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Infectious diseases, which often result in deadly sepsis or septic shock, represent a
major global health problem. For understanding the pathophysiology of sepsis and
developing new treatment strategies, reliable and clinically relevant animalmodels of
the disease are necessary. In this review, two large animal (porcine) models of sepsis
induced by either peritonitis or bacteremia are introduced and their strong and weak
points are discussed in the context of clinical relevance and other animal models of
sepsis, with a special focus on cardiovascular and immune systems, experimental
design, and monitoring. Especially for testing new therapeutic strategies, the large
animal (porcine) models represent a more clinically relevant alternative to small
animal models, and the findings obtained in small animal (transgenic) models should
be verified in these clinically relevant large animal models before translation to the
clinical level.
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1 Introduction

Infectious diseases and their associated sepsis and septic shock remain a global health
problem, with a steadily growing yearly incidence of up to 20 million cases and 5 million sepsis-
related deaths worldwide (Fleischmann et al., 2016). They are among the most severe life-
threatening conditions in hospital ICUs, with a mortality rate of approximately 30%
(Fleischmann et al., 2016). Epidemiological studies show sepsis as one of the most crucial
healthcare problems, with a significant socioeconomic impact and high financial burden for
public health systems—24 billion USD is spent annually in the USA, and the situation is similar
in other developed countries (Torio andMoore, 2006; Liu et al., 2014; Mellhammar et al., 2016).

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host
response to infection (SEPSIS-3) (Singer et al., 2016), which corresponds to the stage of severe
sepsis according to the earlier SEPSIS-1 and SEPSIS-2 definitions (Levy et al., 2003). Organ
dysfunction can be identified as an acute change in the total Sequential Organ Failure
Assessment (SOFA) score by >2 points. The SOFA score focuses on six vital organ systems
(Figure 1): the respiratory system (PaO2/FiO2), hemostasis (number of thrombocytes), the liver
(plasma levels of bilirubin), the kidneys (plasma levels of creatinine and urine volume), the
central nervous system (Glasgow coma scale), and the cardiovascular system (mean arterial
pressure, vasopressor support) (Singer et al., 2016; Napolitano, 2018). Septic shock is then
defined as a subset of sepsis in which underlying circulatory and cellular/metabolic
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abnormalities are profound enough to substantially increase mortality.
Patients with septic shock can be identified with a clinical construct of
sepsis with persisting hypotension requiring vasopressors to maintain
mean arterial pressure above 65 mmHg and having a serum lactate
level above 2 mmol/L (Singer et al., 2016). For a quick bedside clinical
judgement, the qSOFA (quick SOFA), which only incorporates three
parameters (altered mentation, systolic blood pressure of 100 mm Hg
or less, and respiratory rate of 22/min or greater) has been suggested.
Although qSOFA is less robust than SOFA, it does not require
laboratory tests and can be assessed quickly and repeatedly. The
qSOFA criteria should be used to prompt clinicians to further
investigate organ dysfunction, to initiate or escalate therapy as
appropriate, and to consider referral to critical care or increase the
frequency of monitoring (Singer et al., 2016; Raith et al., 2017).

Animal models allow for a detailed investigation of the
pathophysiological mechanisms of the disease; however, the
translation of the findings to the clinical level is often complicated.
Therefore, in this review, animal models of sepsis were analyzed with
an emphasis on their clinical relevance. Small and large animal models
of sepsis were compared to reveal their main advantages and
disadvantages with special focus on cardiovascular and immune
systems. As highly clinically relevant models, two porcine models
of sepsis (peritonitis- and bacteremia-induced), which are used
routinely in our lab, were scrutinized in detail, including
methodological aspects of the experiments.

2 Large vs. small animal models

Despite significant progress in our understanding of this
clinical syndrome, the pathophysiology of sepsis remains
unclear and there is an increasing need to improve our
understanding of sepsis and develop new effective treatments
for this deadly condition. Obviously, reliable and clinically
relevant animal models are necessary for understanding the
complex pathophysiological concepts of sepsis as well as for
developing new effective treatment options. Many preclinical
studies have been conducted, with promising results; however,
most of them could not be successfully transferred to clinical
situations. Knowledge transfer is complicated by the
heterogeneity and complexity of the animal models used
(Table 1). Small preclinical models are often used for modeling
specific clinical situations; however, their translational potential is
limited. When compared to the human phenotype of sepsis,
significant differences exist in terms of their inflammatory,
immune, metabolic, and hemodynamic responses to infection
insult (Reade and Young, 2003; Tao et al., 2004; Alverdy et al.,
2020; Wang et al., 2022). Although there are specific advantages to
using genetically engineered mouse and rat models, there is an
urgent need for clinically relevant large animal models that allow
for an easy and reliable clinical translation. Large porcine models
show, similar to humans, a hyperdynamic circulation response to
infectious insult, which is in contrast to small animal (mouse, rat)
models with a hypodynamic response (low cardiac output and
hypotension) (Fink and Heard, 1990; Park et al., 2019). Porcine
anatomy and physiology are, in general, similar to those of humans,
e.g., a similar heartrate range, force–frequency relationship, and
cardiac action potential duration (Meurens et al., 2012; Swindle
et al., 2012). Furthermore, the similar size allows for the
experimental use of regular clinical tools (probes, catheters)
without modifications. When compared to other large animal
model species, pigs probably represent the most plausible
clinically relevant option. Since experiments with apes and dogs
are currently being minimized due to ethical reasons (Balls, 2022),
pigs and sheep are the most commonly used large species in sepsis
research (Guillon et al., 2019). In sheep as ruminant animals,
however, important differences in anatomy and physiology of
the gastrointestinal tract exist, compared to omnivorous species
(pig, human), which have significant metabolic consequences
(Wolffram et al., 1986; Bergman 1990). On the other hand, also
pigs show some species differences that may complicate clinical
translation such as susceptibility to pulmonary dysfunction and
acute pulmonary hypertension (Guillon et al., 2019) (Table 2).

FIGURE 1
SOFA score. According to the Sepsis-3 definitions (Singer et al.,
2016), sepsis is defined as life-threatening organ dysfunction caused by a
dysregulated host response to infection. For clinical operationalization,
organ dysfunction can be represented by an increase in the
Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of
two points ormore. The SOFA score is based on grading six vital systems:
respiration (PaO2/FiO2), coagulation (number of thrombocytes), the liver
(bilirubin plasma levels), the cardiovascular system (mean arterial
pressure and vasopressor support), the central nervous system (Glasgow
Coma Scale), and the renal system (creatinine plasma levels, urine
output), each of them scoring 0–4 points. In porcine experiments
conducted under general anesthesia, the Glasgow coma scale-based
neurologic component is excluded.
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3 The cardiovascular system in sepsis

Cardiovascular system has been extensively studied in both
small and large animal models, which allows for a fair comparison
with humans and a proper assessment of the possibility of clinical

translation. From a practical point of view, large animal models
(e.g., pigs) have an obvious advantage in that their size and
macroanatomy resemble those of the human cardiovascular
system. That allows for the easy use of clinical devices and tools
in large animal models, including their experimental testing. Also,

TABLE 1 Overview of animal models of sepsis and septic shock.

Animal model Procedure/induction method

Mouse Cecal ligation and punction (Li et al., 2018)

Intraperitoneal injection of E. coli (Uranga-Murillo et al., 2021)

Intravenous LPS injection, intravenous or intraperitoneal injection of live E. coli (Zanetti et al., 1992)

S. aureus mediated arthritis and sepsis (Tarkowski et al., 2001)

Cecal slurry (Brook et al., 2019)

Cecum ligation and dissection (Mutlak et al., 2013)

Ascending colon stent peritonitis (Traeger et al., 2010)

Implantation of bacteria embedded in a fibrin clot (Ghanta et al., 2021)

Pneumonia-derived sepsis (Cai et al., 2021)

Rat Cecal ligation and punction (Hua et al., 2018)

Colon ligation and dissection (Scheiermann et al., 2009)

Ascending colon stent peritonitis (Utiger et al., 2021)

Hamster Intraperitoneal implantation of bacterial agar pellets (Whang et al., 2000)

Intraperitoneal injection of leptospires (Haake, 2006)

Skin fold chamber (Miranda et al., 2015)

Subcutaneous and intradermal inoculation of leptospires (Coutinho et al., 2014)

LPS intravenous injection (Santos et al., 2011)

Rabbit Ascending colon stent peritonitis (Lu et al., 2015)

Intravenous administration of bacteria (Zhang et al., 2020; Siddiqui et al., 2021)

Long-term catheter-related bloodstream infections (Basas et al., 2018)

Dog Sepsis via intestinal ischemia (Nagy et al., 1990)

E. coli-infected fibrin clots implanted intraperitoneally (Solomon et al., 1994)

Intrabronchial S. aureus challenge (Minneci et al., 2007)

Peritoneal clot with E. coli bacteria (Natanson et al., 1988)

Intravenous injection of live E. coli (Lagoa et al., 2004)

Sheep Smoke inhalation injury followed by live bacteria instillation through bronchoscope (Murakami et al., 2002)

Smoke inhalation injury followed by methicillin-resistant S. aureus placement into the lungs (Yaghouby et al., 2017)

Intravenous administration of LPS (Durosier et al., 2015)

Intravenous infusion of live bacteria (Morimatsu et al., 2012; Okazaki et al., 2021)

Cecal ligation, perforation, and devascularization (Judges et al., 1986)

Chorioamnionitis and fetal sepsis (Kuypers et al., 2012)

Pig Fecal peritonitis, inoculating autologous feces into the abdominal cavity (Jarkovska et al., 2016)

Bacteremia, intravenous infusion of live P. aeruginosa (Stengl et al., 2010a)

Endotoxemia, infusion of E. coli lipopolysaccharide (Granfeldt et al., 2014)

Rhesus monkey Intravenous inoculation of bacteria (Kastello and Spertzel, 1973)
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microstructural studies show similar characteristics for the human
and porcine myocardium (Milani-Nejad and Janssen, 2014), with
dominant expression of slow β–MHC (myosin heavy chain): in the
porcine ventricular myocardium, it approaches 100%, with some
regional variations (Stelzer et al., 2008; Locher et al., 2011); in
human ventricles, expression levels of β–MHC above 90% were
reported (Miyata et al., 2000; Reiser et al., 2001; Jin et al., 2017).
Similar to in humans, porcine hearts express significant levels of
both stiff (small) N2B and compliant (large) N2BA titin isoforms,
although probably with some quantitative differences: in the
porcine myocardium, a higher relative expression of the titin
N2BA isoform was reported compared to in humans (Cazorla
et al., 2000; Makarenko et al., 2004; Chung et al., 2011). In
contrast to human and large (porcine) animal models, in the rat
ventricular myocardium the fast α-MHC is dominantly expressed
(>90%) (Wang et al., 2002), which has significant consequences for
tension cost and kinetics (Rundell et al., 2005). Also, the expression
pattern of titin isoforms in mice and rats differs from that in
humans and pigs: in mice and rats, the dominant expression of N2B
titin isoform with very low expression of the N2BA isoform was
seen (Cazorla et al., 2000).

In general, mouse and rat hearts are adapted for very high
heartrates (>600 bpm in mice), which is associated with a faster
kinetics of both cardiac contraction and excitation (Milani-Nejad
and Janssen, 2014). Cardiac action potential duration in mouse and
rat is much shorter, and the shape is triangular without the
dominant plateau phase (Odening et al., 2021). The major ionic
currents responsible for repolarization are different from those in
the human heart: the repolarization is mainly due to the fast and
slow components of the transient outward current (Ito,f and Ito,s),
together with the rapidly activating, slowly inactivating delayed
rectifier potassium currents (IK, slow1 and IK, slow2), whereas the
main repolarization currents of human ventricular myocardium IKr
(rapid delayed rectifier potassium current) and IKs (slow delayed
rectifier potassium current) are functionally irrelevant (Odening
et al., 2021). On the other hand, the porcine heartrate is similar (if
slightly higher) to that in humans, and porcine ventricular action
potentials resemble those of humans in many aspects, including the
configuration with a dominant plateau phase and duration
(Odening et al., 2021). Major contributing ionic currents
correspond to those of humans with one exception: the
transient outward current (voltage-dependent, 4-aminopyridine-
sensitive Ito) that is responsible for early repolarization in human
ventricular myocytes is missing in the porcine myocardium (Li
et al., 2003).

High resting heartrates in mice and rats limit the extent of
additional heartrate increase, i.e., heartrate reserve, which is
significantly smaller in mice and rats (~40%) than in humans or
pigs (~150%) (Milani-Nejad and Janssen, 2014). The limited heartrate
reserve, together with the rather flat force–frequency relationship in
mice and rats, results in a significantly lower ability to increase cardiac
output as the product of heartrate and stroke volume. The porcine
cardiac reserve, on the other hand, is similar to that of humans, since
the high heartrate reserve is accompanied by a positive
force–frequency relationship (Vogel et al., 2003; Jarkovska et al.,
2018). These differences may contribute to the differential septic
response in small and large animal models, where a hypodynamic
response with low cardiac output and hypotension is typical of mice
and rats, whereas hyperdynamic circulation with a high cardiac output
and reduced systemic vascular resistance develops in the porcine
model as well as in human patients.

4 Immune system and sepsis modeling

The immune system plays a critical role in combating infectious
stimulus and the progression of sepsis. Interspecies differences in
immune mechanisms, therefore, significantly influence the
outcome of the disease and potential clinical translation. A
detailed analysis of portions of the porcine, mouse, and human
genome associated with the immune response revealed that the
porcine immune system is significantly more similar to human on
the level of non-protein-coding RNA/DNA and protein-coding
genes as well as proteins (Dawson and Lunney, 2018). There is a
growing consensus that pigs, as monogastric omnivorous animals
with an organization of the immune system very similar to that of
humans, represents a suitable model for immunology, although
some particularities like the inverted lymph node structure or the
ileal Peyer’s patches that have no obvious anatomical equivalent in
humans will require further attention (Rothkötter, 2009; Pabst,
2020). The high level of similarity between the human and porcine
immune systems can also be documented by the cluster of
differentiation (CD) markers: in humans, 419 proteins have
been designated as CD markers, and in pigs 359 corresponding
CD proteins have been identified (Dawson and Lunney, 2018). The
distribution pattern of white blood cell populations in pigs is
similar to that of humans, which is in contrast to mice and rats,
in which the neutrophil population represents only 10%–25% of
white blood cells (Fairbairn et al., 2011). Striking interspecies
differences in immune effector pathways have also been

TABLE 2 Main strengths and weaknesses of animal models of sepsis.

Animal Strengths Weaknesses

Mouse low costs, easy handling, transgenic models for molecular insights into disease
mechanisms

anatomic limits (requiring special tools), physiological and pathophysiological
differences (including sepsis phenotype), limited translational potential

Rat in general similar to mouse, some aspects influenced by larger size

Sheep similar size to human (use of clinical tool and interventions), repeated blood
sampling, physiology and pathophysiology more similar to human good
translational potential

high costs, more difficult handling, transgenic models limited, some species
differences (ruminant animals with different anatomy and physiology of the
gastrointestinal tract and significant metabolic consequences)

Pig similar size to human (use of clinical tool and interventions), repeated blood
sampling, anatomy, physiology and pathophysiology more similar to human
(more than sheep), good translational potential

high costs, more difficult handling, transgenic models limited, some species
differences (high susceptibility to pulmonary dysfunction), piglets (30–50 kg) are
usually used (that correspond rather to pediatric patients)
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described. In mice, following macrophage activation, nitric oxide
(NO) is produced by calcium-independent inducible NO synthase
(iNOS). NO exerts antimicrobial actions and regulates metabolic
remodeling and the production of cytokines in proinflammatory
macrophage (Bailey et al., 2019). It seems that these pathways are
not induced in human or porcine macrophages, although there is
some inconsistency in the literature about the expression of iNOS
and the production of NO in human macrophages (Fairbairn et al.,
2011). On the other hand, both human and porcine macrophages
respond to lipopolysaccharide challenge with induction of IDO
(indoleamine 2,3-dioxygenase), involved in the pathway of
tryptophan metabolism, which is not the case with mouse
macrophages (Kapetanovic et al., 2012). A systemic comparison
of the genomic response between human inflammatory diseases
(trauma, burns, and endotoxemia) and mouse models
demonstrated that, although the genomic responses were highly
similar in humans, they were not reproduced in mouse models
(Seok et al., 2013), indicating fundamental differences in the
inflammatory responses of these two species. Mice are also
much more resistant (by several orders of magnitude) than
humans to endotoxin shock (Warren et al., 2010). This in vivo
discrepancy, however, was not paralleled by the in vitro response of
macrophages in cell culture. The studies of the response of mouse
and human macrophages in the microenvironment of mouse and
human serum indicated that proteins in mouse serum markedly
suppress the induction of proinflammatory cytokines compared to
human serum (Warren et al., 2010).

Dysregulated immune response in sepsis is associated with the
cytokine storm with overproduction of proinflammatory cytokines
and other signaling molecules, which induce widespread
endothelial dysfunction, impaired coagulation and multiple
organ dysfunction (Cavaillon, 2018; Kumar, 2020). The
signaling pathway of toll-like receptor 4 (TLR4) and nuclear
factor κB (NF-κB) are critical for this signaling cascade. The
sequence and function of porcine TLR4 is probably closer to
human than mouse TLR4. Consequently, humans are highly
sensitive to LPS, pigs are moderately sensitive to LPS and mice
are highly resistant to LPS challenge (Vaure and Liu, 2014). Effects
of cytokines are complex and often difficult to interpret. Addition
of interleukin 10 (IL-10) in patients with sepsis activated the
adaptive immune system by improving T-cell IFN-γ production
but diminished the activity of the innate immune system by
decreasing TNF-α production as well as surface expression of
HLA-DR. Furthermore, in IL-10–treated septic mice an
increased IFN-γ production in splenocytes was found (Mazer
et al., 2019). In various murine models of sepsis associated with
cytokine storm, beneficial effects of interventions aimed at
reducing inflammatory mediators were shown, nevertheless the
clinical translation failed (Stortz et al., 2017). In porcine models of
bacteremia- and peritonitis induced sepsis, differential cytokine
profile was found in pigs with and without the acute kidney injury
(AKI). Despite similar septic insult and systemic hemodynamic
response, only pigs with AKI showed an early increase in the
plasma level of TNF-α and IL-6 (Benes et al., 2011). Similarly,
in patients with pneumonia AKI was associated with higher plasma
levels of both IL6 and TNF-α (Murugan et al., 2010).

Taken together, there are multiple shortcomings of mice as models
for studying sepsis and inflammation, and so pigs have emerged as a
clinically relevant alternative, which could allow for a better and more

reliable clinical translation. Various aspects of porcine immunology
and physiology have, however, not yet been analyzed in as much detail
as in mice and will require further attention.

5 Porcine model

5.1 General methodological aspects

An important advantage of large (porcine) animal models is
that extensive monitoring of vital functions is plausible (Figures 2,
3). A standard experimental setting may include: a central venous
catheter for drug and fluid infusion (inserted through the left
jugular vein); a balloon-tipped thermodilution pulmonary artery
catheter (placed via the right jugular vein); a femoral arterial
catheter for blood pressure recording and blood sampling; a
fiberoptic catheter for thermal-dye double-indicator dilution
measurements; ultrasound transit time flow probes (e.g., around
the portal vein, the common hepatic artery, and the left renal
artery); catheters in the portal, renal, and hepatic veins; laser
Doppler flowmetry for monitoring ileal mucosal and renal
cortex microcirculation; and a cystostomy catheter for urine
collection (percutaneous insertion under ultrasound guidance).
In case hemofiltration techniques are investigated, a dialysis
catheter (e.g., 14-French double-lumen) may be inserted into
the right femoral vein and serve for hemofiltration access
(Stengl et al., 2010b; Jarkovska et al., 2016; Jarkovska et al.,
2018; Al-Obeidallah et al., 2021). Such extensive monitoring
allows for a determination of the modified SOFA score
according to the Third International Consensus definitions of

FIGURE 2
Chronic instrumentation and monitoring in porcine sepsis
experiments. The experimental setting may include: central venous
catheter for drug and fluid infusion (inserted through the left jugular
vein); balloon-tipped thermodilution pulmonary artery catheter
(placed via the right jugular vein); femoral arterial catheter for blood
pressure recording and blood sampling; fiberoptic catheter for thermal-
dye double-indicator dilution measurements; ultrasound transit time
flow probes (e.g., around the portal vein, the common hepatic artery,
and the left renal artery); catheters in the portal, renal, and hepatic veins;
laser Doppler flowmetry for monitoring ileal mucosal and renal cortex
microcirculation; cystostomy catheter for urine collection
(percutaneous insertion under ultrasound guidance).

Frontiers in Physiology frontiersin.org05

Vintrych et al. 10.3389/fphys.2022.1094199

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1094199


sepsis and septic shock (Singer et al., 2016) with the exclusion of the
Glasgow coma scale-based neurologic component due to the use of
general anesthesia. In general, using the (modified) SOFA score in
(large) animal studies allows for comparison and a better
standardization of experimental conditions and results. In our
opinion, a wide implementation of the SOFA score into animal
sepsis research will facilitate the clinical translation of
experimental results.

Bacteremia can be induced by continuous central venous infusion of
bacteria of interest. In our earlier study, live P. aeruginosa (strain O1,
isolated from a patient with suppurative otitis, 1 x 109 colony-forming
units/mL determined by serial dilution and colony counts) was used
(Stengl et al., 2010a). The infusion rate was titrated throughout the
experiment to result in moderate pulmonary hypertension (mean
pulmonary artery pressure 35–40 mmHg). Peritonitis can be induced
by inoculating autologous feces (0.5–2 g·kg-1, suspended in 200 mL
saline) into the abdominal cavity through drainage tubes placed
through the abdominal wall (Jarkovska et al., 2016). In our
experimental setting, inoculation of high doses of feces (>1 g·kg-1) is
usually necessary for reaching the septic shock stage within 24 h. On the
other hand, inoculation of low doses of feces (0.5 g·kg-1) usually only
results into development of sepsis but not septic shock (Al-Obeidallah
et al., 2021). In peritonitis model, a significant variability in the host
response is often encountered. As a potential source of this heterogeneity,
fecal microbiome was analyzed and interestingly, a significant difference
in bacterial composition was associated with the season (winter vs. spring/
autumn). It seems, that the seasonal diversity of the microbiome
composition could significantly influence outcomes of this
experimental model of sepsis (Chalupova et al., 2022).

Regardless of the infectious insult, general anesthesia is
maintained throughout the experiment through a combination of
continuous intravenous thiopental and fentanyl infusions. Animals
are mechanically ventilated and receive appropriate volume

resuscitation. Continuous i.v. norepinephrine is administered if
needed to maintain a mean blood pressure of 70–75 mmHg.

5.2 Peritonitis vs. bacteremia in a porcine
model

With appropriate dosing, both peritonitis and bacteremia can lead
to irreversible septic shock within 24 h, with similar general dynamics
of sepsis progression (Figure 4A) and significant peripheral
vasodilation (Figure 4B). Significant differences, however,
developed in terms of the plasma levels of lactate, which were
significantly increased in peritonitis but not bacteremia
(Figure 4C). In contrast to the traditional view of hyperlactatemia
as a product of oxygen debt and anaerobic metabolism, the current
interpretation of lactate metabolism is more complex (Brooks, 2020).
Hyperlactatemia develops during sepsis and septic shock, probably as
a result of the dynamic balance between lactate production and
clearance in various tissues and cells (Gibot, 2012). Although, in
some studies, impaired lactate clearance was identified (Levraut
et al., 1998), lactate overproduction is probably more important.
Increased lactate formation was found in the skeletal muscles of
patients with septic shock (Levy et al., 2005) as a result of
exaggerated aerobic glycolysis through Na+/K + ATPase
stimulation. In mild endotoxemia, however, skeletal muscle was
unlikely to be a major contributor to increased lactate production
(Michaeli et al., 2012). Increased glucose consumption and lactate
production mediated through the MEK/ERK signaling cascade was
also shown in LPS-activated mouse macrophages, suggesting a tight
cross-talk between inflammatory signal transduction and metabolic
networks (Través et al., 2012). Obviously, the precise origin of lactate
in sepsis may differ in different clinical conditions; it is probably
multifactorial and will require further elucidation.

FIGURE 3
Flowchart of porcine sepsis experiments. After induction of general anesthesia and mechanical ventilation, the experiment starts with a surgical
preparatory phase, during which access to various vital organ systems is secured and chronic instrumentation devices (see Figure 2) are installed. A
postsurgical stabilization period of 6 h is allowed before baseline measurements are obtained (time point: 0 h). Afterwards, sepsis is induced either by
bacteremia (continuous central venous infusion of the bacteria of interest, e.g., live P. aeruginosa) or fecal peritonitis (inoculating autologous feces
suspended in saline into the abdominal cavity through the drainage tubes). Sepsis progression is followed for 24 h, during which, in a usual setting, irreversible
septic shock develops. Throughout the experiment, general anesthesia and mechanical ventilation are maintained with proper volume resuscitation to
maintain cardiac filling pressures and administration of vasopressor support, if needed, to maintain the mean blood pressure above 65 mmHg. Continuous
hemodynamicmonitoring is accompanied by blood and urine sampling for biochemical analyses at the time points of interest (usually 6, 12, 18, and 24 h from
the induction of sepsis). At the end of the in vivo experiment, the animals are euthanized by anesthetic overdose and excision of the heart. The total duration of
the in vivo porcine sepsis experiment is 36 h and it is followed by in vitro analysis of tissues, cells, and subcellular organelles.
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6 Concluding remarks

Three broad categories of experimental models of sepsis include
locally induced sepsis (e.g., peritonitis), endotoxemia, and the
intravenous administration of a viable pathogen (intermittent or
continuous bacteremia). Each model has its strengths and limitations.
Intravenous application of single live bacteria (e.g., Pseudomonas, E. coli) is
technically simple and reproduces many pathophysiological features of
human sepsis. This type of modeling allows for a tightly regulated load of
bacterial exposure, and, therefore, severity of insult. Clinically, it replicates
conditions such as acute endocarditis or overwhelming infections with
Pneumococcus or Meningococcus. In addition, the specific host response
toGram-positive orGram-negative bacterial challenge can be investigated.
On the other hand, the intravenous application of live bacteria leads to a
rapid immune-inflammatory and hemodynamic response, usually not
seen in sepsis induced by an infectious focus. Hence, more complex, and
perhaps more clinically relevant models include locally induced sepsis
such as peritonitis. These models of polymicrobial sepsis allow for more
protracted immune-inflammatory, metabolic, and hemodynamic
alterations to be observed in a clinical setting. Autologous fecal
material challenges the animals with its individual gut flora. However,
marked intra- and interindividual variations in gut microbial diversity
might predispose animals to significant heterogeneity in their host
response. Another problem is the difficulty of controlling the quantity
of bacteria introduced into the peritoneum.

In a wider context, there is a growing interest in a more tailored
approach to sepsis treatment. This approach would require
identification of subgroups of patients expressing phenotypic or
even endotypic similarity that reflect unique pathophysiology.
Indeed, many recent clinical studies described different sepsis
phenopytes allowing to identify high-risk patients and those
with high probability of responding well to targeted treatments
(Seymour et al., 2019; Stanski and Wong, 2020; DeMerle et al.,
2021). Unfortunately, to the best of our knowledge, there are no
clearly defined large animal model of sepsis phenotypes, in which
to explore underlying pathophysiology or to test novel therapeutic
targets. Nevertheless, we have recently demonstrated the
associations of outcome with clinically relevant phenotypes (Al-
Obeidallah et al., 2021). In that study, SOFA score, hemodynamical
parameters and body temperature were shown to significantly and
early discriminate between sepsis and septic shock in a clinically
relevant porcine model. This subgroup of animals nicely
corresponds to a group A sub-phenotype characterized by
hyperthermia, tachycardia, hypotension and significantly higher
odds of mortality as shown in a recent large clinical trial (Bhavani
et al., 2022). Our data suggest, that sepsis sub-phenotyping based
on vital sign and pattern of organ dysfunction trajectory is feasible
even in pre-clinical research of sepsis. Clearly, further studies
exploring the correlation between these phenotypes and
mechanism-based sepsis endotyping are necessary.

FIGURE 4
Selected parameters of sepsis progression in a porcine model of bacteremia- or peritonitis-induced sepsis. The bacteremia was induced by continuous
central venous infusion of live P. aeruginosa (strain O1 isolated from a patient with suppurative otitis, 1 x 109 colony-forming units/mL) (Stengl et al., 2010a);
the peritonitis was induced by inoculating autologous feces (0.5–2 g·kg-1, suspended in 200 mL saline) into the abdominal cavity (Jarkovska et al., 2016).
Peritonitis, n = 13; bacteremia, n = 14; based on our previous publications (Stengl et al., 2008; 2010a; 2010b). TP1–4: time points 0, 12, 18, and 24 h after
sepsis induction. Data are presented as the mean ± SD; *p < 0.05, vs. TP1; #p < 0.05, bacteremia vs. peritonitis. (A) Similar progression of sepsis in pigs with
bacteremia and peritonitis documented by rising SOFA scores. (B) Similar hemodynamic alterations in both peritonitis- and bacteremia-induced sepsis
documented by reduced systemic vascular resistance (SVR). (C) Plasma levels of lactate as example of differential response in peritonitis- and bacteremia-
induced sepsis.
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It may be concluded that large animal (porcine) models represent a
more clinically relevant alternative to small animal (mouse, rat)
models, especially for testing novel therapeutic strategies with not
so clear cellular and molecular mechanisms. In a number of studies,
porcine models of sepsis have shown a high level of correspondence
with clinical situations and human disease progression, thus allowing
for the easy and reliable translation of experimental findings to a
clinical setting. On the other hand, small animal models, especially
transgenic models, allow researchers to obtain mechanistic proof-of-
principle insights into the molecular mechanisms of disease in a much
faster andmore cost-effective way. Obviously, the relationship between
small and large models is not competitive but complementary, and the
optimal translation should include both steps, with the verification of
small animal model findings in large animal models.
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