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Transforming growth factor (TGF)-β and its family members, including bone

morphogenetic proteins (BMPs), nodal proteins, and activins, are implicated in

the development andmaintenance of various organs. Here, we review its role in

the lymphatic vascular system (the secondary vascular system in vertebrates),

which plays a crucial role in various physiological and pathological processes,

participating in themaintenance of the normal tissue fluid balance, immune cell

trafficking, and fatty acid absorption in the gut. The lymphatic system is

associated with pathogenesis in multiple diseases, including lymphedema,

inflammatory diseases, and tumor metastasis. Lymphatic vessels are

composed of lymphatic endothelial cells, which differentiate from blood

vascular endothelial cells (BECs). Although TGF-β family signaling is essential

for maintaining blood vessel function, little is known about the role of TGF-β in

lymphatic homeostasis. Recently, we reported that endothelial-specific

depletion of TGF-β signaling affects lymphatic function. These reports

suggest that TGF-β signaling in lymphatic endothelial cells maintains the

structure of lymphatic vessels and lymphatic homeostasis, and promotes

tumor lymphatic metastasis. Suppression of TGF-β signaling in lymphatic

endothelial cells may therefore be effective in inhibiting cancer metastasis.

We highlight recent advances in understanding the roles of TGF-β signaling in

the formation and maintenance of the lymphatic system.
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Introduction

The TGF-β superfamily, containing more than 30 cytokines in mammals, comprises

secreted dimeric proteins that induce pleiotropic effects by regulating cell proliferation,

differentiation, and survival (Morikawa, et al., 2016). TGF-β signaling operates via cell

membrane receptors and intracellular effector proteins. TGF-β1, its best-characterized
member, is initially produced as a precursor by a single gene. This is then proteolytically

cleaved via the proprotein-converting enzyme furin into three fragments: latent TGF-β-
binding protein (LTBP), an N-terminal latency-associated protein (LAP), and an active

C-terminal cytokine region (Figure 1). The dimerized mature TGF-β and LAP domains

are maintained by non-covalent bonds, interact covalently with LTBP, and are retained in
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the extracellular matrix (ten Dijke and Arthur 2007). Retention

of the latent TGF-β in the extracellular matrix is important for

effective TGF-β bioavailability and signal transduction

(Robertson, et al., 2015; Robertson and Rifkin 2016).

Although proteases activate latent TGF-β (Abe, et al., 1998), it

is also activated by non-protease factors, including

thrombospondin (TSP-1) (Ribeiro, et al., 1999), neuropilin-1

(Nrp1) (Glinka and Prud’homme 2008), and by environmental

factors such as acidity, heat, shear stress, and ultraviolet radiation

(Robertson, et al., 2015). The TGF-β family includes bone

morphogenetic proteins (BMPs); the role of BMPs in the

vascular system has been discussed elsewhere (Goumans,

et al., 2018).

TGF-β family signaling is initiated by the binding of a ligand

to a complex of two serine/threonine kinase receptors, five type-

II receptors, and seven type-I receptors (also known as activin

receptor-like kinases, ALKs) (Itoh, et al., 2014; Heldin and

Moustakas 2016). In canonical signaling, TGF-β signals via

the TGF-β type-II receptor (TβRII) and ALK5, while BMPs

transduce signals via the BMP type-II receptor (BMPRII) or

activin type-II receptor (ActRIIA/B) and ALK1, ALK2, ALK3,

and ALK6. The activated type-I receptor phosphorylates

receptor-regulated Smads (R-Smads) at two C-terminal serine

residues. TGF-β induces the phosphorylation of Smad2 and

Smad3, whereas BMP mediates the activation of Smad1,

Smad5, and Smad8/Smad9 (Katagiri and Watabe 2016). The

two phosphorylated R-Smads form ternary complexes with the

common partner Smad (Co-Smad) Smad4, which then enters the

nucleus, where it acts as a transcriptional factor to regulate TGF-

β target-gene expression (Figure 1). TGF-β also transduces

signals via a number of non-canonical pathways, inducting

mitogen-activated protein kinases (MAPKs),

phosphoinositide-3-kinase (PI3K), and Rho like GTPases

(Zhang 2017). The TGF-β pathway includes co-receptors,

namely the TβRIII receptors betaglycan and endoglin

(Bilandzic and Stenver 2011; ten Dijke, et al., 2008); while

these have large extracellular and small intracellular domains

that lack enzymatic activity, they regulate TGF-β access to its

specific receptors. Betaglycan is required for TGF-β2 to bind to

TβRII (Rotzer, et al., 2001), and endoglin and betaglycan enhance
BMP9 and BMP10 signaling (David, et al., 2007).

Unlike factors such as vascular endothelial growth factor

(VEGF), which have prominent effects on endothelial cells, TGF-

β has cell type-specific and context-dependent effects on many

cell types via ubiquitously expressed receptors (David and

Massague 2018). Misregulation of TGF-β signaling in humans

leads to vascular pathology and cardiovascular diseases such as

vascular remodeling of the retina (retinopathy), arteriovenous

malformations (AVM), aneurysms, atherosclerosis, and valvular

heart disease (Akhurst and Hata 2012). Studies of various

knockout mice have shown that the TGF-β signaling

pathways are important for maintaining blood vascular

function (Goumans and Mummery 2000). Although

lymphatic system research is not as advanced as blood vessel

research, substantial progress has been made by identifying

specific markers for in vitro and in vivo analysis of lymphatic

endothelial cells (LECs). Accordingly, our understanding of the

role of TGF-β signaling in LECs is increasing. In this review, we

FIGURE 1
Signal transduction by TGF-β family members in BECs and LECs.The signaling is mediated through a heteromeric complex of specific type I and
type II serine/threonine kinase receptors. TGF-β is produced as a precursor by a single gene and then proteolytically cleaved into three fragments:
latent TGF-β-binding protein (LTBP), an N-terminal latency-associated protein (LAP), and an active C-terminal cytokine region. Activated TGF-β
interacts with TβRII and ALK5. BMPs signal via ActRIIA/B, BMPRII, and type I receptors ALK1, 2, 3, and 6. The co-receptor endoglin and ALK1,
exclusively expressed on endothelial cells, are involved in BMP9 signaling. TGF-βs phosphorylate of Smad2 and Smad3, and BMPs induce
phosphorylation of Smad1, 5, and 8. Activated Smads form heteromeric complexes with Smad4, which translocate to the nucleus, where they
regulate the target gene expressions.
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highlight recent insights into the function of TGF-β in lymphatic

vessels, and discuss the contribution of TGF-β signaling

dysregulation to tumor progression.

Lymphatic system

The circulatory system comprises the vascular system, in

which the blood circulates, and the lymphatic system, comprising

lymphatic capillaries and collecting lymphatic vessels. In these

systems, the lumen is covered by BECs or LECs, respectively

(Karpanen and Alitalo 2008). Several signaling pathways

involved in angiogenesis play important roles in

lymphangiogenesis. Among them, many growth factors have

similar effects on BECs and LECs. A potent growth factor foe

endothelial cells is VEGF family, with VEGF-A/VEGF receptor 2

(VEGFR2) signaling plays a central role in BECs and VEGF-C/

VEGFR3 singling in LECs. Angiopoietin-2 (Angpt2), however,

has opposite effects on its receptor Tie2 signaling in BECs and

LECs (Souma, et al., 2018). Unlike the circulatory system, the

lymphatic system undergoes afferent flow, whereby lymphatic

fluid drains from small capillaries into the pre-collecting and

collecting vessels, flows through the lymph nodes, and finally

joins the vascular circulation at the junction with the subclavian

vein. The primary function of lymphatic vessels is to transport

body fluids and cellular components (Brakenhielm and Alitalo

2019). Lymphatic vessels maintain homeostasis by balancing

tissue fluids throughout the body, coordinating immune

surveillance, and maintaining lymphangiogenesis in response

to environmental conditions.

In mammals, lymphatic vessels arise from progenitor cells

that bud off from the lateral surfaces of cardinal vein endothelial

cells during embryonic development (Escobedo and Oliver 2016)

(Oliver, et al., 2020). Recent studies have also demonstrated that

LECs also develop from de novo production from non-venous

sources such as mesenchymal cells, hemogenic endothelium,

musculoendotuelial progenitor cells, and craniopharyngeal

mesoderm (Stone and Stainier 2019) (Maruyama, et al., 2022).

The expression of Sox8 and COUP-TFII/Nr2f2 in venous

endothelial cells initiates the expression of Prospero

homeobox transcription factor-1 (Prox1), which is essential

for the development and maintenance of LECs (Srinivasan,

et al., 2007). Prox1 expression then induces the expression of

VEGFR3, which transduces VEGF-C stimuli. The progenitor

cells then bud from the vein and establish the lymphatic sac. In

this process, Prox1 maintains VEGFR3 gene expression, while

VEGFR3 signals regulate Prox1 expression, thus generating and

maintaining lymphatic endothelial progenitor cells. The

lymphatic sacs give rise to LECs that depend on interactions

with VEGF-C/VEGFR3; these then spread to the surrounding

area, and gradually expand into a network of lymphatic vessels.

Lympatic vessel endothelial hyaluronan receptor 1 (LYVE-1), a

type I transmembrane glycoprotein, is expressed both by

lymphatic endothelial progenitor cells and postnatal

macrophages, which are known to stimulate

lymphangiogenesis (Cho, et al., 2007; Ran and Montgomery

2012). Although macrophages may differentiate into LECs,

they primarily stimulate the proliferation of existing LECs by

secreting growth factors such as VEGF-C (Adams and Alitalo

2007).

TGF-β signaling in endothelial cells

ALK1 (a BMP9 and BMP10 receptor) and endoglin

participate in endothelial cell-specific TGF-β family signaling.

While both receptors participate in the phosphorylation of

Smad1, Smad5, and Smad8, ALK1 can also bind TGF-β with

low affinity, and thus induce Smad2 and Smad3 activation.

Mutations in these genes involved in TGF-β family signaling

are causally related to hereditary hemorrhagic telangiectasia, and

mutations in BMPR2 and Smad4 cause pulmonary arterial

pulmonary hypertension, indicating that the TGF-β/BMP

signaling plays an important role in maintaining vascular

function.

How TGF-β affects vessel formation

TGF-β and BMP transduce their signals via different

R-Smads, playing complex roles. In cultured LECs, TGF-β
treatment suppresses Prox-1 and LYVE1 expression

(Yoshimatsu, et al., 2020). In mouse embryonic stem cell-

derived VEGFR2+-endothelial cells, TGF-β inhibits the

lymphatic endothelium and downregulates related markers,

including COUP-TFII and Sox18. Similarly, BMP9 inhibits

Prox1 expression in vitro. The BMP9/ALK1 pathway induces

differentiation from an LEC phenotype to a BEC phenotype

(Yoshimatsu, et al., 2013). Contradictory, it has been reported

that stimulation with TGF-β2 inhibits proliferation and increases

the expression of VEGFR3 and Nrp2, which participate in

lymphatic budding (James, et al., 2013). Hence, in vitro, the

effects of TGF-β family members on endothelial cells can be

depend on several factors, including the original ligand

concentration, serum composition, cell density, and the types

of TGF-β receptors expressed on the membrane (Goumans and

ten Dijke 2018).

In mice, targeted deletion of ALK1, ALK5, TβRII, or endoglin
results in embryonic lethality due to angiogenesis failure, leading

to similar phenotypes (Goumans and Mummery 2000). Tie2, a

receptor for angiopoietins, is expressed in BECs and

hematopoietic cells. Embryos lacking TGF-β signaling in a

Tie2 promoter-dependent manner (Smad2fl/fl; Smad3−/−; Tie2-

Cre) exhibit leaky vessels and die at embryonic day 12.5, even

though a hierarchical vascular structure is formed. Interestingly,

these mice do not exhibit lymphatic vessel abnormalities (Itoh,
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et al., 2012). LEC progenitors derived from the superficial venous

plexus recombine highly efficiently in Tie2 promoter dependent

manner, and crosses between Tie2-Cre mice and folliculin

(FLCN) conditional knockout mice have been reported to

show abnormalities in lymphatic vessels (Martinez-Corral,

et al., 2015; Tai-Nagara, et al., 2020). Loss of FLCN promotes

excessive commitment of venous endothelial cells to LECs,

because FLCN prevents the accumulation and nuclear

translocation of the transcription factor E3 (TFE3), which

upregulates Prox1 gene expression (Tai-Nagara, et al., 2020).

These results highlight that TGF-β signaling is important in the

vascular maturation process, but not in LEC commitment in

mice embryos, contradictory to in vitro analysis (Figure 2).

How TGF-β affects vessel function

Based on in vivo analysis, TGF-β signaling is crucial for

maintaining lymphatic vessel structure and function.

Endothelium-specific loss of ALK5 or TβRII in early

development reduces cutaneous lymphatic network complexity

and leads to abnormal lymphatic vessel morphology (James,

et al., 2013; Fukasawa, et al., 2021) (Figure 2), potentially due

to the loss of TGF-β signaling-induced inhibition of growth.

Treatment of chronic peritonitis with a small-molecule

ALK5 inhibitor increased lymphangiogenesis. A study of

TGF-β signaling in pathological lymphangiogenesis indicated

the potential involvement of VEGF-C secreted by inflammatory

macrophages (Oka, et al., 2008). In postnatal mice, reduced

endothelial cell-specific TβRII gene expression results in

abnormally dilated lymphatic vessels and reduced drainage

(Fukasawa, et al., 2021). In other words, TGF-β regulates

lymphatic vessel function.

TGF-β, an inducer of the epithelial-mesenchymal transition

(EMT), also regulates the function of LECs via endothelial-

mesenchymal transition (EndoMT). BECs and LECs acquire

mesenchymal properties through EndoMT (Yoshimatsu and

Watabe 2022). We have reported that TGF-β2 expression in

dermal tissue increases during aging, inducing lymphatic vessel

EndoMT through RhoA/Rock non-Smad pathway in

cooperation with inflammatory signaling (Yoshimatsu, et al.,

2020) (Figure 2). EndoMT, which occurs during normal

cellular differentiation in cardiac development, is implicated in

conditions such as cardiac fibrosis, atherosclerosis, pulmonary

hypertension, and cancer (Zeisberg, et al., 2007; Hong, et al.,

2018; Szulcek, et al., 2020). Therefore, targeting of EndoMT may

be beneficial for the treatment of huma disorders.

How TGF-β impacts the lymphatic vessels
of the tumor

Tumors comprise cells that have diversified by accumulating

genetic mutations at multiple stages, resulting in polyclonal cell

populations (McGranahan and Swanton 2017). Normal epithelial

cells adhere tightly to each other, maintaining the three-dimensional

structure of the tissue, whereas cancer cells reduced intercellular

adhesion and increased motility and invasiveness through EMT

(Brabletz, et al., 2018). TGF-β, one of potent EMT inducing

cytokines which include fibroblast growth factor (FGF), hepatocyte

growth factor (HGF), platelet-derived growth factor (PDGF), Notch,

andWnt (Heldin, et al., 2012). Cancer cells that have left the primary

FIGURE 2
Proposed workingmodel of TGF-β signaling in the formation andmaintenance of the lymphatic system. Evidence for the presence of each step
of the proposed model is provided in the text; TGF-β does not affect the early development of lymphatic vessels, whereas is important for their
separation from veins, maturation, and maintenance of lymphatic function. TGF-β also promotes tumor lymphatic metastasis via EndoMT of LECs.
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tumor invade the adjacent tissue, and reach to the lumen via the sheet

structure of vascular and lymphatic endothelial cells. The cancer cells

thenmigrate to distant organs or locations via blood and lymph flow,

grow into capillaries and lymph nodes in distant organs, and form

new tumors (Chambers, et al., 2002). EMT-induced cancer cells show

reduced expression of E-cadherin, a potent promoter of intercellular

adhesion and an epithelial cell marker, and reduced expression of

mesenchymal cell-specific cytoskeletal proteins such as vimentin.

Other mesenchymal markers include N-cadherin, fibronectin, and

smooth muscle α-actin (α-SMA). Cancer cells that have acquired

mesenchymal properties exhibit increased migration and

invasiveness, and enhanced stress resistance, immunosuppression,

and stem cell-like properties. These properties enhance malignant

transformation in cancer and participate centrally in the acquisition of

chemotherapy resistance. Cancer-associated fibroblasts have been

identified as a major cause of tumor growth and metastatic

dissemination. TGF-β, which is abundantly produced in chronic

inflammation and in the tumor microenvironment, is a potent

inducer of not only for EMT but also EndoMT.

The spread of cancer cells from the primary tumor to the

lymph nodes is an important determinant of patient prognosis

and treatment (Vaahtomeri and Alitalo 2020). Tumor

lymphangiogenesis occurs primarily around the tumor; it is

unlikely to occur inside the tumor, because of the high

interstitial pressure within the tumor (Padera, et al., 2004).

Hence, within tumors, cancer cells are more likely to

metastasize via blood vessels than via lymphatic vessels. In

colorectal cancer, the abundance of lymphatic vessels

peripheral to cancerous tissue is reportedly correlated with

patient survival rates, because peripheral lymphatic vessel

function both as drainage channels for tissue fluid and as

transport routes for immune cells. The invasive front, the

most advanced zone of cancer invasion, is surrounded by

many functional lymphatic vessels, which serve as the starting

point for lymphatic metastasis. These peritumoral lymphatic

vessels promote lymphangiogenesis in response to VEGF-C

produced by cancer cells (Zhang, et al., 2021), inducing

lymphatic sprouting and hyperplasia around the tumor.

TGF-β signaling participates in tumor lymphangiogenesis

(Oka, et al., 2008; Pak, et al., 2019) and inhibition of BMP9 by

small-molecule compounds inhibits tumor lymphangiogenesis

(Yoshimatsu, et al., 2013). In tumor xenografts, ALK5 inhibitors

increase lymphangiogenesis (Oka, et al., 2008). Similarly, the loss

of endothelial cell-specific TβRII dilates the lymphatic lumen,

exacerbating tumor lymphangiogenesis (Fukasawa, et al., 2021)

(Figure 2). These results indicate that TGF-β acts on tumor

metastasis by regulating the structure and function of the newly

created tumor lymphatic vessels. Secondary lymphedema is a

common complication of cancer treatment and TGF-β1 has been
shown to be increased in this disease. Inhibition of TGF-β1 has

been shown to reduce the severity of lymphedema in mouse

models (Baik, et al., 2022). Therefore, targeting TGF-β may lead

to effective inhibition of lymphatic metastasis and lymphedema.

Conclusion

TGF-β signaling has pleiotropic effects on endothelial

cells, performing a vast array of actions under both

physiological and pathological conditions. While VEGF-C/

VEGFR-3 signaling is known to play a major role in

lymphangiogenesis, the importance of TGF-β/BMPs is

now becoming clear. Understanding the molecular

mechanisms regulating LECs will lead to the development

of new therapies for many LEC-associated human diseases.

Nonetheless, the various context-dependent functions of

TGF-β signaling remain to be clarified. In particular,

future research will elucidate the complexity of TGF-β
signaling, and its roles in regulating lymphatic function

and cellular behavior.
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