and nutrient sensing (Liu et al., 2018).

In recent years, numerous studies have examined the

importance of CaSR in various pathological contexts (Vahe

et al., 2017; Leach et al., 2020; Sundararaman and van der

Vorst, 2021; Tőke et al., 2021). Consistent with its systemic

distribution and functionality, genetic or acquired CaSR-

mediated perturbations are pathophysiological relevant for

calcium homeostasis, but also for non-calcitropic tissues

(Hannan et al., 2018). Loss-of-function mutations are

associate with hypercalcemia, while gain-of-function

mutations mediate hypocalcemia (Hendy et al., 2000). In

addition, several polymorphisms have been described that

predispose to various diseases not exclusively related to

mineral metabolism or that affect the response to certain

therapeutic modalities such as calcimimetic treatment (Rothe

et al., 2005; März et al., 2007; Tőke et al., 2021). A non-calcitropic

disease associated with polymorphisms of CaSR is, for example,

breast cancer (Campos-Verdes et al., 2018). Furthermore,

autoimmune reactions mediated by the formation of

antibodies against the extracellular domain of the receptor

have been described to cause hypocalciuric hypercalcemia

(Kemp et al., 2014; Weetman, 2015; Vahe et al., 2017).

Alzheimer’s disease (Chiarini et al., 2016), epilepsy (Kapoor

et al., 2008) and ischemic brain injury have also been

associated with dysfunctions or dysregulations of the receptor

(Hannan et al., 2018), and it also plays a role in the context of

vascular complications such as myocardial ischemia, vascular

calcification, hypertension, obesity and atherosclerosis

(Sundararaman and van der Vorst, 2021).

The involvement of the receptor in diverse pathological

processes highlights its cellular profound, pleiotropic

importance. The purpose of this review is to highlight the role

of the receptor in an inflammatory and immunological context.

Specifically, the involvement of CaSR in the inflammatory

pathogenesis of rheumatoid arthritis (RA) will be presented

and discussed below.

Signaling pathways induced by
calcium-sensing receptor

The CaSR is active as a homodimer or heterodimer localized

in the plasma membrane (Gama et al., 2001; Chang et al., 2007)

and belongs to class C of G-protein-coupled receptors (GPCRs)

(Nørskov-Lauritsen and Bräuner-Osborne, 2015; Møller et al.,

2017). Accordingly, the receptor features seven transmembrane

domains that are connected via intracellular and extracellular

loops, enabling signal transduction from the extracellular space

to intracellular second messengers (Rosenbaum et al., 2009).

Ligand binding occurs via a large N-terminal extracellular

domain, which features the structure of a bivalved Venus

flytrap (Zhang et al., 2016b; Geng et al., 2016). The

intracellular domain enables heterogeneous signal

transduction and mediates the interaction with various

G-protein subunits, in particular: Gq/11, Gi/o, and G12/13

(Conigrave and Ward, 2013; Hannan et al., 2018). It has

become clear that the activation state of GPCRs, including

CaSR, is multidimensional. Crucially, different ligands can

modulate the transduction of signals and shape their

intracellular consequences (Thomsen et al., 2012). This

signaling, termed biased signaling, is caused by the association

of different ligands with distinct conformational states of the

receptor, which in turn influence the induction of downstream

signaling pathways (Leach et al., 2014). The corresponding

activation of the various G-proteins, but also the affinity of

the CaSR for different agonists seems to depend on the cell

type (Huang and Miller, 2007). In general, the G-protein-

mediated signal transduction is associated with complex

intracellular signaling pathways, which result in particular in a

modulation of gene transcription (Gorvin, 2018a).

The important Gq/11-mediated signal transduction results in

the activation of the key effector protein, phospholipase C (PLC).

This leads to hydrolysis of the important cellular second

messengers inositol-1,4,5-trisphosphat (IP3) and diacylglycerol
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(DAG) (Brown et al., 1993; Chang et al., 1998). IP3 induces the

intracellular release of Ca2+ from cellular stores by activating

corresponding receptors in the endoplasmic reticulum (ER)

(Conigrave and Ward, 2013). DAG activates protein kinase C,

which is involved in the regulation of various signal

transductions, such as the activation of mitogen-activated

protein kinases (MAPKs). MAPK signaling is also induced by

the release of intracellular Ca2+ and is particularly involved in the

regulation of transcription via the induction of p38 kinase, JUN

N-terminal kinase and extracellular-signal regulated kinase 1 and

2 (Gorvin, 2018a; Hannan et al., 2018). Another major signaling

cascade is induced by activation of Gi/o. This induces the

activation of adenylate cyclase (AC) and suppresses the

production of cyclic adenosine monophosphate (cAMP)

(Chang et al., 1998; Kifor et al., 2001). Upon the concomitant

inhibition of protein kinase A, this provides another activation

pathway for MAPK signaling (Ward, 2004; Gorvin, 2018a).

Activation of the CaSR has also been described to mediate

MAPK-signal transduction via a mechanism involving β-arrestin
proteins, independent of G-protein activation (Thomsen et al.,

2012; Gorvin et al., 2018b).

Calcium-sensing receptor in immune
cells and inflammation

Several studies have shown that the receptor itself exerts

a modulatory effect on the immune response. For example,

CaSR has been found to be involved in inflammatory

processes relevant to allergic asthma (Yarova et al., 2015).

In airway smooth muscle cells, activation of CaSR can be

induced by inflammatory cationic proteins and increased

[Ca2+]ex, which correlate with asthma severity. In these

studies, activation of the receptor was observed in

association with intracellular Ca2+ mobilization, which

was accompanied by a decrease in intracellular cAMP and

induction of MAPK (Yarova et al., 2015). CaSR is also

relevant in pathophysiological processes of white adipose

tissue in obesity. It was observed that in visceral adipose

tissue, stimulation of CaSR causes increased expression of

pro-inflammatory cytokines (Cifuentes et al., 2012). The

importance of the receptor in hypertension has also been

investigated. Increased expression of the receptor was found

to be associated with aortic fibrosis in spontaneously

hypertensive rats and linked to pro-inflammatory

responses (Zhang X et al., 2019). Another study in mice

showed that in the brain, where the receptor is expressed by

neurons, microglia, and astrocytes, subarachnoid

hemorrhage-induced CaSR activation leads to a decrease

in neurological function and thus promotes neuronal

degeneration (Wang et al., 2020). This study suggests that

the serine/threonine kinase CaMKII, which is involved in

the modulation of various cellular functions as a sensor of

intracellular [Ca2+], is involved in this pro-inflammatory

CaSR-mediated process (Wang et al., 2020). In general,

selective inhibition of the receptor with NPS 2143 has

been shown to inhibit inflammatory processes (Mine and

Zhang, 2015; Yarova et al., 2015; Zhang X et al., 2019; Wang

et al., 2020). Mouse models have clearly illustrated that

pretreatment with NPS 2143 inhibits the migration of

inflammatory cells and thus the production of pro-

inflammatory cytokines in lipopolysaccharide (LPS)-

induced acute lung injury (Lee et al., 2017).

Immune cell-induced pro-inflammatory processes mediated

by CaSR activity have been studied in various pathological

contexts (see Table 1) (Liu et al., 2021). Overall, three

different CaSR-mediated functions have been described in

immune cells: Induction of cytokine secretion, cell migration

and macropinocytosis. Accordingly, the focus has been on

T lymphocytes (Li et al., 2013; Wu C et al., 2015; Wu Q Y

et al., 2015), neutrophils (Zhai et al., 2017; Chang et al., 2018) and

especially monocytes/macrophages (Yamaguchi et al., 1998b;

Yamaguchi et al., 1998a; Olszak et al., 2000; Xi et al., 2010;

Rossol et al., 2012b; Malecki et al., 2013; Paccou et al., 2013; Liu

et al., 2015; Canton et al., 2016; Séjourné et al., 2017;

D’Espessailles et al., 2020; Jäger et al., 2020).

Regarding CaSR-induced cytokine release, for example, it

became clear that activation of the receptor on T lymphocytes

leads to the secretion of pro-inflammatory cytokines such as IL-6

and tumor necrosis factor (TNF) (Li et al., 2013). In sepsis as a

systemic inflammatory response syndrome, activation of the

CaSR can induce apoptosis of T lymphocytes through the

signaling pathway via PLC-IP3 (Wu C et al., 2015). In

addition, it has been demonstrated that CaSR mediates pro-

inflammatory responses in T lymphocytes (Zeng et al., 2016) but

also in neutrophils could be important in acute myocardial

infarction (Ren et al., 2020). Previously, it was shown that

induction of CaSR-dependent pro-inflammatory responses by

M1macrophages also appear to be relevant in the presence of this

cardiac complication (Liu et al., 2015).

In this inflammatory context, it is also of relevance that the

promoter of CaSR is regulated by pro-inflammatory cytokines

(Hendy and Canaff, 2016). This implies the potential for a

feedback loop that fuels inflammation (Kelly et al., 2011;

Fetahu et al., 2014; Séjourné et al., 2017). For example, Canaff

and colleagues demonstrated that IL-6 induces increased gene

transcription of CaSR in the kidney, thyroid, and parathyroid

glands (Canaff et al., 2008). Moreover, pro-inflammatory

cytokines have been reported to increase expression of the

receptor in preadipocytes, adipocytes, and the LS14 adipocyte

line of human visceral adipose tissue (Cifuentes et al., 2010). In

general, receptor-related inflammation may be the cause, but also

a consequence, of a local disturbance in calcium homeostasis (Li

et al., 2013).

Elevated calcium concentrations at sites of acute or

chronic inflammation or infection may further stimulate
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CaSR-mediated chemotaxis, particularly of monocytes

(Olszak et al., 2000). For example, using a mouse model,

Olszak and colleagues showed that subcutaneous injection of

5 mM calcium chloride induces marked infiltration of

monocytes. Staining of monocytes on corresponding skin

sections clarified the effect of calcium as a chemoattractant

(Olszak et al., 2000). This mechanism is significant for the

migration of monocytes circulating in the bloodstream and

the initialization and modulation of the innate immune

response (Olszak et al., 2000).

Yet another CaSR-mediated function is of particular

relevance for monocytes and macrophages. Canton and

colleagues identified the CaSR as a mediator of induction and

maintenance of constitutive macropinocytosis. This extends the

understanding of the receptor, which was previously only known

as a chemotactic guide to the site of inflammation, to the

realization that the receptor is also essential for antigen

presentation (Canton et al., 2016). Monocytes/macrophages

are professional phagocytes which continuously internalize

their environment to screen for foreign and harmful markers.

The uptake of extracellular components occurs via actin-

mediated invaginations of the membrane (Bohdanowicz et al.,

2013). Canton and colleagues showed, that CaSR signaling

induces the accumulation of phosphatidic acid and

phosphatidylinositol (3,4,5)-trisphosphate (PIP₃) at the plasma

membrane. These signaling lipids cause the polymerization of

actin at the plasma membrane through complex coordination of

specific nucleators. Inhibition of the receptor by drugs, but also

culture under calcium-free conditions, blocks the formation of

PIP₃. This results in inhibition of the Rho-GTPase family

TABLE 1

CaSR in immune cells and inflammation.

Cell type
cell system

Function Related intracellular signaling
pathways

Pathological relevance

T lymphocytes Cytokine release (Li et al.,
2013)

NF-κB pathway, MAPK (Li et al., 2013;
Wu C. et al., 2015; Zeng et al., 2016)

• Sepsis (Wu C et al., 2015; Wu
Q. Y. et al., 2015)

• Primary CD4+ T cells (Chang et al., 2018)

Migration (Chang et al., 2018) PI3-Cdc42 cascade,

• Acute myocardial infarction
(Zeng et al., 2016; Zeng et al.,
2018)

• Human/rat peripheral blood T lymphocytes
(Li et al., 2013; Wu C et al., 2015;
Wu Q. Y. et al., 2015; Zeng et al., 2016)

Ca2+/calmodulin dependent myosin
phosphorylation (Chang et al., 2018) • Immune response,

inflammation (Chang et al.,
2018)

Neutrophils Cytokine release (Zhai et al.,
2017)

NF-κB pathway (Zhai et al., 2017) • Acute myocardial infarction
(Ren et al., 2020)

• Human/rat peripheral blood polymorph nuclear
neutrophils (Zhai et al., 2017; Ren et al., 2020)

NLRP3 via PLC-IP3 pathway, ER-Ca2+ release
(Ren et al., 2020) • Immune response,

inflammation (Chang et al.,
2018)• Neutrophil-like HL-60 (Chang et al., 2018) Migration (Chang et al., 2018) PI3-Cdc42 cascade,

Ca2+/calmodulin dependent myosin
phosphorylation (Chang et al., 2018)

Monocytes Macrophages Cytokine release (Yamaguchi
et al., 1998a)

NLRP3 via PLC-IP3 pathway (Rossol et al.,
2012b)

• RA (Rossol et al., 2012b; Jäger
et al., 2020)

• Human/mouse peripheral blood monocytes/
macrophage (Rossol et al., 2012b; Lee et al., 2012;
Canton et al., 2016; Jäger et al., 2020)

NLRP3 via PLC-IP3 and decreased cellular cyclic
AMP (Lee et al., 2012)

• Myocardial infarction (Liu
et al., 2015)

• Peripheral artery disease
(Malecki et al., 2013)

• CAPS (Lee et al., 2012)
• mouse monocyte/macrophage cell line (J774)

(Yamaguchi et al., 1998a)

Migration (Olszak et al., 2000;
Boudot et al., 2010)

Akt, PLC (Boudot et al., 2010)
PI3-Cdc42 cascade,

• Obesity (Thrum et al., 2022)
• Osteoarthritis (Séjourné

et al., 2017)
• Atherosclerosis (Malecki et al.,

2013)

• THP-1 macrophages (Xi et al., 2010;
D’Espessailles et al., 2020)

Ca2+/calmodulin dependent myosin
phosphorylation (Chang et al., 2018)

• Orchitis (Su et al., 2020)

• U937 monocytes (Chang et al., 2018)

Macropinocytosis (Canton
et al., 2016; Jäger et al., 2020)

PLC induced accumulation of lipid mediators,
activation of guanine nucleotide exchange factors,
branching of actin network (Canton et al., 2016)

• Immune response,
inflammation (Chang et al.,
2018)

Extended and modified according to (Liu et al., 2021).
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members Rac1/Cdc42, which are essential for cytoskeleton

reorganization, and thereby inhibits constitutive

macropinocytosis (Canton et al., 2016; Canton, 2018).

NOD-like receptor protein-3
inflammasome

The best studied inflammasome complex is the NOD-like

receptor protein-3 (NLRP3) inflammasome. Inflammasomes are

multimeric protein complexes assembled from precursor proteins,

which have to be available in sufficient concentrations in the cell

(Bryant and Fitzgerald, 2009). Inflammasome assembly and

activation always require two separate signals, the first of which

is triggered in response to various pathogen-associated molecular

patterns (PAMP) or damage-associated molecular patterns

(DAMP) after Toll-like receptor (TLR) activation (Liston and

Masters, 2017). This priming step involves NF-κB-dependent
activation of mRNA expression and protein translation

(Bauernfeind et al., 2009) of the adaptor molecule ASC

(apoptosis-associated speck-like protein containing a CARD),

caspase-1, and an inflammasome sensor, NLR protein, which

varies between the different types of inflammasomes. In

addition, the priming step also leads to deubiquitination of

NLRP3 by the Lys-63-specific deubiquitinase BRCC3 (Py et al.,

2013), allowing subsequent oligomerization.

The second signal can vary widely between different cell types

and different inflammasome types. Activation of the

NLRP3 inflammasome begins with oligomerization of de-

ubiquitinylated NLRP3. Oligomerized NLRP3 then recruits

ASC through pyrin domain-pyrin domain interactions

(Lamkanfi and Dixit, 2014), which forms long filaments and

assembles into a large protein complex, in which pro-caspase-1 is

recruited (Franklin et al., 2014). In the final step of activation, the

complex contracts into so-called SPECKs, bringing pro-caspase-

1 molecules into close proximity to each other. This starts the

process of autoproteolytic maturation and self-activation of pro-

caspase-1 into active caspase-1 (Franklin et al., 2014) and

subsequent IL-1β maturation begins.

In addition to cytokine cleavage, mature caspase-1 also

cleaves gasdermin-D, triggering the formation of a pore-

forming protein complex and leading to pyroptosis, a

pronounced cell death characterized by swelling, membrane

rupture, and release of cell contents, including pro-forms of

cytokines such as pro-IL-1β, into the extracellular space (Shi

et al., 2017). In the presence of extracellular stains and activated

caspase-1, pro-IL-1β released from dying cells can be cleaved

after pyroptotic cell death, leading to amplification of the

inflammatory signal.

The classical inflammasome-dependent members of the

extended IL-1 cytokine family are IL-1β and IL-18, both of

which have a caspase-1 cleavage site (Afonina et al., 2015). IL-1α,
on the other hand, which is also released under certain conditions

following inflammasome activation (Rossol et al., 2012b), matures

independently of caspase-1 but is cleaved by various proteases such

as elastase, granzyme B, and mast cell chymase.

A pathogenetic role for the NLRP3 inflammasome has been

originally shown for gout, periodic fever syndromes, and type II

diabetes (Dinarello, 2009). More recently, a contribution of

NLRP3 has been shown for a wider range of inflammatory and

autoimmune diseases, including atherosclerosis (Duewell et al., 2010;

Rajamäki et al., 2010) andmyocardial infarction (Toldo and Abbate,

2018), while vitiligo associates with NLRP1 mutations (Jin et al.,

2007; Grandemange et al., 2017). Lately, new results have indicated

an involvement of NLRP3 activation with obesity (Vandanmagsar

et al., 2011), depression (Kaufmann et al., 2017) aging (Youm et al.,

2013) and breast cancer (Ershaid et al., 2019), among others, which

indicates a potentially far greater role of this inflammasome in the

pathogenesis of common diseases. In atherosclerosis, NLRP3 is

activated by cholesterols crystals (Duewell et al., 2010; Rajamäki

et al., 2010) and oxidized LDL (Jiang et al., 2012; Sheedy et al., 2013;

Liu et al., 2014; Oury, 2014).

Calcium-sensing receptor-mediated
NOD-like receptor protein-3
inflammasome activation

In view of the alterations of extracellular calcium

concentrations under various pathological conditions, our group

investigated the effects of increased [Ca2+]ex on peripheral blood

monocytes. Concurrent with Lee and colleagues, we were the first

to demonstrate that extracellular Ca2+ act as damage-associated

molecular pattern (DAMP) and trigger activation of the

NLRP3 inflammasome (Rossol et al., 2012b; Lee et al., 2012).

Both studies independently reported that the activation signal for

the assembly of the NLRP3 inflammasome is mediated by CaSR

and that accumulation and elevation of intracellular [Ca2+] occur

in association with activation of the IP3/Ca2+ pathway. The study

by Lee and colleagues described the relevance of this mechanism

for autoinflammation in cryoporin-associated periodic syndromes

(CAPS). The results indicates that CaSR-induced inflammasome

activation triggers bouts of fever in this autoinflammatory diseases

(Lee et al., 2012). Examination of macrophages within this study

suggested an additional CaSR-mediated decrease in intracellular

cAMP preventing its actual inhibition of inflammasome assembly

(Lee et al., 2012). In our experiments with monocytes no

significant involvement of a modulation of intracellular cAMP

in [Ca2+]ex-induced inflammasome activation was detectable

(Rossol et al., 2012b).

Another example describing a CaSR-mediated inflammatory

process triggered by macrophages is orchitis, which can induce

male infertility (Su et al., 2020). Rat testicular macrophages

showed upregulation of CaSR after infection, associated with

increased activation of the NLRP3 inflammasome and release of

IL-1β. Here, an increase in cytosolic [Ca2+] was also considered
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causative (Su et al., 2020). Studies from our group showed that

macrophages from adipose tissue of patients with obesity

respond with markedly increased IL-1β release after calcium

stimulation of CaSR. These results suggest that CaSR-mediated

inflammasome-associated processes may contribute to chronic

inflammation in this disease (Thrum et al., 2022).

Local imbalance of calcium
homeostasis and calciprotein
particles

The maintenance of human calcium homeostasis is complex

and is safeguarded by different and partly redundant

mechanisms. Independent of cell-mediated processes,

biophysical phenomena are important. In this context, serum

proteins such as fetuin-A, which act as inhibitors of ectopic

crystallization, play an important role (Schinke et al., 1996;

Brylka and Jahnen-Dechent, 2013). The negative charge of the

elongated β-sheet within the amino-terminal cystatin-like

D1 domain of fetuin-A (or α2-Heremans Schmid

glycoprotein) enables the binding of Ca2+ and phosphate ions

(Pi) from serum to form soluble amorphous particles called

calciprotein particles (CPPs) (Heiss et al., 2003). Similar to

lipid-transferring apolipoproteins, fetuin-A serves as a vehicle

for minerals and prevents the precipitation of crystals (Tiong

et al., 2022). CPPs can mature sequentially and are categorized

based on their size and structure. The spontaneous particle

formation of Ca2+ and Pi in conjunction with monomeric

fetuin-A leads to the generation of calciprotein monomers

(CPM) (Rochette et al., 2009; Heiss et al., 2010). These

monomers can fuse to form polymeric primary CPPs (CPP I)

that contain amorphous calcium phosphate and can reach

diameters of up to 100 nm (Smith et al., 2020). Secondary

CPPs (CPP II) are crystalline complexes and exhibit

hydroxyapatite. They are elongated ellipsoid shaped and reach

a length between 100 and 250 nm (Smith et al., 2020; Kutikhin

et al., 2021).

Under physiological conditions, the formation of CPPs in

serum serves to balance fluctuations in mineral metabolism and

is essential for maintaining calcium homeostasis in the body

(Jahnen-Dechent et al., 2020). In a genetic mouse model,

knockdown of the fetuin-A gene induces calcification of the

myocardium and soft tissues (Schafer et al., 2003). Consequently,

these protein-mineral complexes represent a dynamic

component for stabilizing the local mineral balance and

basically counteract pathological deposition of minerals

(Schafer et al., 2003; Jahnen-Dechent et al., 2020; Smith et al.,

2020). Recent studies by Koeppert and colleagues suggest that

CPM degradation proceeds via the kidney. The contained fetuin-

A is presumably reabsorbed by epithelial cells of the proximal

renal tubules and excretion of calcium phosphate proceeds via

urine (Koeppert et al., 2021). Previously, liver sinusoidal

endothelial cells were found to be critical for the clearance of

CPP I whereas kupffer cells eliminated secondary CPPs in

addition to primary ones (Köppert et al., 2018).

In a pathological context, elevated levels of CPPs have been

described particularly in association with vascular calcification

(Yamada et al., 2014). CPPs have been identified in the tunica

media of calcified arteries (Wu et al., 2020). Also, in patients with

hypertension (Pruijm et al., 2017) and coronary atherosclerosis

(Nakazato et al., 2019), increased serum CPP levels are detected.

In patients with chronic kidney disease, high levels of CPPs are

considered a causal factor for vascular calcification, which carries

the risk of lethal cardiovascular complications (Hamano et al.,

2010; Miura et al., 2018). Recently, however, it has also become

clear that during aging, in parallel to an age-related decline in

skeletal muscle mass, the level of circulating CPP increases

(Yoshioka et al., 2022).

It has been described that cellular uptake of the particles can

cause pro-inflammatory and cytotoxic consequences. Cells

studied to date in this regard include vascular and valvular

endothelial cells, vascular smooth muscle cells, adventitial

fibroblasts, and interstitial cells of heart valves, as well as

monocytes (Kutikhin et al., 2021).

The determination of CPP in serum or other biological fluids,

its differentiation from membrane-associated particles, and its

precise measurement despite its instability, are challenging tasks,

as reviewed recently by Smith and colleagues (Smith et al., 2020).

To date, the use of gel filtration methods (Miura et al., 2018) and

the fluorescent bisphosphonate-based probe OsteoSense in

conjunction with nanoparticle flow cytometry (Smith et al.,

2017) are considered most adequate to examine the levels of

CPPs in serum or other biological fluids.

Calciprotein particles and calcium-
sensing receptor-mediated
macropinocytosis

Interestingly, experiments using different cell culture media

demonstrated that CaSR-mediated activation of NLRP3 and IL-

1β release in macrophages/monocytes are strictly dependent on

the presence of phosphate in the media (Muñoz-Planillo et al.,

2013; Jäger et al., 2020). This observation strongly implied the

formation of some sort of calcium phosphate complexes, salts or

crystals. However, crystallization in biomimetic fluids can most

likely be excluded due to strong crystallization-inhibiting

mechanisms in serum. Accordingly, no crystals are detectable

by light microscopy in the concentration range used (Jäger et al.,

2020). Only transmission electronmicroscopymade it possible to

detect nanoparticles in culture media after addition of 2.5 mM

[Ca2+]ex (Jäger et al., 2020). Those particles were found to contain

calcium, phosphate, and fetuin-A, which identifies them as CPPs

as described by Jahnen-Dechent and colleagues and other groups

earlier (Jahnen-Dechent et al., 2020).
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Such particles are unlikely to interact with the CaSR and

trigger a receptor signal. However, myeloid cells like monocytes

and macrophages engulf all content of the extra-cellular fluid by

constitutive macropinocytosis, including CPPs. Therefore, the

results of Canton and colleagues were of utmost importance

(Canton et al., 2016) since they showed that constitutive

macropinocytosis is crucially dependent on CaSR expression.

This suggested that [Ca2+]ex-induced NLRP3 activation is

mediated by macropinocytotic uptake of CPPs (see Figure 1).

We were able to confirm this [Ca2+]ex- and CaSR-dependent

uptake of CPPs and could show, that it triggers IL-1β release in

low phosphate media (Jäger et al., 2020). Consequently, this can

explain the phosphate dependency of the process, since

phosphate is required during CPP generation, while it is

dispensable in the cellular processes of CaSR-dependent

macropinocytosis and subsequent NLRP3 assembly and

FIGURE 1
Overview of the CaSR dependent mechanism of Ca2+/CPP-induced inflammasome activation in monocytes/macrophages. CaSR-induced
signaling pathways important for NLRP3 inflammasome activation, are induced by coupling to G protein dimers. Signal transduction via Gq/
11 induces the activation of phospholipase C (PLC), which completes the hydrolysis of phosphatidylinositol 4,5-bisphosphate in inositol
trisphosphate (IP3) and diacylglycerol (DAG). IP3 leads to release of Ca2+ from intracellular calcium stores. The resulting increase in intracellular
Ca2+ concentration ([Ca2+]) triggers various signal transductions and presumably contributes to the activation of the NLRP3 inflammasome. CaSR-
mediated Gi/o pathway activation, which has been described in macrophages (Lee et al., 2012) but not in monocytes (Rossol et al., 2012b), leads to
inhibition of adenylate cyclase (AC) and reduction of cellular cAMP level. The downregulation of cAMP diminishes its inhibitory effect on the assembly
of the inflammasome, therefore allowing for its activation (blue box) (Lee et al., 2012). Activation of CaSR also contributes to constitutive
macropinocytosis in monocytes/macrophages and leads to accumulation of certain lipidmediators. These lead to actin polymerization via induction
of specific GTPases such as Rac1/2, resulting in Arp2/3-dependent branching of the actin network. CaSR-mediated macropinocytosis allows the
uptake of calciprotein particles (CPPs) from the extracellular space. These amorphous particles are formed via binding of Ca2+ and phosphate ions (Pi)
by the serum protein fetuin-A. The uptake and internalization of these particles is pivotal for the activation of the inflammasome and induce an
additional increase in cytosolic [Ca2+]. The priming necessary for the assembly of the inflammasome, which is required, for example, for the provision
of pro-IL-1β, ASC, and pro-caspase-1, can be mediated by cytokines in the inflammatory context, or by endogenous toll-like receptor ligands like
tenascin-C (TNC) in synovitic joints in rheumatoid arthritis. Figure modified according to (Jäger et al., 2020) and created with BioRender.com.
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activation. We were also able to further analyze the intra-cellular

processing of the CPPs, which are transferred from

macropinosomes to phagolysosomes and are digested by

lysosomal hydrolases like cathepsin B (see Figure 1). Contrary

to the effect of crystalline particles on lysosomes, no lysosomal

leakage is triggered. Instead, lysosomal degradation of CPPs is

critical for NLRP3 activation, since cathepsin inhibitors are able

to inhibit IL-1β release (Jäger et al., 2020).

Calcium-sensing receptor-triggered
IL-1β release in rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic autoimmune disease

characterized by a pathological autoimmune response which can

precede clinical symptoms by years. In the context of an

increased susceptibility due to the presence of RA associated

HLA-DRB1 alleles, this immune response involves both T cells

and B cells, and results in the generation of auto-antibodies

against citrullinated peptides (ACPA). Those ACPA, in turn, are

associated with a more severe course of the disease, and in

particular, with a more rapid destruction of joints and bone

matrix unless efficient treatment is initiated early.

The earliest sign of such a bone destructive process is

periarticular osteoporosis, which can be detected already at

the earliest stages of disease, and which is therefore likely to

have preceded them (Bøyesen et al., 2009; Güler-Yüksel et al.,

2009; Hoff et al., 2009; Wevers-de Boer et al., 2015). Early

metacarpal bone mineral density loss also predicts the pace of

radiological joint damage later in the course of the disease,

indicating that periarticular osteoporosis and erosive joint

destruction are indeed closely linked (Bøyesen et al., 2009;

Wevers-de Boer et al., 2015). In addition, clinical studies of

individuals, which are positive for anti-CCP antibodies, but have

no arthritis or clinical symptoms yet, have shown that lesions

with subclinical inflammation in bone and bone marrow

(Matthijssen et al., 2019) or early erosions (Brinck et al., 2018;

Wouters et al., 2020), which are detectable only by magnetic

FIGURE 2
Anatomy of healthy joints (left) and pathological changes in RA (right). The healthy joint with joint capsule, synovial membrane consistent of a
cell monolayer, cartilage and bone. RA leads to thickening of the synovial membrane due to immigrating immune cells, inflammatory cytokines are
released, and cartilage and bone destroyed. Enlarged cutout: situation in areas of erosive bone resorption: Misdirected activation of osteoclasts leads
to increased bone resorption, and release of high concentrations of the bone components calcium, phosphate, and fetuin-A. Monocytes
migrate chemotactically from blood vessels into the synovial membrane, take up CPPs, and secrete pro-inflammatory cytokines, especially IL-1β.
Figure modified according to (Jäger et al., 2020) and created with BioRender.com.
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resonance imaging (MRI), often precede development of

arthritis. Those early changes in bone structure must be

linked to resorption of bone matrix, and consequently, to

local increases of the calcium and phosphate load which

needs to be buffered and removed via the bloodstream (see

Figure 2).

Already in early in vitro experiments with monoclonal

antibodies blocking specific cytokines, it became clear, that

cytokines produced by myeloid cells – like IL-1β, IL-6, and
TNFα – play a pivotal role in the pathogenesis of RA

(Brennan et al., 1989). Consequently, inhibitors of those

cytokines were the first biological treatments for RA ever

approved (Elliott et al., 1994; Bresnihan et al., 1998), thereby

underlining the relevance of monocytes and macrophages for the

chronic inflammation and bone destruction in this disease.

Monocytes of the peripheral blood have been shown to be

crucially involved in the induction and maintenance of

pathophysiological inflammatory processes of RA

(Davignon et al., 2013). Our group has intensively

investigated phenotype (Rossol et al., 2012a) and function

(Meusch et al., 2013) of circulating monocytes in RA. We

found increased intrinsic cytokine production, in particular of

IL-1β, and this IL-1β release exerted clear pro-inflammatory

and anti-apoptotic effects on monocytes in a paracrine and

autocrine fashion in vitro (Meusch et al., 2013; Meusch et al.,

2015). More recently, monocytes have received renewed

interest due to the results of single cell RNA sequencing

experiments on large numbers of RA patient samples, in

which IL-1β producing monocytes were identified as a

distinct cell population of pathogenetic relevance (Zhang F

et al., 2019). IL-1β is a strong promoter of the inflammatory

reaction and correlates with the extent of inflammation of the

synovial membrane (Kinne et al., 2007). In combination with

TNFα, which is also highly enriched in the synovial membrane

of RA, it is a very potent stimulator of synovitis (Klimiuk et al.,

2001).

In this context, the migration of monocytes from peripheral

blood into synovial membranes (Lioté et al., 1996; Torsteinsdóttir

et al., 1999) is of relevance. Once immigrated, the monocytes

contribute to the perpetuation of the chronic immune response

and inflammation in the rheumatoid synovium (see Figure 2).

The inflammatory milieu within the joints in turn affects the

differentiation of monocytes to osteoclasts, leading to increased

bone resorption (Takayanagi, 2007; Nakashima and Takayanagi,

2008).

The described alterations of calcium homeostasis and the

phenotypical and functional changes of circulating monocytes

in RA lead us to hypothesize that the CaSR-dependent

stimulation of macropinocytosis in RA monocytes contributes

to initiation and perpetuation of the chronic inflammatory

response in those joints due to the triggering of a cytokine

cascade spearheaded by IL-1β, and followed by other myeloid

cytokines (see Figure 2) (Rossol et al., 2012b; Jäger et al., 2020).

This activation of monocytes – and possibly other immune cells

present in the rheumatoid synovium – might then contribute to

increased calcium concentrations in the intercellular space due to

calcium release from activated cells, thereby fueling a vicious cycle.

Based on this hypothesis, we investigated peripheral blood

monocytes from patients with RA and found them to respond

with significantly higher IL-1β release to increased [Ca2+]ex,

compared to healthy controls. Importantly, the stronger IL-1β
response was related to disease activity, since patients with very

early and active disease, who had not been seen by a

rheumatologist or treated with steroids previously, had an

even higher response compared to patients in remission. In

the collagen II-induced arthritis mouse model, the link

between [Ca2+]ex and disease activity was confirmed, since the

[Ca2+]ex-induced IL-1β response of mouse monocyte correlated

closely with the arthritis score. Patients with other autoimmune

arthritis like psoriatic arthritis or systemic lupus erythematodes,

in contrast, did not differ in their [Ca2+]ex-induced IL-1β
response from healthy controls.

The cause for this increased response in RA is likely related to

CPP uptake, since monocytes from RA patients also show

increased macropinocytotic uptake of CPPs compared to

healthy controls. Simultaneously, we found increased

expression of the CaSR on monocytes from RA patients. This

might lead to stronger signaling and subsequently higher IL-1β
release and in agreement with previous reports on increased

CaSR expression in patients with RA, which then was associated

with heightened cardiovascular morbidity and mortality (Paccou

et al., 2014).

Two essential prerequisites for [Ca2+]ex-induced IL-1β
release are the presence of sufficient concentrations of CPPs

as well as a pro-inflammatory milieu contributing to TLR-

mediated priming of monocytes. The former is certainly

guaranteed in inflamed joints with bone erosion, since

eroded bony matrix releases not only calcium and

phosphate, but also high concentrations of fetuin-A, the

most abundant non-collagenous protein in bone. The

latter, the required TLR priming, is in vivo certainly not

provided by LPS and TLR4, which are commonly used

in vitro. There are, however, numerous endogenous TLR

ligands, among them tenascin-C (TNC) which triggers

TLR4 and can prime for [Ca2+]ex-induced IL-1β release

(Midwood et al., 2009; Rossol et al., 2012b). Therefore, the

required conditions for CaSR-mediated NLRP3 activation

appear to be present in RA (see Figure 2).

When the local environment in arthritic joints was

investigated more closely, we found increased calcium

concentrations both in synovial fluid from RA patients as well

as in arthritic mouse joints. In rheumatoid synovium from RA

patients, the CaSR is overexpressed (Jäger et al., 2020). We

propose, therefore, that this interplay between increased

calcium concentrations, CaSR expression, and [Ca2+]ex-

induced IL-1β release contributes to the perpetuation and
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possibly also to the initiation of the inflammatory disease process

in RA joints.

Summary and future outlook

The CaSR is expressed on myeloid immune cells and in

particular on monocytes and macrophages. In an inflammatory

setting, the receptor exerts stimulatory effects on monocytes and

macrophages. Vice versa, expression and function of the

receptors are also influenced by inflammatory stimuli and

signals. The most dominant effector mechanism of CaSR

stimulation in monocytes and macrophages is the assembly

and activation of the NLRP3 inflammasome, subsequent

caspase-1 activation, IL-1β release, and pyroptosis. This pro-

inflammatorymechanism is strictly dependent on the presence of

phosphate and fetuin-A in the extracellular fluid, since in

addition to ligand binding to CaSR, macropinocytotic uptake

of fetuin-A-based CPPs is strictly required.

This mechanism has been shown to be of relevance under

various pathological conditions and in several diseases. In RA, it

contributes to the chronic inflammatory disease process in

arthritic joints, and is likely fueled by the generation of

calcium protein particles during erosion of bone matrix. The

pro-inflammatory effect is further amplified by an increased

propensity of RA monocytes to hyper-react to extracellular

calcium. More detailed knowledge about this pro-

inflammatory mechanism will open up avenues to new

therapeutic approaches and will facilitate the development of

pharmacological therapeutics.
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