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Zeugodacus cucurbitae (Coquillett) is a highly damaging agricultural pest in

many tropical and subtropical countries around the world and high

temperatures usually affect its survival. To clarify the effect of short-term

high temperatures on the survival and lifespan of Z. cucurbitae, newly

emerged adults of three consecutive generations (F1, F2, and F3) were

exposed to 25 °C, 33 °C, 37 °C, 41 °C, or 45 °C treatments for 1 h. The effect

of these temperatures on survival and lifespan was evaluated using biological

indicators such as lifespan and pupation rate. Then, to study the molecular

regulatory mechanism of the lifespan of Z. cucurbitae after short-term high-

temperature treatment, we exposed the newly emerged adults to 25 °C or 45 °C

treatments for 1 h and used siRNA to interfere with the expression of the

vitellogenin receptor (VgR) gene in the female to study the effect of the VgR

gene on the lifespan of Z. cucurbitae. The results showed that the survival rate,

lifespan, pupae weight, pupation rate, and emergence rate of Z. cucurbitae

decreased with increased temperature, while the female sex ratio of offspring

increased. The heat resistance of females was higher than that of males.

Interference with the expression of the VgR gene resulted in shortening of

the female’s lifespan by approximately 60% after exposure to 25 °C or 45 °C

treatments for 1 h, which indicated involvement of the VgR gene in the

regulation of Z. cucurbitae lifespan. This study provides a reference to guide

integrated control of Z. cucurbitae in high-temperature seasons.
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1 Introduction

Temperature is an important environmental factor that has a

remarkable influence on the survival, lifespan, and reproduction

of insects because it can change the rate of chemical reactions and

the spatial conformation of proteins (Amjad et al., 2022). The

body temperature of insects is easily affected by the surrounding

environment, and insects typically suffer from heat damage or

even die when the environmental temperature exceeds the

appropriate range for insect survival (Rinehart et al., 2000).

The frequency and intensity of extremely high temperature

events are increasing in the context of global warming (Ma

and Ma, 2016). Insects typically encounter extremely high

temperatures for short periods of time, rather than

experiencing consistently high temperatures. In addition,

extremely high temperatures may drive insect responses to

climate change more than average temperatures (Ma et al.,

2021). High mortality rates of 91.67% and 95% were observed

for newly emerged adult Grapholita molesta Buscks exposed to

38 °C treatment for 48 h, and the lifespan decreased with

increased temperature (Bao et al., 2019). Exposure of

Drosophila melanogaster pupae to 40.5 °C treatment for

35 min resulted in curled, arched, and spherical shaped

deformation in the wings of adults and a considerably

reduced emergence rate (Williams et al., 2003). Exposure of

Bemisia tabaci to 43–45 °C treatments for 1 h resulted in a

remarkable increase in the proportion of female offspring (Cui

et al., 2008). The differences in tolerance to high temperatures

among different insects lead to species-specific effects of high-

temperature stress on insect growth and development.

Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae),

commonly known as the melon fruit fly, is widely distributed in

tropical and subtropical areas and is a pest formany crops (Puri et al.,

2022). Z. cucurbitae is native to India and is now found in more than

40 countries around the world; it mainly harms the Cucurbitaceae

family, which contains more than 125 host plants (Sajan et al., 2022).

Adult females pierce the ovipositor into the fruit to lay eggs, and these

eggs hatch intomaggots that feed inside the fruit, thereby causing the

fruit to decay. It is reported that Z. cucurbitae causes losses of up to

30–100% in different Cucurbitaceae crops. It has also been reported

that female Z. cucurbitae lay eggs in unopened female and male

flowers in Hawaii, and successful development of their larvae has

been found in primary roots, stems, and petioles (Back and

Pemberton, 1914). Therefore, determination of the effects of

short-term high temperatures on the survival and lifespan of Z.

cucurbitae could help clarify the timing of infestation during high-

temperature seasons to guide the timely development of effective

control strategies.

The embryonic development of Z. cucurbitae occurs by

oviposition and mainly depends on the accumulation of

sufficient yolk protein (YP) and other substances to support

the development of oocytes and as essential nutrients for life

(amino acids, proteins, lipids, phosphates, carbohydrates, ions,

and vitamins) (Tufail and Takeda, 2009). Vitellogenin (Vg) is the

most abundant YP precursor in insects, and it is transported to

the membrane-bound vesicles of the oocyte via vitellogenin

receptor (VgR)-mediated endocytosis, providing nutrients for

embryonic development (Tufail and Takeda, 2005). Vg and VgR

are inextricably linked with the reproduction of insects. Recently,

it was demonstrated that Vg is a pleiotropic protein that not only

provides nutrients for embryonic development, but also plays

roles in stress resistance and antioxidation (Corona et al., 2007),

climate adaptation (Amdam et al., 2005), activation of the ovary,

regulation of lifespan, and wing differentiation (Page and

Amdam, 2007). VgR, in concert with Vg, is involved in a

range of physiological and behavioral activities in insects (Lian

et al., 2022b). Our previous research showed that the

reproductive ability and ovarian development rate of Z.

cucurbitae were significantly decreased after interference with

the VgR gene of 5-day-old females (Lian et al., 2022a). In

addition, we found that interference with the VgR gene

impacted the lifespan of female Z. cucurbitae; however, the

mechanism of that effect was unclear. On this basis, we

treated newly emerged adult Z. cucurbitae at 25 or 45 °C for

1 h, then injected siRNA into 5-day-old females to interfere with

the expression of the VgR gene. Next, we reared them at room

temperature and recorded the lifespans of females and males to

assess the effects of interference with theVgR gene on the lifespan

of Z. cucurbitae after short-term high-temperature treatment.

2 Materials and methods

2.1 Insect sources

Insects used in this experiment were obtained from balsam

pear fields near Nada Town, Danzhou City, Hainan Province,

China (109°29′ E, 19°30′ N), and reared in the laboratory on

artificially prepared feed. Diet formulas for larvae and adults were

prepared as described by Zeng et al. (2018), and both

formulations were purchased from Hainan Qingfeng

Biotechnology Co., Ltd (China). To generate a stable,

temperature-sensitive population in the laboratory, the indoor

rearing temperature for Z. cucurbitae was maintained at an

average level of 25 ± 1 °C, the relative humidity was 70 ± 5%,

and a 14 h/10 h light/dark cycle was used. The developmental

stage of all insects exposed to short-term high temperatures in

this study was newly emerged adult. All short-term treatments

indicated in this study lasted one hour.

2.2 Setting of short-term high-
temperature treatment

The Z. cucurbitae of the F1 generation (F1) used in this study

were contemporary Z. cucurbitae, the Z. cucurbitae of the F2
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generation (F2) were of the stage from eggs to adults derived from

F1, and the Z. cucurbitae of the F3 generation (F3) were of the

stage from eggs to adults derived from F2. It has been suggested

that 25–30 °C is the optimal temperature range for the

development and survival of Z. cucurbitae (Wei et al., 2011).

Thus, a temperature greater than the highest temperature of the

optimal range (>30 °C) in external environments was designated

as high temperature (Zeng et al., 2019). Newly emerged adults of

F1–F3 were exposed to 25 °C (control group), 33 °C, 37 °C, 41 °C,

or 45 °C treatment for 1 h in an artificial climate chamber

(Qianjiang Instruments, China). After treatment, all

generational populations were reared at the standard indoor

temperature (25 ± 1 °C). The survival rate (%) and lifespan

(d) were recorded for each generation following completion of

different temperature treatments. Each cage with 12 pairs (sex

ratio, 12:12) was considered one replication, and six replicates

were established for each treatment. The larvae of each

generation were randomly selected and divided into

120 larvae per group, and six replicates were established for

each treatment. The pupae weight (g), pupation rate (%),

emergence rate (%), and sex ratio were recorded.

2.3 Design and preparation of siRNA

A 21-nucleotide siRNA was designed based on the conserved

cDNA sequence of the Z. cucurbitae VgR gene, with a sense strand

sequence of 5′-CGAUGUCGAGGAUGUGUUATT-3′ and an

antisense strand sequence of 5′-UAACACAUCCUCGACAUC
GTT-3′. The negative control (NC) was a commercially

available siRNA, which was designed without homology to the

target sequence and had no function as RNAi in any treatment,

with a sense strand sequence of 5′-GGUUCUCCGAACGUGUCA
CGU-3′ and an antisense strand sequence of 5′-ACGUGACAC
GUUCGGAGAACC-3’. Both siRNAs were synthesized by Qingke

Biotechnology Co., Ltd. (China).

2.4 Injection of siRNA for VgR genes

Dry powder preparations of siRNA and the NC were

resuspended at an initial concentration of 2.5 nmol and then

diluted in tris-EDTA solution (125 μL) to prepare working

solutions with a final concentration of 20 μM. The newly

emerged Z. cucurbitae adults, after treatment at 25 °C or

45 °C for 1 h in an artificial climate box, were reared at the

standard indoor temperature (25 °C ± 1 °C), as described above.

On the 5th day after rearing, female adults were chosen for

injection with 1.25 μg (4.5 μL) of siRNA or NC using a pneumatic

microinjector (IM-11-2, NARISHIGE, Japan). The joint between

the second and third segments of the abdominal backplane was

the injection point. Injury treatment (using an empty injection

needle) and control check (CK) groups were also prepared.

2.5 Effects ofVgR gene interference on the
lifespan of Z. cucurbitae

After injection, five female adults were isolated from each of the

siRNA, NC, injury, and CK treatment groups, and each group was

paired with five male adults, representing one replicate. Each

treatment group was placed into a cage, with six replicates of each

group prepared. Water, artificial adult feed, and pumpkin flakes were

provided for rearing and reproduction, and cages were kept at an

average temperature of 25 ± 1 °C. Lifespan data were then recorded.

2.6 Statistical analysis

The data were analyzed, in Excel (version 2022) and SPSS

(version 26.0), using a script of completely randomized ANOVA

and Tukey’s multiple comparisons. ANOVA was used after

arcsine square root transformation of proportional data

(Ahrens et al., 1990). The results presented in figures are the

mean value ± standard error.

3 Results

3.1 Effects of short-term high temperature
on the survival and lifespan of Z.
cucurbitae (F1)

Temperature had a significant effect on the survival rate (F (9,

50) = 101.876, p < 0.001) and lifespan (F (9, 50) = 29.164, p <
0.001) of F1. The survival rates of females andmales decreasedwith

increased temperature and reached minima of 54.2% and 45.8%,

respectively, for 45 °C treatment, which were significantly lower

than those of the control groups (both were 100%) (Figure 1A).

The lifespans of females and males decreased with increased

temperature and reached minima of 113 and 106 days,

respectively, for 45 °C treatment, which were significantly lower

than those of the control groups (180 and 167 d, respectively)

(Figure 1B). These results indicate that the survival rate and

lifespan of Z. cucurbitae were adversely affected by short-term

high temperature, and the survival rate and lifespan of females

were higher than males exposed to the same treatment, suggesting

that females were more heat tolerant than males.

3.2 Effects of short-term high temperature
on the survival and lifespan of Z.
cucurbitae (F2)

Temperature had a significant effect on the survival rate (F (9,

50) = 160.296, p < 0.001) and lifespan (F (9, 50) = 166.903, p <
0.001) of F2. The survival rates of females andmales decreasedwith

increased temperature and reached minima of 36.1% and 33.3%,
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respectively, for 45 °C treatment, which were significantly lower

than those of the control groups (both were 100%) (Figure 2A).

These results indicate that the females were more heat-resistant

than the males in two consecutive generations of high-temperature

treatment, and that the survival rate of F2 was lower than that of F1.

The lifespans of females and males decreased with increased

temperature and reached minima of 51 and 49 days,

respectively, for 45 °C treatment, which were significantly lower

FIGURE 1
Effects of short-term high temperature on survival and lifespan of Z. cucurbitae (F1). (A) Survival rate. (B) Lifespan. The columns in the figure
represent the mean ± standard error, and the letters above them indicate significant differences (p ≤ 0.05).

FIGURE 2
Effects of short-term high temperature on survival and lifespan of Z. cucurbitae (F2). (A) Survival rate. (B) Lifespan. (C) Pupaeweight. (D) Pupation
rate. (E) Emergence rate. (F) Sex ratio. The columns in the figure represent the mean ± standard error, and the letters above them indicate significant
differences (p ≤ 0.05).
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than those of the control groups (173 and 170 days, respectively)

(Figure 2B). In addition, temperature had a significant effect on the

pupae weight (F (4, 373) = 490.347, p < 0.001), pupation rate (F (4,

25) = 541.36, p< 0.001), and emergence rate (F (4, 25) = 73.012, p <
0.001) of F2. The pupae weight (Figure 2C), pupation rate

(Figure 2D), and emergence rate (Figure 2E) decreased with

increased temperature and reached minima of 0.0067 g, 17.5%,

and 37.5%, respectively, for 45 °C treatment, which were

significantly lower than those of the control groups (0.0248 g,

93.3%, and 98.2%, respectively). The female sex ratio increased

with increased temperature and reached a maximum of 6:1 for the

45 °C treatment (Figure 2F). These results indicate that, once again,

females were more heat-resistant than males.

3.3 Effects of short-term high temperature
on the survival and lifespan of Z.
cucurbitae (F3)

Temperature had a significant effect on the survival rate (F (9,

50) = 1623.853, p < 0.001), lifespan (F (9, 50) = 439.589, p < 0.001),

pupae weight (F (4, 263) = 868.455, p < 0.001), pupation rate (F (4,

25) = 114.872, p < 0.001), and emergence rate (F (4, 25) = 14.22, p <

0.001) of F3. The survival rate decreased with increased temperature

and all F3 died after exposure to 45 °C for 1 h (Figure 3A). The

lifespans of females andmales decreased with increased temperature

and peaked in the control group at 183 and 178 days, respectively,

which were significantly higher than those of the high-temperature

treatment group (Figure 3B). The pupae weight (Figure 3C),

pupation rate (Figure 3D), and emergence rate (Figure 3E)

decreased with increased temperature and reached minima of

0.0037 g, 8.3%, and 13.9%, respectively, for 45 °C treatment,

which were significantly lower than those of the control group

(0.0256 g, 94.2%, and 97.3%, respectively). The female sex ratio

increased with increased temperature (Figure 3F); lowest in the

control group (1.2:1), highest in the 41 °C treatment group (3:1), and

1:0 in the 45 °C treatment group. These results indicate that exposure

of both F1 and F2 to 45 °C treatment for 1 h led to a reduction in the

number of F3 males, or even failure to complete emergence.

3.4 Effects of VgR gene interference on
the lifespan of Z. cucurbitae

Interference with the VgR gene had a significant effect on the

lifespan of Z. cucurbitae after 5-day-old adults were exposed to

FIGURE 3
Effects of short-term high temperature on survival and lifespan of Z. cucurbitae (F3). (A) Survival rate. (B) Lifespan. (C) Pupaeweight. (D) Pupation
rate. (E) Emergence rate. (F) Sex ratio. The columns in the figure represent the mean ± standard error, and the letters above them indicate significant
differences (p ≤ 0.05).
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25 °C (F (7, 40) = 23.158, p < 0.001) or 45 °C (F (7, 40) = 34.952,

p < 0.001) treatments for 1 h. There was no significant difference

in the lifespan of males among the treatment groups after adults

were exposed to 25 °C or 45 °C treatment for 1 h. The siRNA

group presented the shortest lifespan among females (56 days)

after adults were exposed to 25 °C treatment for 1 h, which was

significantly lower than the other treatment groups; the lifespans

of females in the injury and NC groups were significantly lower

than that of the CK group (136 days). The lifespans of females

were shorter than those of males in all treatment groups, except

for the CK group, in which the lifespan of females was slightly

higher than that of males (Figure 4A). The lifespan of females was

highest in the CK group and lowest in the siRNA group (102 and

41 days, respectively) after adults were exposed to 45 °C

treatment for 1 h, which were significantly different from

other treatment groups (Figure 4B). In summary, interference

with the VgR gene adversely affected the lifespan of females. The

lifespan of the siRNA group was reduced by 59% and 60% at

25 °C and 45 °C, respectively, compared with the CK group.

4 Discussion

The effects of high temperatures on insects are mainly

manifested via water loss, changes in intracellular ion

concentration, disruption of the cytoskeleton, disruption of

nerve conduction, and functional changes in biomolecules

(proteins, DNA, etc.), thus causing insect mortality (Chown et

a., 2011; Bowler, 2018). The survival rate and lifespan of Z.

cucurbitae gradually decreased with increased temperature in our

study. Gu et al. (2020) exposed Z. cucurbitae to high

temperatures for 12 h and concluded that the survival rate of

each insect state decreased continuously and the longevity of

adults decreased continuously with increased temperature. This

finding is consistent with the results of our study. He et al. (2019)

subjected Assara inouei Yamanaka adults to short-term high

temperatures and found that the survival rate and lifespan of

adults decreased continuously with increased treatment

temperature and treatment time, which is consistent with our

results and indicates that the intensity and frequency of high

temperature are closely related to the survival and lifespan of Z.

cucurbitae. The survival rate and lifespan of Z. cucurbitae under

the same treatment temperature decreased continuously with

subsequent generations, and all of F3 died after exposure to 45 °C

treatment for 1 h. These results demonstrate that the short-term

high temperature not only affected the survival rate and lifespan

of the contemporary Z. cucurbitae, but also reduced the heat

tolerance of their offspring. Furthermore, the same high-

temperature stress presented a higher lethality for the

offspring than the contemporary. When exposed to the same

high-temperature treatment time of 1 h, the survival rate and

lifespan of Z. cucurbitae females were higher than males,

indicating that females have better heat-resistance and

adaptive capacity than males in response to short-term high

temperature stress. This result is consistent with the analysis by

Zhou (2016) of the effects of short-term temperature fluctuation

on Z. cucurbitae, with females exhibiting a longer lifespan and

higher survival rate than males.

The environmental conditions (photoperiod, temperature,

and nutrition) experienced by the maternal insect affect offspring

phenotype. This phenomenon is called the “maternal effect”,

which is a non-genetic effect of the maternal environment on the

offspring (Mousseau and Fox, 1998). The effects of short-term

high temperatures on offspring were mainly reflected in

decreased pupae weight, pupation rate, emergence rate, and

increased female sex ratio in our study, which were consistent

with the results of Zeng et al. (2022). The larvae of B. tabaci and

Heliothis virescens also showed reduced pupae weights when they

experienced sustained high-temperature stress at 35 °C

(Ghazanfar et al., 2020). Studies have shown that heat injury

can induce changes in the insect’s body size and that rapidly

elevated temperatures usually result in enhanced metabolism and

production of offspring, allowing for rapid population

development (Cara et al., 2018; Tseng et al., 2018). Small

offspring are more prone to dehydration and overheating than

larger individuals (Gardner et al., 2011); however, they can

reduce heat damage by promoting intestinal symbiotic

bacteria to absorb water and nutrients (Kikuchi et al., 2016).

FIGURE 4
Effect of interference with the vitellogenin receptor gene on
the lifespan of Z. cucurbitae after short-term high-temperature
treatment. (A) Interference with the vitellogenin receptor gene
after 25 °C treatment for 1 h. (B) Interference with the
vitellogenin receptor gene after 45 °C treatment for 1 h. The
columns in the figure represent themean ± standard error, and the
letters above them indicate significant differences (p ≤ 0.05).
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Insects are able to regulate and mitigate the effects of high-

temperature stress through phenotypic adaptations and rapid

evolutionary responses (Bale et al., 2002). In our study, short-

term high-temperature treatment reduced the pupae weight of

offspring and produced smaller individuals as a way to improve

resistance to high temperatures. The female sex ratio of the

offspring increased with increased temperature, and the 45 °C

treatment group of F2 possessed the largest female to male sex

ratio of 6:1. In a study on the effect of different high-temperature

treatments on the sex ratio of Z. cucurbitae, Gu et al. (2020)

found that the female ratio of the offspring gradually increased

with increased temperature after 12 h of high-temperature

treatment, which is consistent with our results. Similar results

have been reported in other insects. Bradysia odoriphaga adults

were exposed to 37 °C treatment for 1 h, and the proportion of

female offspring was remarkably higher than that of male

offspring (Cheng et al., 2017). Agasicles hygrophila adults were

exposed to 45 °C treatment for 1 h, and the female sex ratio of

offspring was considerably increased (Zhao et al., 2009). In our

study, newly emerged adults from F2 were exposed to 45 °C

treatment for 1 h and their offspring (F3) were all females, with a

sex ratio of 1:0, indicating that exposure to two consecutive high-

temperature treatments causes a reduction in the number of F3
males, or even failure of males to complete emergence.

Vg and VgR are the basis of vitellogenesis, play crucial roles in

the maturation of insect ovaries, and are potential targets for

research on pest control (Lin et al., 2013). In recent years, an

increasing number of studies have shown the pleiotropy of Vg and

VgR. Vg andVgR are not only closely related to insect reproduction,

but also involved in regulating a variety of physiological and

behavioral activities (Wang et al., 2016). In our study,

interference of the VgR gene resulted in a significant shortening

of the lifespan of female Z. cucurbitae by approximately 60%, at

25 °C and 45 °C, indicating that silencing theVgR gene shortened the

lifespan of female Z. cucurbitae. In insects, a circuit called IIS-JH-

Vg/YP is present, in which the insulin/insulin-like growth factor

1 signaling (IIS) and TOR pathways mainly regulate lifespan and

reproduction; they interact with the relevant juvenile hormone (JH)

pathway to regulate reproductive activities such as vitellogenesis

(Lin et al., 2021). Studies have shown that JH titers are low in IIS

pathway-deficient D. melanogaster (Toivonen and Partridge, 2009).

Studies ofD.melanogaster,Aedes aegypti,Tribolium castaneum, and

Locusta migratoria demonstrated that the synthesis of Vg requires

the regulatory involvement of JH and that JH promotes the

synthesis of Vg (Santos et al., 2019). Yamamoto et al. (2013)

used removal of the pharyngeal lateral body of newly emerged

adultD.melanogaster to reduce JH as a way to extend the lifespan of

D. melanogaster, suggesting that the level of JH is negatively

correlated with the lifespan of D. melanogaster. Therefore, for

our study, we hypothesized that interference with the VgR gene

would reduce VgR synthesis on the oocyte surface and that the

ligand, Vg, would accumulate due to inability to enter the oocyte,

thereby causing upregulation of JH and activation of the IIS pathway

and reducing the lifespan of Z. cucurbitae. However, the molecular

mechanism related to the effects of the VgR gene on lifespan in Z.

cucurbitae requires further study.

In conclusion, we exposed newly emerged adult Z. cucurbitae to

25 °C, 33 °C, 37 °C, 41 °C, or 45 °C treatments for 1 h, and their

biological indicators such as lifespan, pupation rate, and emergence

rate were recorded. Our results showed that the survival rate,

lifespan, pupae weight, pupation rate, and emergence rate of Z.

cucurbitae decreased with increased temperature, the female sex

ratio increased with increased temperature, and all of F3 died after

exposure to 45 °C treatment for 1 h. Female Z. cucurbitaewere more

adaptable and resistant to short-term high-temperature stress than

males. We also exposed newly emerged adult Z. cucurbitae to 25 °C

or 45 °C treatment for 1 h, and then used siRNA to interfere with

expression of the VgR gene in females. We found that down-

regulation of the VgR gene caused a reduction in the lifespan of

Z. cucurbitae. In future research, we aim to clarify the regulatory

mechanisms involved in the effects of theVgR gene on the lifespan of

Z. cucurbitae, establish the Z. cucurbitae transcriptome and

proteome using high-throughput sequencing technology, and

investigate the regulatory mechanism of the IIS-JH-Vg/YP circuit

in Z. cucurbitae.
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