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Endothelial cells, the inner lining of the blood vessels, are well-known to play a
critical role in vascular function, while endothelial dysfunction due to different
cardiovascular risk factors or accumulation of disruptive mechanisms that arise
with aging lead to cardiovascular disease. In this review, we focus on endothelial
stiffness, a fundamental biomechanical property that reflects cell resistance to
deformation. In the first part of the review, we describe the mechanisms that
determine endothelial stiffness, including RhoA-dependent contractile response,
actin architecture and crosslinking, as well as the contributions of the intermediate
filaments, vimentin and lamin. Then, we review the factors that induce endothelial
stiffening, with the emphasis onmechanical signals, such as fluid shear stress, stretch
and stiffness of the extracellular matrix, which are well-known to control endothelial
biomechanics. We also describe in detail the contribution of lipid factors, particularly
oxidized lipids, that were also shown to be crucial in regulation of endothelial
stiffness. Furthermore, we discuss the relative contributions of these two
mechanisms of endothelial stiffening in vasculature in cardiovascular disease and
aging. Finally, we present the current state of knowledge about the role of
endothelial stiffening in the disruption of endothelial cell-cell junctions that are
responsible for the maintenance of the endothelial barrier.

KEYWORDS

endothelial biomechanics, shear stress, matrix stiffness, oxidized lipids, endothelial barrier

1 Introduction

Deterioration of vascular function with age or vascular aging is recognized today as a major
factor in the aging process, whereas maintaining vascular health is considered a promising
direction in developing anti-ageing strategies (Perk et al., 2012; Kajuluri et al., 2021). A major
characteristic of vascular aging and an independent predictor of cardiovascular disease and
mortality is stiffening of large elastic arteries, particularly aorta, which increases throughout the
normal life span and is exacerbated by cardiovascular risk factors, such as obesity and diabetes
(Laurent et al., 2001; Mitchell et al., 2007; Mitchell, 2008; Palombo and Kozakova, 2016). Aortic
stiffening is also associated with age-related cognitive decline (Waldstein et al., 2008; Tarumi
et al., 2013), as well as with kidney damage (Safar et al., 2004). A major link between the
stiffening of large arteries and functional vascular dysfunction is the impairment of peripheral
microvascular function, which is manifested in decreased flow-induced vasodilation and has
been demonstrated in several large cohorts of human subjects including the Framingham study
(Mitchell et al., 2005; Cheung et al., 2007). Arterial stiffening results in reduced compliance of
the arterial vascular wall to changes in blood pressure and blood velocity and thus, creates
abnormal shear stress patterns that might be damaging to the endothelium (Mitchell, 2008).
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The stiffening of the arterial wall may also lead to increased
contractility of the endothelium, which in turn impairs the
integrity of the endothelial monolayer (Kohn et al., 2015a).

Arterial stiffness is primarily determined by the aggregate stiffness
of the multi-layers of vascular smooth muscle cells (VSMCs), the
major cellular component of the arterial wall, and by the composition
of extracellular matrix. Typically, extracellular stiffening is a result of
the loss and fragmentation of elastin and depositions and crosslinking
of collagen by advanced glycation end-products (AGEs) (Kohn et al.,
2015a; Palombo and Kozakova, 2016), and VCMCs stiffening is a
result of the cytoskeletal remodeling (Vatner et al., 2021). Importantly,
endothelial stiffness is critically distinct from a more thoroughly
studied stiffness of the vascular wall. Mechanically, the stiffness of
the endothelium, a single cell monolayer that constitutes the inner
lining of the blood vessels is not expected to contribute to the general
stiffness of the vascular wall. However, an increasing amount of
evidence suggests that endothelial stiffness per se has significant
physiological impact on the vascular function, including disruption
of the endothelial barrier and recruitment of monocytes to the sites of
inflammation, two major endothelial functions. There are also
multiple connection between VCMCs and ECs which contribute to
regulating arterial stiffening: on one hand, an increase in VCMC
stiffness contribute to the stiffening of the arterial wall, which in turn
induce endothelial stiffening, and on the other hand, endothelial
stiffening may impair endothelial vasodilatory function, which
would enhance the contractility of VCMCs contributing to vascular
stiffness. It is critical, therefore, to understand the mechanisms that
govern endothelial stiffness and determine the contribution of
endothelial stiffening to vascular aging. In this review, we discuss
the current state of knowledge about the factors and the
mechanisms that govern endothelial stiffness in general and in
aging vasculature.

2 Determinants of endothelial cortical
stiffness

Cellular stiffness is a fundamental biomechanical property that
reflects the elasticity and deformability of the cellular envelope, a bi-
component system consisting of the membrane lipid bilayer and the
sub-membrane cytoskeleton, also known as the cytoskeletal cortex. It
is well known that membrane lipid bilayer is a much softer material
than the cytoskeleton and therefore it is the sub-membrane cortex
that constitutes the cellular mechanical scaffold. Hence, cellular
stiffness is frequently referred to as cortical stiffness. The three
major cytoskeletal networks in mammalian cells are
microfilaments (~7 nm diameter) comprised primarily of actin
filaments, microtubule (~25 nm diameter) comprised of tubulin
and intermediate filaments; (~10 nm diameter), which can be
comprised of several types of proteins with vimentin being the
major one in endothelial cells (Berhadsky and Vasiliev, 1989).
The biomechanical properties of the three networks were shown
to be clearly distinct, as assessed in isolated filaments: the greatest
resistance to stress is exhibited by actin filaments that have highest
rigidity but fluidize at high strains, vimentin filaments are less rigid
but stiffen at higher strains and microtubule, while relatively stiff
were predicted not contribute significantly to cellular viscoelastic
properties because of their low abundance in cellular cortex (Janmey
et al., 1991).

2.1 Actin cytoskeleton

Actin cytoskeleton is a network of actin filaments, myosin and
different actin-binding proteins, which constitutes the main
component of the sub-membrane cytoskeleton or the cell cortex,
and exists under continuous tension that arises from the activity of
myosin motors (Morone et al., 2006). Multiple studies established that
endothelial deformability also depends primarily on actin
cytoskeleton. First, using micropipette aspiration, which measures
membrane/cortical deformation in response to negative pressure
applied to the cell surface, it was demonstrated that disruption of
F-actin either with cytochalasin B, a capping protein, that interferes
with the formation of actin filaments or with latrunculin A, which
binds to G-actin, result in significant endothelial softening, disruption
of the tubule has little or no effect (Sato et al., 1990; Byfield et al., 2004).
Substrate adherent capillary endothelial cells were also shown to be
under internal mechanical tension, as they spontaneously retracted
when cut across by a microneedle (Pourati et al., 1998). This pre-
existing tension was largely abrogated by disrupting the integrity of
F-actin, indicating that actin is the stress bearing element of the
cytoskeleton. Furthermore, actin tension was also shown to
correlate with cell stiffness, as determined by magnetic twisting
cytometry, and proposed to constitute a key determinant of cellular
deformability (Pourati et al., 1998). Furthermore, disruption of F-actin
also significantly decreases the force required to pull membrane
tethers in aortic endothelial cells indicating that it is a major
determinant of membrane biomechanics and membrane-
cytoskeletal adhesion (Sun et al., 2007). Two general mechanisms
are known to contribute to increased cortical tension/cortical stiffness:
1) increase in actomyosin contractility and stress fiber formation, 2)
increase in the abundance and/or the crosslinking of cortical actin.

Actomyosin-mediated contractility is a major mechanism for
generating mechanical stress and increased cortical tension in all
mammalian cells (Heissler and Manstein, 2013; Murrell et al.,
2015). In my cells, the contractility occurs as a result of the
interaction between myosin II molecular motor and actin filaments
and is determined by the phosphorylation status of myosin light chain
(MLC) regulatory domain of myosin II (Heissler and Manstein, 2013;
Murrell et al., 2015). MLC phosphorylation promotes myosin II
activity and triggers the assembly of stress fibers, actomyosin
bundles that have contractile properties. The upstream regulators
of MLC phosphorylation are RhoA/Rho-kinase coiled-coil
containing kinase (ROCK) pathway and myosin light chain kinase
(MLCK), which in turn can be activated by a variety of factors.

Numerous studies showed that activation of RhoA/ROCK
pathway induces formation of stress fibers and enhances cellular
contractility [e.g., (Ridley and Hall, 1992; Totsukawa et al., 2000)].
The major pathway by which ROCK phosphorylated MLC is not
direct but mediated via the inhibition protein phosphatase 1 (PP1 or
MLCP), which dephosphorylates (Matsumura and Hartshorne, 2008).
MLCK activation is Ca/Calmodulin dependent and directly
phosphorylates MLC (Takashima, 2009). Initially, it was shown
through indirect intracellular cytoplasmic microrheology
measurements that an increase in the nanoscale intracellular
viscosity of fibrobasts was correlated with an increase in RhoA
activity (Kole et al., 2004). In a later study, it was directly
demonstrated that activation of RhoA/ROCK increases stress fiber
formation, cytoskeletal tension, and cell stiffness, as thoroughly
assessed by Lim et al. (2012). More specifically, Atomic Force
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Microscopy (AFM) was utilized with AFM probe tips coated with
ECM (laminin or fibronectin) so that contact with vascular smooth
muscle cells (VSMCs) would result in cell adhesion via focal adhesion
(FA) formation. Cells were mechanically stimulated by systematically
retracting the AFM probe attached to the FA. By utilizing this AFM
technique in conjunction with VSMCs transfected to fluorescently
express vinculin, RhoA, and actin, the authors were able to elegantly
demonstrate that direct mechanical stimulation led to an increase in
localized RhoA activity at the site of stimulation, which subsequently
led to increases in F-actin stress fiber activity and cellular tension.
They utilized loss of function/gain of function of RhoA constructs for
the RhoA-EGFP transfections: a dominant negative version (low
RhoA), and a constitutively active version (high RhoA) and a wild
type as control. Cells with the dominant negative version had very low
cell stiffness compared to the wild type variety, and cells with the
constitutively active version had higher stiffness values. With robust
retraction of the AFM probe (simulating a high application of tensile
stress), the dominant negative RhoA cells detached from the AFM
probe very quickly after the initial adhesion. Meanwhile, the
constitutively active RhoA cells were found to strongly resist the
high tensile stress application of the AFM probe retraction. They
also demonstrated that blocking Rho-kinase via the specific inhibitor
Y-27632 or blocking myosin function by the myosin inhibitor ML-7
led to low cytoskeletal tension with decreased levels of stress fibers,
cytoskeletal tension, and cell stiffness. In more recent studies,
CN03 has been utilized as a potent Rho activator, which
constitutively activates Rho by blocking GTPase activity without
affecting the activity or Rac and Cdc42 (Bade et al., 2017). Showed
that CN03 greatly enhances basal stress fiber formation, which has
been previously reported to be the primary sub-category of stress fibers
associated with cell tension and stiffness (Ingber and Tensegrity, 2003;
Kumar et al., 2006). Interestingly, the intracellular spatial distribution
of RhoA/ROCK and MLCK was shown to be distinct resulting in
differential patterns of stress fiber formation: the assembly of the stress
fibers in the center of the cells was shown to be mainly ROCK
dependent, whereas in the periphery, it was shown to be dependent
more strongly on MLCK (Totsukawa et al., 2000). This raises a
possibility that different stimuli that activate these pathways are
also likely to generate spatially distinct stiffening patterns.

2.2 Cortical actin architecture

While many studies assume that cortical tension is determined
primarily by the expression and phosphorylation levels of myosin with
actin fibers only providing the scaffold for myosin activity (Tinevez
et al., 2009), growing number of studies indicate that actin architecture
also plays a major role in determining the cortical tension. Specifically,
it was shown that altering actin architecture using surface
micropatterning and the network organization of the fibers play
major roles in the contractile response and that specific actin
crosslinkers (also known as actin binding proteins) can enhance or
inhibit the contractility under the same expression/phosphorylation
levels of myosin (Reymann et al., 2012; Ennomani et al., 2016).
Additionally actin binding proteins have been previously well-
established to mediate F-actin stiffness at the cell’s leading edge
cortical actin bundles (Dos Remedios et al., 2003; Uribe and Jay,
2009; Pollard, 2016; Vakhrusheva et al., 2022). In one particular study,
α-actinin, plastin, or fascin were varied for their concentration and

bundle size (these specific actin binding proteins are abundant in
eukaryotic cells) (Claessens et al., 2006). Leading edge cortical actin
bundle stiffness was precisely measured and found to differ uniquely
and significantly depending on the specific type of actin binding
protein being manipulated. In addition, the thickness of the
cortical actin was also shown to be a determinant of cortical
tension independently of myosin and most interestingly, the
relationship between cortical thickness and tension was found to be
non-monotonic with maximum tension generated at medium cortical
stiffness (Chugh et al., 2017). It is expected, therefore, that changes in
the expression levels of multiple actin binding proteins that regulate
actin architecture have significant impacts on cortical tension and
further systematic studies are needed to elucidate the roles of different
actin binding proteins in cortical contractility and stiffness.

2.3 Vimentin intermediate filaments

In addition to actin filaments, vimentin filaments were also shown
to contribute to the viscoelastic properties of several cell types,
including endothelial cells but its contribution is more subtle
(Wang and Stamenovic, 2000; Mendez et al., 2014). Using
magnetic twisting cytometry, it was shown that disrupting
intermediate filaments with acrylamide results in softening in
capillary endothelial cells, even though the effect appears to be
milder than that of F-actin disruption (Wang and Stamenovic,
2000). A similar effect was also observed in vimentin-deficient
fibroblasts (Wang and Stamenovic, 2000; Mendez et al., 2014). The
loss of vimentin was also shown to reduce cell elasticity and increase
heterogeneity of the viscoelastic properties, which led to a hypothesis
that vimentin has a protective role in maintaining cellular
biomechanical phenotype, particularly when exposed to mechanical
stresses (Mendez et al., 2014). Most recently, wild-type and vimentin-
null mouse embryonic fibroblasts were utilized to study the protective
effects of vimentin on the nucleus. Notably, it was demonstrated that
the loss of vimentin causes significant nuclear deformations, and
vimentin −/− cells were approximately 20% softer in the perinuclear
region than the wild-type counterparts (Patteson et al., 2019). Rescue
with vimentin overexpression of the vimentin −/− cells restored nuclear
shape and perinuclear stiffness, further solidifying the protective role
of vimentin and it is contribution to cell stiffness. Additionally,
oncogenes have been shown to alter the spatial organization of
vimentin, and changes in oncogene expression lead to specific
changes in vimentin configuration (without altering other
cytoskeletal components), which in turn leads to changes in cell
stiffness (Rathje et al., 2014).

Lamins are a group of type V intermediate filaments, which have been a
focus of cell stiffness related studies for the past decade. Briefly, the
nucleoskeletal protein lamin a/c increases in a scaled manner with
matrix/tissue stiffness and contributes to nuclear stiffness and cell
stiffness at the perinuclear region (Swift et al., 2013; Srivastava et al.,
2021). Although a few rudimentary studies have been performed to
assess cell stiffness when microtubules are disrupted (Hobson et al.,
2020), the role of microtubules in cell stiffness remains relatively unexplored.

In conclusion, the current state of knowledge is that
endothelial stiffness depends primarily on actomyosin-
mediated contractility with emerging roles of actin architecture
and crosslinking and possibly of vimentin and lamin intermediate
filaments (Figure 1).
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3 Endothelial stiffening in response to
mechanical signals

Endothelial lining of the blood vessels is continuously exposed
to mechanical loads: fluid shear stress, a frictional force generated
by the blood flow, hydrostatic pressure generated by blood
pressure, and circumferential cyclic stretch during constriction/

relaxation cycles of the arteries (Figure 2). Endothelium also
experiences significant changes in the sub-endothelial stiffness,
as a result of vascular remodeling in different disease state and
during aging.

3.1 Fluid shear stress

Shear stress is well known to be one of the primary factors in
endothelial function with laminar unidirectional flow being anti-
inflammatory and disturbed non-unidirectional flow being pro-
inflammatory (Davies et al., 2005; Grady et al., 2016). It is also well-
known that unidirectional flow is atheroprotective while the non-
unidirectional flow predisposes the arterial regions to
atherosclerosis development. Noteworthy, disturbed flow is also
an aging factor and induces premature aging (Hahn and Schwartz,
2009).

3.2 Laminar unidirectional flow

Numerous studies have shown that exposure of endothelial cells to
laminar flow results in the formation of thick actin stress aligned in the
direction of flow (Grady et al., 2016; Dominic et al., 2020). A transition
from the static culture to laminar flow was also shown to induce
endothelial stiffening, as estimated first by micropipette aspiration

FIGURE 1
Cytoskeletal determinants of cellular viscoelastic properties: F-actin stress fibers (left top panel), cortical actin (middle top panel) and vimentin
intermediate filaments (right top panel). The top left panel displays a 3D render of F-actin stress fibers (yellow) and nuclei (blue) from endothelial cells
undergoing alignment following exposure to laminar flow. These fibers also contain non-muscle myosin and underlie cellular contractility, which has a major
contribution to endothelial biomechanics. The middle panel shows an endothelial cell with a strong cortical/junctional F-actin network (green) and
nuclei (blue), which was also found to contribute to passive biomechanical properties of endothelial cells. The right panel shows an endothelial cell’s nuclei
(blue), and vimentin intermediate filament network (red) which has a smaller but still significant contribution to endothelial biomechanics. The width of the
arrows conveys the degree of the contribution of the particular cytoskeleton element to endothelial viscoelastic properties. The contributions of these
elements to endothelial stiffness are described in Sections 2 and Section 6 of the manuscript.

FIGURE 2
Mechanical forces that regulate endothelial stiffening: 1) stretch
generated by contraction/relaxation of the arterial wall, 2) fluid shear
stress, a frictional force generated by the blood flow, and 3) hydrostatic
pressure. The mechanisms involved in the effects of the three
forces on endothelial stiffness are described in Section 3 of the
manuscript.
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(Sato et al., 1987; Davies, 1995) and then by the indentation-based
Atomic Force Microscopy (Sato et al., 1996; Sato et al., 2000).
Interestingly, upon the transition from static to laminar shear
stress conditions, the stiffening response develops first in the part
of the front edge of the cell that faces the flow in non-monolayer cell
cultures and then later equilibrates to the rest of the cell (Sato et al.,
1996). Mechanistically, laminar shear stress is known to activate RhoA
GTPases, specifically, RhoA and Rac (Tzima et al., 2001; Ohashi et al.,
2002; Tzima et al., 2002), both key regulators of actin cytoskeleton
dynamics and architecture (Hall 1998; Wojciak-Stothard and Ridley,
2003; Hall, 2012; Ridley, 2015). As described above, activation of RhoA
induces formation of actin stress fibers and activation of endothelial
contractile response, whereas activation of Rac promotes formation of
cortical actin and lamellipodia growth (Wojciak-Stothard and Ridley,
2003; Hall, 2012; Ridley, 2015). Activation of RhoA by laminar shear
stress was shown to be biphasic, with a transient decrease of RhoA
activity at the initiation of the flow, followed by an enhanced activity
(Tzima et al., 2002). This biphasic response, coupled with the
activation of Rac was proposed to be essential for flow-induced
endothelial alignment: a transient decrease in Rho activity inhibits
myosin-dependent contractility and disassembly of the stress fibers,
allowing endothelial cells to change shape and grow lamellipodia in
the direction of the flow, which is mediated by Rac at the edge of the
cells downstream of the flow; then, the delayed phase of Rho activation
strengthens and stabilizes the new cell shape and alignment by the
formation of shear stress fibers in the direction of the flow
(Civelekoglu-Scholey et al., 2005).

3.3 Disturbed non-unidirectional flow

Physiologically, however, a more relevant question is not what
happens when cells maintained under static conditions are exposed
to flow but whether laminar and disturbed flows have distinct effects
on endothelial stiffness. Again, it is very well-known that the
architecture of the cytoskeleton is vastly different in cells exposed
to unidirectional/laminar and non-unidirectional/disturbed flow:
while as described above, laminar flow induces formation actin
stress fibers aligned in the direction of flow, exposure to disturbed
flow results in abundant stress fibers without clear orientation or
direction. In terms of endothelial stiffness, however, studies from our
lab showed no difference in the elastic properties of endothelial cells,
as measured by the AFM, when cells were exposed to the two types of
flow, unless the cells were also exposed to oxidized low-density
lipoproteins (oxLDL) (LeMaster et al., 2018). The mechanisms
and the physiological implications of oxLDL-induced endothelial
stiffening and its dependence on the hemodynamic environment are
described in detail later in this review.

Stretch was also shown in earlier studies to induce endothelial
stiffening, which was attributed to an increase in cytoskeleton tension
(Pourati et al., 1998). It was also shown that cyclic biaxial mechanical
stretch results remodeling of adherens junctions from linear to zipper-
like, which is a known characteristic of junction under tension and in
the up-regulation of myosin light chain-2 (pMLC2) phosphorylation,
which as described above is indicative of increased actomyosin
contractility, and increase in cell stiffness (Miroshnikova et al.,
2021). Furthermore, it was shown that the process is biphasic, with
the initial contractile response driven by the influx of Ca2+ via stretch-
sensitive Piezo1 channels leading to the activation of Rho-GTPases,

and the second phase driven by phosphorylation of actin cross-linker
proteins filamins (Miroshnikova et al., 2021).

Hydrostatic pressure was also shown to induce an increase in
endothelial stiffness. In an in vitro model of short-term (24 h) high
pressure exposure, aortic ECs underwent significant structural
changes, specifically formation of stress fibers, as identified by
phalloidin staining suggesting an increase in cellular stiffness
(Ohashi et al., 2007). Computational modeling of stress fiber
networks in pulmonary microvascular ECs suggested that stress
fiber stiffness (specifically bending stiffness) contributes to the
generation of pressure-induced cellular high strain levels (Ito et al.,
2010). Furthermore, inducing strain in these cells in culture using a
uni-axial stretching apparatus, which was predicted to increase cell
strain, resulted in stress fiber formation, which was dependent on the
activation of stretch-activated cation channels (Ito et al., 2010). More
recently, significant endothelial stiffening was observed in response to
increased hydrostatic pressure generated by a custom-made small
volume pressurized chamber that allows exposing live cells to
controlled pressure (Prystopiuk et al., 2018). The stiffening was
observed in response to both acute (1 h) and chronic (24 h)
hydrostatic pressures of 100 mm Hg (13 kPa), with stiffening still
observed 1 hour post recovery in cells exposed to chronic high
pressure exposure. The stiffening response was accompanied by the
increase of retraction velocity of cortical filaments and abrogated by
inhibiting myosin II phosphorylation with blebbistatin, both
indicating that it is mediated by myosin II-dependent contraction.
The high pressure-induced endothelial stiffening was also abrogated
by blocking mechanosensitive cation channels and blocking or
downregulation ENaC sodium channels. The authors conclude that
hydrostatic pressure induced endothelial contractile response via Ca2+

influx through mechanosensitive ion channels and Ca2+-mediated
activation of myosin.

There are also studies that suggest that generation of intracellular
pressure may result in cell stiffening. Beyder and Sachs (2009) showed
that the application of hydrostatic pressure through a micropipette
directly to the cell interior in a whole-cell patch configuration results
in a decrease in membrane deformability, which indicates membrane
stiffening. Consistent with this study, we found that hypotonic
challenge results in endothelial stiffening, which was not abolished
but rather enhanced by the depolymerization of actin cytoskeleton,
which led us to hypothesize that the stiffening is a result of an
increased hydrostatic pressure that develops from osmotic influx
into the cells (Ayee et al., 2018).

3.4 Extracellular matrix stiffness

Extracellular matrix is a highly heterogenous milieu of
interconnecting fibers that provides mechanical support for all
tissues. It is well established that cells sense the stiffness of the
ECM and respond to it in multiple ways that include changes in
cellular biomechanical properties. In what is considered an adaptive
response to the ECM stiffening, cell undergo changes in the
cytoskeletal structure to reinforce the internal scaffold by increase
in stress fiber formation and activation of myosin-mediated
contractility, which in turn increases cellular cortical stiffness
(Wang et al., 2020; Yi et al., 2022). The balance between the ECM
stiffness and the cytoskeletal stiffness/tension is believed to be required
to maintain cell shape and adhesion to the substrate. The stiffness of
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the matrix was also shown to determine stem cell lineage to different
fates with cell stiffnesses of the differentiated cells to match the
elasticity of the substrate (Engler et al., 2006). Mechanistically, stiff
substrates lead to increased binding of integrins to the extracellular
matrix, increased expression of the component of the focal adhesion,
and activation of focal adhesion kinase (FAK), which in turn activates
RhoA/myosin-induced contractility (Discher et al., 2005; Yeung et al.,
2005). Thus, stiffer substrates generate increased cytoskeleton tension,
which manifests itself in increased cellular cortical stiffness.

Our earlier studies demonstrated that substrate stiffness also leads
to increased stiffness of endothelial cells, both in 2D and in 3D
environments (Byfield et al., 2009). To test the impact of substrate
stiffness in a 2D culture, endothelial cells are grown on polyacrylamide
gels with elastic moduli between ~1.5 and 10 kPa, a typical range of
stiffness in arteries (Woodrum et al., 2006; Le Master et al., 2018),
which led to ~2 fold increase in endothelial cells, as estimated by
micropipette aspiration technique (Byfield et al., 2009). A similar
stiffening effect was also observed when endothelial cells were
embedded in 3D collagen gels to mimic migration of cells into a
tissue, which occurs during formation of new vessels. It was
subsequently shows that growing endothelial cells on stiffer
substrates also increases endothelial force generation, as assessed by
force traction microscopy, an effect that was abrogated by the
inhibition or downregulation of Rho-associated kinase, ROCK
(Huynh et al., 2011; Krishnan et al., 2011). Also, more recently and
consistent with the previous studies, it was shown that on soft
anisotropic scaffolds endothelial cells form actin filaments aligning
with the direction of the substrate fibers and organized into cortical
bands, while on stiffer scaffolds, the cells formed stress fibers spanning
the entire cell, which is typical for higher contractile state (Yi et al.,
2020). Thus, it is abundantly clear that endothelial stiffness and
contractility increase when cells are exposed to stiffer extracellular
milieu.

3.5 Cell stiffness may modulate the
mechanical properties of the extracellular
matrix

It is also important to note that the crosstalk between substrate
and cellular stiffness is bidirectional: not only increased substrate
stiffness provides mechanical cues for cells to stiffen but also cellular
traction forces induce remodeling of the matrix. Specifically, it was
shown that MLC-dependent cell traction forces are involved in the
remodeling of collagen by binding the fibers to protruding
lamellipodia and then retracting (Meshel et al., 2005). RhoA/
ROCK activation was also shown to induce the assembly of
fibronectin fibers by tension-induced exposure of cryptic sites
(Zhong et al., 1998) and also by the cytoskeletal tension that is
transmitted to the extracellular environment via integrins (Singh
et al., 2010). Furthermore, an increased rigidity of the substrate
promotes the formation of fibrillar fibrinogen matrix (Carraher and
Schwarzbauer, 2013), consistent with the increased activation of
RhoA and increased cortical tension on stiffer substrates described
above. Formation of a mature detergent-insoluble fibrinogen matrix
contributes to tissue stability and rigidity, as well as serves as a
scaffold for the deposition of other components of extracellular
matrix including collagen, which further increase the rigidity/
stiffness of the tissue (Singh et al., 2010). Together, these

mechanisms provide a bidirectional regulation of tissue/cellular
stiffness.

4 Endothelial stiffening in response to
oxidized lipids

Studies of our group focused over the last decade on the impact of
cholesterol and oxidized lipids on endothelial stiffness and
contractility. In an early study by Byfield et al. (2004), we
established that in contrast to a lipid bilayer that stiffens as a
result of the increase in membrane cholesterol, endothelial cells
became less deformable/more stiff when cellular cholesterol was
depleted using a cyclic oligosaccharide, methyl-β-cyclodextrin
(MβCD) with high-affinity to cholesterol. The stiffening effect of
MβCD was determined by micropipette aspiration, an effect that can
be reversed upon repletion with membrane cholesterol. The
stiffening effect induced by cholesterol depletion was fully
abrogated by disruption of F-actin with latrunculin-A (a
macrolide which prevents actin polymerization), suggesting that
depleting cholesterol increases cell stiffness by altering F-actin
and its structural relationship with the cell membrane. Indeed, in
a later study, we found that cholesterol depletion significantly
increases the adhesion energy between the membrane and the
underlying cytoskeleton, while cholesterol enrichment had the
opposite effect, as was determined by pulling membrane
nanotubes using AFM (Sun et al., 2007). This observation was
also unexpected because depleting membrane cholesterol is well-
known to disrupt the signaling platforms termed lipid rafts, which
are the focal points of membrane-cytoskeletal interactions (Levitan
and Gooch, 2007). Consistent with these findings, cholesterol
depletion was also found to result in an increase in cytoskeletal
traction forces and focal adhesions (Norman et al., 2010). These
paradoxical relationships between the effects of cholesterol on
stiffness of the lipid bilayer and on cellular biomechanics, which
is dominated by the cytoskeleton, are discussed in details in our
earlier review (Ayee and Levitan, 2016). The physiological
significance, however, of endothelial stiffening induced by
cholesterol depletion is not really clear.

We turned, therefore, to study the effects of oxidized lipids, such
as oxidated modifications of low-density lipoproteins (oxLDL),
whose major impact on endothelial function and cardiovascular
disease is well established (Levitan et al., 2010). In terms of the
relationship between oxLDL and cellular cholesterol, while it has
been generally believed that oxLDL loads cells with cholesterol, this
notion is controversial, as several studies, found that exposure to
oxLDL actually does not load endothelial cells with cholesterol, but
instead results in significant cellular increase in oxysterols (Byfield
et al., 2006; Shentu et al., 2010; Ayee and Levitan, 2021).
Furthermore, this effect is not unique to endothelial cells, as a
similar phenomenon was recently reported in macrophages
(Rezende et al., 2022). There are also interesting similarities
between the effects of oxLDL and exposure and MβCD: in both
cases, in addition to causing endothelial stiffening, both oxLDL and
MβCD resulted in the internalization of a lipid raft marker
GM1 protein, an increase in endothelial force generation and
network formation (Byfield et al., 2006), as well as facilitates the
alignment of endothelial cells to flow (Kowalsky et al., 2008). These
observations indicated that exposure to oxLDL leads to functional/
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biomechanical effects similar to cholesterol depletion rather than
cholesterol enrichment. To further investigate the biophysical basis
of this phenomenon, we assessed the degree of lipid order of the
plasma membrane using Laurdan imaging, a dye that is sensitive to
the presence of water dipoles in the membrane and thus is used to
assess lipid order (Levitan and Shentu, 2011; Levitan, 2021). We
found that similarly to cholesterol depletion, exposing cells to oxLDL
resulted in the disruption of the lipid order, as indicated by a
significant shift in the lipid order of the membrane lipid bilayer
to a less ordered state (Shentu et al., 2010). In terms of specific lipid
species that cause lipid disorder and endothelial stiffening, we found
that these effects can be mediated either by oxysterols of by oxidized
phospholipids and are a result of the tilt of the specific lipid
molecules within the lipid bilayer (Shentu et al., 2012; Ayee et al.,
2017a; Ayee and Levitan, 2021). It is also important to note that
subtle increases in the amount of oxysterols that are consistent with
the elevation of these species under dyslipidemic conditions are
sufficient to cause significant molecular-scale biophysical
perturbations of the membrane structure resulting in increased
cellular stiffness (Ayee and Levitan, 2021). We also established
that oxidized lipids induce endothelial stiffening by activating the
RhoA/ROCK pathway and formation of stress fibers (Oh et al.,
2016), which is well-known to induce cell stiffening, as described
above (Figure 3). Noteworthy, an increased uptake of oxLDL under
disturbed flow conditions leads to differential stiffening of
endothelial cells exposed to laminar and disturbed flow and is
also responsible for endothelial stiffening in the aortic arch in
vivo (LeMaster et al., 2018).

5 Endothelial stiffening in aging and
cardiovascular disease

While numerous studies demonstrated that aging and
development of the cardiovascular disease (CVD), such as
hypertension and atherosclerosis, are accompanied with arterial
stiffening, as determined by pulse wave velocity (Laurent et al.,
2001; Mitchell et al., 2007; Mitchell, 2008; Palombo and Kozakova,
2016), which measures the rigidity of the arterial wall, as a whole
(Armentano and Cymberknop, 2019), only few studies directly
evaluated the impact of aging or CVD on the stiffness of the
arterial endothelial layer. Huyn et al. (2011) provided an indirect
evidence for age-related endothelial stiffening by demonstrating that
denuded aortas (aortas in which endothelium is removed) of aged
mice (20–25 months old) are significantly stiffer than denuded aortas
of young mice (2–3 months old) and that this increase in sub-
endothelial stiffness correlated with RhoA/ROCK-dependent
disruption of the endothelial barrier. More recently, our studies
demonstrated directly that endothelial monolayer of intact aortas is
significantly stiffer in aortas isolated from aged mice (>10 months
old), as compared to younger animals (3–6 months) (Le Master et al.,
2018). Noteworthy, our recent study established that endothelial
elastic modulus of aortas remains stable up until 6 months of age
and then sharply increases in mice 10–12 months of age, representing
“middle age” with further increase in the advanced aged animals (Le
Master et al., 2022). Endothelial stiffening was also reported to
accompany age-related macular degeneration in rhesus macaque
(Cabrera et al., 2022). Thus, an increase in endothelial stiffness

FIGURE 3
Oxidized lipids that induce endothelial stiffening: The top panels (A,B) show the structures of the major oxidized lipids that contribute to endothelial
stiffening: a 7-ketocholesterol (left) and oxidized phospholipids, POVPC and PGPC (right). (A) shows the structures of cholesterol (left) and 7-ketocholesterol,
as evident from the additional carbonyl group, (right) shown at their orientation/tilt in the lipid membrane [adopted from Ayee et al., 2021 as published in Front
Cardiovasc Med 8 (Ayee and Levitan, 2021)]. (B) shows the chemical structures and coarse-grain topologies of oxidized lipid molecules POVPC (left) and
PGPC (right) with polar headgroups and glycerol backbones shown as purple spheres, sn-1 tails as blue spheres and sn-2 truncated oxidized tails (circled) as
red spheres [adopted from Ayee et al., 2017 as published in Biophys J 112 (2) (Ayee et al., 2017b)]. (C) shows endothelial stress fibers that are induced as a result
of the incorporation of both types of these oxidized lipids into the plasma membrane via activation of RhoA/ROCK cascade. This is described in Section 4 of
the manuscript.
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with age is well documented but the mechanisms responsible for these
effects are still being investigated (Figure 4).

5.1 Endothelial stiffening as a secondary effect
to arterial stiffening

The most well-studied, “canonical” mechanism of endothelial
stiffening is a response to mechanical cues generated by a stiff
substrate suggesting that endothelial stiffening with age is a
secondary effect to the arterial stiffening (Tzima et al., 2001).
Furthermore, the pathological consequences of age-related arterial
stiffening are proposed to be attributed to the increased contractility/
stiffening of the endothelium, which in turn is known to disrupt the
junctional integrity of the endothelial monolayer (Huynh et al., 2011;
Krishnan et al., 2011; Kohn et al., 2015b). This concept is based on two
well-established phenomena, described above: 1) increased stiffness of
the arterial wall with age, accompanied with endothelial stiffening,
observed in vivo and 2) stiffening of endothelial cells grown on stiff
substrates in vitro, which makes the connection between the two very
logical but it is difficult to establish the causality between the two in
aged vessels in vivo, as other factors may also play important roles, as
will be discussed in the next sections.

5.2 Endothelial stiffening as a result of
exposure to dyslipidemia

Our recent studies established that feeding mice high fat diet
(HFD) leads to an increase in the elastic modulus of endothelium in
intact mouse aortas, which mechanistically is mediated by the
scavenger receptor CD36 (LeMaster et al., 2018), well-known to
mediate the uptake of oxLDL and fatty acids (Silverstein and
Febbraio, 2009). Surprisingly, and in contrast to existing
paradigms, we discovered that global deletion of CD36 abrogates
endothelial stiffening in mouse aortas of aged mice while having no
effect on sub-endothelial stiffness suggesting that endothelial
stiffening is driven by lipid uptake rather than substrate stiffness
(Le Master et al., 2018). We also found that global deletion of caveolin-
1 (Cav1), scaffolding protein required for the formation of caveolae,
the primary mechanism of endocytosis of macromolecules into
endothelial cells (Cohen et al., 2004; Jones and Minshall, 2020) and
a known regulator of CD36 expression (Frank et al., 2004), results in
the attenuation of endothelial stiffening in aortas of aged mice (Le
Master et al., 2022). Thus, endothelial stiffening may not be secondary
to arterial stiffening, as has been proposed in earlier studies, but may
develop independently as a result of uptake and accumulation of
oxidized lipids.

FIGURE 4
Endothelial stiffening and aging. The top left panel displays a diagram of an endothelial cell’s mechanotransduction process from the ECM (depicted as
short crosslines outside of the basal side of a cell) to the focal adhesions/integrins (blue double-sided arrows) to cytoskeletal networks (intracellular light
purple bundles). For a stiffer arterial wall and therefore stiffer ECM, this mechanotransduction leads to more F-actin stress fiber activity and stiffer cells. The
right top panel displays an alternate process of stiffening caused by disturbed flow and CD36/Cav1 mediated uptake of oxLDL (CD36 is shown
schematically as a red integral protein, that is bound to Caveolin-1 at the inner leaflet of the membrane, shown in blue, oxLDL bound to CD36 is shown in
green and oxysterols incorporated into the bilayer are shown in yellow/red). The bottom panel shows a 3D reconstructed image of the F-actin stress fibers
(yellow) and nuclei (blue) in an endothelial monolayer being probed by an AFM tip to obtain Young’smodulus values. The interplay between ECM and oxLDL in
the induction of endothelial stiffening is described in Section 5 of the manuscript.
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6 Relationship between endothelial
stiffening and barrier function

Endothelial barrier integrity is modulated at the cell-cell interface
by a variety of junctional factors, key among them proteins that
stabilize anchors to a network of cortical actin bundles, the major
element of the sub-membrane cytoskeleton (Garcia-Ponce et al., 2015;
Karki and Birukov, 2019). The function of the barrier is to provide
control of entry across the endothelial layer, offering protection
against the entry of pathological factors while also providing
control over extravasation of immune cells, such as leukocytes, into
the vascular wall. Maintaining the integrity of the endothelial barrier
relies on several variants of cell-cell junctions, the two main types of
junctions are adherens junctions (AJs), and tight junctions (TJs)
(Hartsock and Nelson, 2008; Tietz and Engelhardt, 2015; Adil
et al., 2021). Adherens junctions consist of a complex of VE-
cadherin, p120-catenin, and β-catenin linked to the cortical actin
bundles located under the plasma membrane through association with
N-WASP, ZO proteins, vinculin, among others. The key proteins of
the tight junction are claudin and occludin and they are linked to
cortical actin bundles via zona occludens (ZO) proteins. AJs are more
numerous than TJs in the endothelial barrier interface.

The maintenance of the endothelial barrier and the stability of AJs/
TJs critically depend on the organization and biomechanical features
of the cytoskeleton, which might both reinforce the stability of the
barrier or pull the junctions apart. In general, formation of cortical
actin bundles, the sub-membrane cytoskeletal layer, connected to AJs/
TJs reinforces the barrier whereas formation of contractile stress fibers,
radial fibers that run across the cell and are normal to endothelial cell-
cell interface, disrupt the barrier. Multiple studies have shown that
activation of Rac1, a Rho-GTPase, that facilitate formation of cortical
actin stabilizes and reinforces endothelial barrier, whereas activation
of RhoA, a Rho -GTPase, that induce formation of contractile stress
fibers via a phosphorylation cascade that phosphorylates Myosin II
disrupts the barrier (Belvitch et al., 2018; Karki and Birukov, 2019;
Wettschureck et al., 2019). Radial stress fibers pull on intercellular
complexes of AJs and TJs via p120/β-catenin and ZO proteins
respectively. In terms of endothelial stiffening, in theory, both
formation of cortical actin and the contractile response may
manifest themselves as increased cell stiffness/decreased
deformability. Typically, however, endothelial stiffening is response
to multiple environmental challenges was found to be mediated by
RhoA-induced contractile response. As discussed in detail in the
earlier sections of this review, activation of RhoA with subsequent
phosphorylation of myosin and increased contractile response were
found to underlie endothelial stiffening in response to hemodynamic
forces, increased stiffness of the substrate and oxidized lipids. In one of
our earlier studies, we evaluated the relative contributions of RhoA
and Rac1 to oxLDL-induced stiffening and found that it entirely
depends on RhoA and independent of Rac1 (Oh et al., 2016).
Based on these observations, it is expected that endothelial
stiffening is likely to be barrier disruptive.

Several studies have illustrated a direct association between
endothelial stiffening and barrier disruption. Stroka et al. (2012)
showed an increased contractility via MLCK phosphorylation, an
enzyme that phosphorylates myosin II, to correlate directly with an
increase in transvasation of neutrophils providing an early evidence
for the role of contractile force generation in barrier disruption. A clear
correlation between increased endothelial stiffness, as assessed by

AFM, and an increase in transendothelial permeability assessed by
electrical resistance (TEER) was shown in lung microvascular
endothelial cells in response to thrombin in vitro (Suresh et al.,
2019). This is consistent with the known effect of thrombin on
RhoA activation and inducing stress fiber formation (Takeya et al.,
2008; Giri et al., 2022). Interestingly, the authors also found that
caspase-3, a protease primarily associated with programmed cell death
(Asadi et al., 2022), partially prevents both the stiffening and the
barrier disruption. Rokhzan et al. (2019) further characterized the
impact of thrombin on endothelial contractile response in dermal
microvascular endothelial cells by employing epifluorescence traction
mapping to generate quantitative maps of force distribution within the
endothelial cells, a method called Force Traction Microscopy (Wang
and Lin, 2007) and showed that thrombin increased transendothelial
permeability (TEER) in tandem with increases in contractile forces
across the monolayer. The authors also showed, however, that
contractile forces are not the only factor regulating the integrity of
the barrier, as they were able to strengthen the barrier by treating the
cells with angiopoietin-1, which increases VE-cadherin expression but
has no effect on the contractile response.

The association between endothelial stiffening and barrier
disruption was observed in a variety of clinical conditions,
including hypertension and inflammation. Specifically, pressure-
induced endothelial stiffening was accompanied by barrier
disruption, as was assessed through two methods: TEER and
neutrophil extravasation. The barrier disruption was observed in
response to chronic high pressure, as manifested by an increase in
TEER permeability, increased neutrophil extravasation, and
discontinuous VE-cadherin. Similarly, induction of long-term
(7–10 days) hyperglycemia in vitro results in the generation of
radial stress fibers and cortical stiffening in endothelial cells,
accompanied with a gap generations between the cells, as visualized
by imaging of fluorescent actin, indicative of barrier disruption
(Targosz-Korecka et al., 2013). Furthermore, after cells were
returned to normoglycemic conditions for several days, both
endothelial stiffness and barrier integrity improved in parallel even
though some stiffening and gaps persisted. Endothelial stiffening was
also observed in response to lipopolysaccharide or TNFα
inflammatory signals with stiff stress fibers identified both by
staining and by AFM mapping and 2D rendering (Okamoto et al.,
2020). In this study, the integrity of adherens junctions was not
evaluated but interestingly they showed that endothelial stiffening
is accompanied with decreased functionality of the gap junctions,
inter-cellular channels that allow passage of intracellular small
molecules between adjacent cells suggesting that endothelial
stiffening affects cell-cell communication/interaction via several
mechanisms.

The mechanism behind endothelial stiffening/contractile-driven
degeneration of the barrier is still not fully understood and continues
to be studied. Several lines of evidence suggest contractile actin stress
fibers apply tension on the elements of the adherens junctions
resulting in the destabilization of the multiprotein complex
(Figure 5). An early study of Birukova et al. (2012) demonstrated
that a contractile response correlates with the phosphorylation of VE-
cadherin, and its subsequent internalization away from the barrier
interface, suggesting that mechanical forces may cause the loss of
membrane expression of the major junctional proteins. A more
detailed mechanism emerged from more recent studies that
evaluated the effects of tension on the conformation state of VE-
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cadherin complex. Kugelmann et al., 2018 demonstrated that
disruption of the endothelial barrier induced by thrombin or
histamine is accompanied with the exposure of a tension-sensitive
epitope of α-catenin, a linker protein that connects VE-cadherin
complex to the actin cytoskeleton (Meng and Takeichi, 2009). The
role of α-catenin in force-induced reorganization of the junctions was
discovered in an earlier study by Yonemura et al., 2010 who showed
that tension force applied by actin fibers to the C-terminus of α-
catenin results in the change of α-catenin conformation or unwinding
to expose a vinculin-binding region. Yonemura et al. (2010) also
generated a tension-sensitive α-catenin antibody that binds to the
epitope of α-catenin exposed in response to tension. Using this
tension-sensitive α-catenin antibody, Kugelmann et al. (2018)
showed that tension on α-catenin develops simultaneously with
endothelial barrier disruption, as estimated by both imaging VE-
cadherin organization/jaggedness and TEER. Inhibition of the
ROCK activity during stimulation with thrombin/histamine
abrogated tensional force generation on α18-catenin, demonstrating
that RhoA/ROCK signaling is essential to eliciting direct tensional
force on VE-cadherin complexes. They did not observe any significant

change in vinculin distribution, however, suggesting the role of α-
catenin tension may have a more general effect on the reorganization
of adherens junctions beyond the association with vinculin.
Interestingly, Kugelmann et al. (2018) found that as tensional force
on α18-catenin increases, there is increased translocation of RhoA, as
assessed by FRET, to the cell border, which might further contribute to
increased tension. In addition, they found that chelation of Ca2+

during stimulation with thrombin or histamine abrogate tensional
force generation on α18-catenin and histamine-induced RhoA
activation, demonstrating that Ca2+ mediated RhoA/ROCK
signaling is essential to eliciting direct tensional force on VE-
cadherin complexes of the endothelial barrier.

Another direct link between actomyosin contractile response and
disruption of adherens junctions was found by Arif et al., 2021 who
demonstrated that tension generated by actin fibers result in
unmasking a VE-cadherin phosphorylation site, tyrosine 731, that
is masked by catenin under resting conditions. This unmasking is also
accompanied by tension developing within VE-cadherin itself, as
indicated by a tension FRET sensor. Most importantly, unmaking
of tyrosine 731 makes it accessible for SHP2 phosphatase, which

FIGURE 5
A schematic representation of the regulation of the endothelial barrier by themechanical properties of endothelial cells: In the top panel we illustrate the
barrier that couples adjacent endothelial cells. The endothelial barrier between adjacent cells provides a method for the controlled passage of molecules into
the vascular wall. This barrier is primarily composed of tight junctions (composed of occludens and claudins) and adherens junctions (composed of VE-
cadherin and catenins). The endothelial barrier maintains its integrity with scaffolding support from cortical actin fibers. In the bottom panel we illustrate
the process throughwhich barrier disruption is induced, such as during inflammation. Via RhoA-dependent generation of F-actin stress fiber networks, barrier
degeneration is accomplished through force-based uncoupling of junctional proteins, leading to their sequestration, and facilitating gap formation between
adjacent cells. A detailed explanation into the role of RhoA-dependent F-actin stress fiber networks in barrier degeneration is provided in Section 6 of the
manuscript.

Frontiers in Physiology frontiersin.org10

Aguilar et al. 10.3389/fphys.2022.1081119

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1081119


results in its dephosphorylation and subsequent VE-cadherin
internalization. Activation of SHP2 is induced by leukocyte binding
to endothelial cells through PECAM1, a known endothelial
mechanosensory. It is thus, possible, that tension plays a dual role
in the disruption of the barrier and diapedesis of leukocytes across the
endothelial layer: unmasking VE-cadherin phosphorylation site by
actin-mediated contractile forces and activation of SHP2 by tension-
induced activation of PECAM1.

7 Concluding remarks and future
directions

Multiple studies demonstrated that endothelial cells stiffen in
response to mechanical and soluble factors. The most well-studied
and the dominant mechanism of endothelial stiffening is RhoA/
Myosin-dependent formation of actin stress fibers and contractile
response. There is also accumulating amount of evidence showing that
cortical actin and intermediate filaments may contribute to endothelial
stiffening but the relative contributions of these mechanisms to
endothelial stiffening in response to physiological or pathological
stimuli is still not well understood.

This review also presents our current understanding on the
contribution of mechanical signals towards endothelial stiffening.
Consistent with the dominant role of RhoA-induced stress fiber
formation, this mechanism is induced by the mechanical signals,
which include fluid shear stress, stretch and increase in matrix
stiffness. It is important to note, however, that the same signals also
induce Rac1 activation, which has an inverse relationship with
RhoA, and further evidence is required to understand the biphasic
role of RhoA/Rac1 activation and the mechanism driving cell
remodeling of the biophysical properties of extracellular matrix.
Another important outstanding question is what is the differential
response of the anti-inflammatory unidirectional and pro-
inflammatory non-unidirectional flow on endothelial stiffness.
We also highlight the role of oxidized lipids in endothelial
stiffening, which is relatively less studied and recognized. In this
context, it is interesting to note that non-unidirectional flow was
shown to increase endothelial stiffness in oxLDL-dependent way,
by enhancing oxLDL uptake and thus, oxLDL-induced endothelial
stiffening. Furthermore, there is clear evidence that the uptake of
oxidized lipids plays a key role in endothelial stiffening induced by
high fat diet and by aging. The relative contributions and the
crosstalk of mechanical and soluble lipid signals to endothelial

stiffening under different pathological conditions need further
study. Lastly, we focused on reviewing the role of endothelial
stiffness in maintenance of the barrier integrity. While extensive
research showed that RhoA-induced contractile stress fiber
formation results in the disruption of the endothelial barrier,
only few studies present direct evidence into the role of
endothelial stiffening in barrier disruption induced by
hyperglycemia, inflammation, and high pressure. In addition, we
present emerging evidence into the mechanism of RhoA-induced
stress fiber formation in barrier disruption, a mechanism that
shows that tensional force strength is a factor in eliciting the
degeneration of adherens junction protein complexes. The role
of endothelial stiffening into eliciting barrier disruption, specially
that induced by aging or vascular disease, needs further study.
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