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Production of large amounts of meat within a short growth period from modern

broilers provides a huge economic benefit to the poultry industry. However, poor

bone qualities of broilers caused by rapid growth are considered as one of the

problems in the modern broilers industry. After discovery and investigation of

myostatin (MSTN) as an anti-myogenic factor to increase muscle mass by targeted

knockout in various animalmodels, additional positive effects ofMSTNmutationon

bone qualities have been reported in MSTN knockout mice. Although the same

beneficial effects onmuscle gain byMSTNmutation have been confirmed inMSTN

mutant quail and chickens, bone qualities of the MSTNmutant birds have not been

investigated, yet. In this study, tibia bones were collected from MSTN mutant and

wild-type (WT) quail at 4months of age and analyzed by Micro-Computed

Tomography scanning to compare size and strength of tibia bone and quality

parameters in diaphysis and metaphysis regions. Length, width, cortical thickness,

and bone breaking strength of tibia bones in the MSTN mutant group were

significantly increased compared to those of the WT group, indicating positive

effects of MSTN mutation on tibia bone sizes and strength. Furthermore, bone

mineral contents and bone volume of whole diaphysis, diaphyseal cortical bone,

whole metaphysis, and metaphyseal trabecular and cortical bones were

significantly increased in the MSTN mutant group compared to the WT group,

indicating increased mineralization in the overall tibia bone by MSTN mutation.

Especially, higher bone mineral density (BMD) of whole diaphysis, higher total

surface of whole metaphysis, and higher BMD, trabecular thickness, and total

volume of metaphyseal trabecular bones in the MSTNmutant group compared to

theWT group suggested improvements in bone qualities and structural soundness

of both diaphysis and metaphysis regions with significant changes in trabecular

bones by MSTNmutation. Taken together, MSTN can be considered as a potential

target to not only increase meat yield, but also to improve bone qualities that can

reduce the incidence of leg bone problems for the broiler industry.
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Introduction

In the modern poultry industry, fast growing broilers provide

a huge economic benefit by providing a large amount of meat

within a short growth period. However, abnormal leg bone

development has been considered as one of the major

problems of the fast growing broilers (Julian, 2005; Tompkins

et al., 2022b; 2022a). Especially, rapid growth of the body and

bone during the early growth phase of a broiler is suggested as

one of the main causes of poor bone quality in fast growing

broilers (Williams et al., 2000, 2004; Tompkins et al., 2022a;

2022b). To minimize economic losses and concerns about animal

welfare caused by the leg bone problems of broilers, genetic

factors should also be considered and investigated in addition to

other aspects including nutritional and environmental factors

(Shim et al., 2011; Liu et al., 2015; Huang et al., 2017).

Myostatin (MSTN) is a major anti-regulator in muscle

growth and has been investigated in various MSTN mutant

animals and humans (Grobet et al., 1997; McPherron et al.,

1997; McPherron and Lee, 1997; Schuelke et al., 2004; Mosher

et al., 2007; Bi et al., 2016; Lv et al., 2016). Recently developed

chickens and quail carrying a mutation in the MSTN gene

showed increased body and muscle weights, confirming the

anti-myogenic function of the MSTN in avian species (Kim

et al., 2020; Lee et al., 2020). In addition, a decrease in fat

deposition, another major phenotype of MSTN mutant

animals (McPherron and Lee, 2002; Ren et al., 2020), was also

reported in the MSTN mutant birds (Kim et al., 2020; Lee et al.,

2020), indicating the conserved functions of MSTN between

mammals and birds.

MSTN knockout mice showed higher bone mineral contents

(BMC), bone mineral density (BMD), and bone volume (BV)

compared to those of WT mice from Dual-energy X-ray

absorptiometry analysis of the whole body at 10 weeks of age

(Suh et al., 2020). Also, morphological changes caused by MSTN

mutations, such as an extra rib bone and pelvic tilt in MSNT

mutant pigs (Qian et al., 2015) and rabbits (Zhang et al., 2019),

respectively, were reported. However, the phenotypic changes in

bones of the MSTN mutant birds has not been reported, yet.

According to the positive effect of MSTN inactivation on

bone qualities demonstrated in mice models (Suh et al., 2020), it

is hypothesized that the bone quality of MSTNmutant birds may

be improved compared to wild-type (WT) controls. To address

this, tibia bones of 4 months old WT and MSTN mutant quail,

generated in our previous study (Lee et al., 2020), were analyzed

by Micro-Computed Tomography (micro-CT) scanning. Micro-

CT is a precise evaluation approach that can provide a

comprehensive overview of the architectural characteristics in

poultry bones (Tompkins et al., 2022a; 2022b). The three-

dimensional structural assessment can provide in-depth

understanding behind genetic modulation and bone traits

alteration. In addition, breaking strength tests were used to

further confirm the quality measured by micro-CT scanning.

Materials and methods

Animal care and bone sampling

Animal care protocol and experimental procedures were

approved by The Ohio State University Institutional Animal

Care and Use Committee (IACUC; Protocol 2019A00000024-

R1; Approved 21 January 2022). WT quail and quail carrying

homozygous single amino acid deletion mutation in the MSTN

gene were previously produced using CRISPR/Cas9-mediated

genome editing (Lee et al., 2020) and used in this study as WT

and MSTN mutant quail, respectively. All quail were maintained

together at The Ohio State University Poultry Facility in

Columbus, Ohio and fed ad libitum. Quail at 4 months of age

were euthanized via CO2 inhalation. After euthanasia, tibia bones

of both legs were sampled from eightWT and eight MSTNmutant

males. Bones were rolled with paper towels individually and stored

in plastic tubes at −20°C freezer until further analysis.

Analysis of tibia bone

To evaluate bonemorphologic changes andmicroarchitectural

changes, the left tibia bones of eight quail of each group were

collected, and muscles were removed before analyzing by micro-

CT scanning. Bones scanned according to a standard protocol at

73kV, 136 μA, and a 0.5 mm aluminum filter, and analysis was

performed with SkyScan 1172 (SkyScan, Kontich, Belgium). The

pixel size was fixed at 25 µm and a 0.25° rotation angle was applied

at each step. Images were transferred to CTAn software (CTAn,

SkyScan) for 3-D structure construction and quantification. The

metaphysis and diaphysis sections of tibia bones were manually

selected in the CTAn. Cortical bone and trabecular bone

parameters were analyzed, respectively. The following

parameters were quantified: BMC, BMD, total tissue volume

(TV), BV, bone volume per tissue volume or bone volume

fraction (BV/ TV), trabecular thickness (Tb. Th), volume of

total pores (Po.V (tot)), total porosity percentage (Po (tot)),

tissue surface area (TS), bone surface area (BS), bone surface

per total volume or bone surface density (BS/TV), bone surface per

bone volume or specific bone surface (BS/BV) (Chen and Kim,

2020). All the bone traits are highly correlated with the health

status and bone strength in many species (Chen et al., 2020;

Tompkins et al., 2022a; b). Besides, the whole bone length and

bone diaphyseal width were measured by using the CTAn ruler

tool which measures straight line distance (Figures 1A,B). The

large pore for blood vein and nerve fibers to run through

(haversian canal) was used as the landmark to select the

specific location on the long bone of where the diaphyseal

width and the cortical bone thickness were measured using the

CTAn software ruler tool (Figure 1A). The cortical bone thickness

was calculated by an average thickness of four opposite directional

measurements over cortical mid-shaft (Figure 1A).
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Bone breaking strength

Right tibia bones were used to analyze the difference of bone

breaking strength (BBS) betweenWT andMSTNmutant groups.

Before measuring BBS, the bones were thawed for 3 h at room

temperature and remaining soft tissues around the breaking

point of the bones were cleaned. BBS was determined by a

three-point bending test using a material testing machine

(Stable Micro Systems TA. XT plus 100, Stable Micro System

Corp., Surrey, UK) with a 100-kg loading cell and speed of 2 mm/

s until the bones fractured.

Statistical analysis

Student’s t-test was used to analyze measurements of left tibia

bone sizes and parameters and right tibia bone BBS with the

significance level set as p < 0.05.

Results

The effects of MSTN mutation on tibia
bone sizes and strength

The whole tibia bone length was greater in the MSTNmutant

group compared to the WT group (Table 1; Figure 1B).

Diaphyseal bone width and diaphyseal cortical thickness in

the MSTN group were significantly larger than those in the

WT group (Table 1; Figure 1C). In addition, BBS of tibia bone

was significantly increased in the MSTN group compared to the

WT group (Table 1).

The effects of MSTN mutation on tibia
bone diaphyseal material and structural
properties

The diaphysis is a shaft region in the middle of the tibia

bone and mainly formed by a compact outer bone layer, called

a cortical bone, and medullary cavity inside (Figure 1C). Using

micro-CT scanning, material and structural properties of the

whole diaphysis and cortical bone were analyzed (Table 2).

Whole diaphyseal structural assay showed higher BMC and

BMD of tibia bone in the MSTN mutant group compared to

those of the WT group (Table 2). Although the difference of

TV was not significant between the two groups, BV of

diaphysis in the MSTN mutant group were higher than

those in the WT group (Table 2). In addition, BS/BV and

BS/TV, but not BS itself, of diaphysis in the MSTN mutant

group were significantly different from those in the WT group

(Table 2).

As a main component of a diaphysis region, diaphyseal

cortical bone in the MSTN mutant group showed higher

FIGURE 1
(A). Illustration of cortical thickness and wideness measurement. (B). Lateral views of 4 months old male quail tibia bones. The length of bones
was measured with the CTAn ruler tool. (C). Transverse views of tibia diaphysis acquired from the micro-CT scanning. (D). Transverse views of tibia
metaphysis with trabecular bones (blue) and cortical (grey) structures. Transverse views of tibia metaphysis trabecular bone structures (bottom). (E).
Lateral views of the reconstructed metaphysis of tibia bones (top). Lateral views of trabecular bones at tibial metaphysis area (bottom).
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BMC, TV, and BV compared to those of theWT group (Table 2).

However, BMD, Po.V (tot), and Po (tot) of the diaphyseal cortical

bone were not significantly different between the two groups

(Table 2).

The effects of MSTN mutation on tibia
bone metaphyseal material and structural
properties

Unlike diaphysis, trabecular bone is formed inside of the

outer cortical bone within the metaphysis region (Figure 1D,E).

Therefore, metaphyseal trabecular and cortical bones were

separately analyzed along with whole metaphyseal structural

assay (Table 3). Whole metaphysis of the tibia bone in the

MSTN mutant group showed higher BMC, TV, BV, and TS

compared to those of the WT group (Table 3). However, BMD of

whole metaphysis was not significantly different between the two

groups (Table 3).

In the metaphyseal trabecular bone, all the parameters, BMC,

BMD, Tb.Th, and TV, were significantly increased in the MSTN

mutant group compared to the WT group (Table 3). However,

metaphysis cortical bone of the MSTNmutant tibia bone showed

higher BMC and BV, but not BMD and TV, compared to those of

the WT tibia bone (Table 3).

Discussion

Avian bones are fast growing, thin, and relatively denser than

the mammals (Dumont, 2010). The MSTN mutant quail model

has provided a new approach for examining MSTN function

regarding to bone quality. As an anti-myogenic regulator, MSTN

mutation resulted in increased body weight of quail in our

previous study (Lee et al., 2020). In addition to the increased

muscle mass, based on the current data, MSTN mutant quail

have shown longer and wider tibia bones compared to WT quail,

which is similar to MSTN knockout mice having longer femur

bones with thicker cortical bones (Hamrick, 2003). Although the

BMD remained unchanged in diaphyseal cortical bone between

the groups, the cortical thickness and BBS were also increased in

the MSTN mutant group compared to the WT group, suggesting

that MSTN mutation had increased bone mass and improved

bone quality in quail. The diaphysis is the midsection of a long

bone that is mainly composed of dense cortical bone (compact

bone), where radical growth is characterized at cortical bone over

the diaphysis, and the diaphyseal cortical bone structure is

essential for structural strength (Isojima and Sims, 2021). In

general, cortical bone quality and thickness are highly correlated

to BBS (Augat and Schorlemmer, 2006). Thus, the significantly

increased BV by MSTN gene knockout can result in higher BBS,

and the changes in bone mass was the main factor that attribute

to better bone quality in the current study.

Like diaphysis results, significant increases in BMC and

BV of metaphysis in the MSTN group compared to those in

the WT group indicate more mineralization in metaphysis by

MSTN mutation. Furthermore, increased TV of whole

metaphysis in the MSTN mutant group compared to the

WT group also indicates wider metaphysis in the MSTN

mutant group. At metaphysis, a higher BMC, BMD, Tb.Th,

and TV of the metaphyseal trabecular bone were observed in

the MSTN mutant group compared to the WT group,

suggesting improved trabecular bone quality by MSTN

mutation. Trabecular bone is a dynamic structure

compared to cortical bone. Trabecular bone quality is one

of the major contributors of bone strength and quality

(Garrison et al., 2011). The changed structure and

decreased bone mineral content/density were reported in

pathogenic challenge models in broilers (Raehtz et al.,

2018; Tompkins et al., 2022b). Therefore, the improved

trabecular bone quality can possibly increase bone integrity

to confronting stressed condition. Interestingly, unlike higher

BMD of whole diaphysis in the MSTN mutant group, BMD of

whole metaphysis was similar between the two groups. This

might be further supported by the finding that a 22% increase

of BMC of the whole metaphysis bone results mainly from a

similar increasing rate, 19%, of TV of whole metaphysis bone

rather than changes in BMD in the MSTN mutant group.

Similar to the results from structural assay of tibia bones of

MSTN mutant quail, diaphyseal cortical bone thickness and BV,

without BMD improvement, were higher in tibia and humerus

bones of MSTN mutant mice compared to those of WT mice

(Suh et al., 2020). In addition, trabecular bone quality was

improved in quail by MSTN mutation as shown in higher

TABLE 1 Length, width, cortical bone thickness, and bone breaking strength of 4 months old WT and MSTN mutant quail tibia bone.

Unit WT Mutant Sem p-value

Length mm 43.104 44.783 0.337 0.007*

Width mm 2.461 2.546 0.024 0.043*

Cortical thicknessa mm 0.287 0.360 0.014 0.006*

Bone breaking strength KgF 3.633 4.318 0.206 0.005*

aCortical thickness: a mean thickness of cortical mid-shaft. *means a significantly difference between groups by student’s t-test, p < 0.05; N = 8 per group.
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trabecular BMC in the humerus bone (Hamrick et al., 2002) and

trabecular BMD in fifth lumbar vertebra (Hamrick et al., 2003).

These results indicate a similar function of the MSTN gene on

regulation of bone development and quality, along with anti-

myogenic function, between mammals and birds. In murine

in vitro studies, a direct effect of the MSTN on bone

remodeling status by promoting osteoclast differentiation

(Dankbar et al., 2015) and inhibiting osteoblast differentiation

(Qin et al., 2017) was reported. MSTN mutation can positively

affect bone formation rate and reduce bone resorption,

eventually resulting in a larger bone volume in MSTN

knockout mice (Suh et al., 2020). Osteoblasts contribute to

bone formation and mineral deposition, while osteoclasts

resolve the bone and initiate the bone remodeling (Matsuo

and Irie, 2008). The differentiation and activity of these two

bone-related cells are critical in maintaining bone quality and

integrity (Alliston, 2014). Studies using mice in vitro cell models

indicated that MSTN interacts with regulators essential in bone

homeostasis by regulating osteoblast and osteoclast activity

(Ewendt et al., 2021). For example, studies using mice

osteoblastic MC3T3 cells show that the increased level of

MSTN promotes expression of bone growth inhibitor such as

sclerostin (SOST), and also the osteoclastogenic stimulators such

as RANKL (Qin et al., 2017). Besides, the increased MSTN also

associated with a marked reduction of Runx2, which is one of the

essential osteoblastogenic regulators, via the down-regulation of

the WNT signaling (Qin et al., 2017). With the current research,

it is likely that the activity of osteogenic differentiation or

osteoclastogenic differentiation can be mediated by MSTN

mutation, which can positively affect bone formation rate and

remodeling status, eventually resulting in a larger bone volume in

MSTN mutant quail. Moreover, in mice studies, the increased

bone mass was associated with the change in the osteogenic

differentiation of osteoblast, and MSNT was shown to inhibit

adipogenesis. It is well-known that the WNT pathway is one of

the most important signaling pathway to promote osteoblast

differentiation, and the activation of this pathway showed an

anti-adipogenesis and anti-chondrogenesis (but promotes

chondrocyte hypertrophy) function during bone formation

(Olivares-Navarrete et al., 2011; Lee et al., 2017; Riddle and

Clemens, 2017). The activation of WNT pathway can block

PPAR-gamma-induced adipogenesis and induce

RUNX2 expression, which commit mesenchymal stem cells

differentiated into the osteoblast phenotype (Santos et al.,

2010). Thus, the regulation of WNT pathway, and the

interaction between osteogenic differentiation and adipogenic

differentiation can be critical in understanding MSTN in bone

homeostasis in future studies.

Chicken muscle yield has been considered one of the most

important traits in genetic breed selection (Bailey et al., 2020).

However, the continuous selection for rapid growth and high

muscle yield has shifted the broilers’ center of gravity and altered

the biomechanical structure (Huang et al., 2019). The unbalanced

development between muscle and skeleton has been

unexpectedly associated with the incidence of metabolic and

skeletal disorders in modern broiler breeds. For broilers, most of

skeleton disorders occur on the long bone (tibia and femur)

(Cook, 2000; Akyüz and Onbaşılar, 2020). Thus, leg disorders are

TABLE 2 Diaphyseal properties of WT and MSTN mutant tibia bone.

Unit WT Mutant Sem p-value

Whole Diaphysis BMC g 13.945 16.258 0.443 0.002*

BMD g/mm3 0.837 0.922 0.018 0.006*

TV mm3 16.693 17.659 0.416 0.124

BV mm3 9.778 10.844 0.237 0.008*

BS mm2 62.108 60.813 1.261 0.688

BS/BV mm2/ mm3 6.358 5.613 0.148 0.004*

BS/TV mm2/ mm3 3.722 3.450 0.056 0.005*

Diaphysis Cortical BMC g 11.006 13.168 0.353 <0.001*

BMD g/mm3 1.641 1.638 0.030 0.517

TV mm3 6.738 8.075 0.248 0.003*

BV mm3 6.670 8.011 0.244 0.003*

Po.V (tot) mm3 0.074 0.067 0.016 0.106

Po (tot) % 0.961 0.912 0.201 0.201

BMC, bone mineral content; BMD, bone mineral density; TV, total tissue volume; BV, bone volume (TV, minus bone marrow volume); BS, bone surface area; BS/TV, bone surface/ total

volume; BS/BV, bone surface/ bone volume; Po.V (tot), total volume of pore space; Po. (tot), total pore percentage. *means a significantly difference between groups by student’s t-test, p <
0.05; N = 8 per group.
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a significant cause of welfare issues in broilers. Compared to slow

growing chickens, fast growing broilers is characterized with a

relative lower mineral contents, higher porosity, and lower BBS

(Williams et al., 2000). Significantly increased mineralization in

the tibia bone by MSTN mutation as shown in higher BMC and

BV in all diaphyseal andmetaphyseal regions suggests MSTN as a

potential genetic factor that can improve bone mineralization,

bone strength, and structural integrity in fast growing broilers.

In summary, MSTN mutation resulted in longer, wider,

thicker, and stronger tibia bone with significant improvements

of bone quality parameters in both diaphysis and metaphysis

regions of quail tibia bone. The current study provides scientific

evidence for potential applications of MSTN to not only increase

meat yield, but also improve bone quality in poultry.
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TABLE 3 Metaphyseal properties of WT and MSTN mutant tibia bone.

Unit WT Mutant Sem p-value

Whole metaphysis BMC g 15.567 19.034 0.758 0.007*

BMD g/mm3 0.413 0.425 0.011 0.298

TV mm3 37.81 44.86 1.574 0.007*

BV mm3 15.543 18.526 0.734 0.017*

TS mm2 83.531 93.990 2.080 0.005*

Metaphysis Trabecular BMC g 0.396 0.899 0.144 0.036*

BMD g/mm3 0.862 0.898 0.008 0.018*

Tb.Th mm 0.079 0.095 0.003 0.023*

TV mm3 0.450 0.997 0.157 0.037*

Metaphysis Cortical BMC g 6.942 8.022 0.204 0.002*

BMD g/mm3 0.836 0.888 0.024 0.157

TV mm3 8.370 9.128 0.291 0.104

BV mm3 7.378 8.429 0.239 0.018*

TS, total bone surface area; Tb.Th, trabecular bone thickness. * means a significantly difference between groups by student’s t-test, p < 0.05; N = 8 per group.
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