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Skeletal muscle plays a major role in controlling body mass and metabolism: it is
the most abundant tissue of the body and a major source of humoral factors; in
addition, it is primarily responsible for glucose uptake and storage, as well as for protein
metabolism. Muscle acts as a metabolic hub, in a crosstalk with other organs and
tissues, such as the liver, the brain, and fat tissue. Cytokines, adipokines, and myokines
are pivotal mediators of such crosstalk. Many of these circulating factors modulate
histone deacetylase (HDAC) expression and/or activity. HDACs form a numerous family
of enzymes, divided into four classes based on their homology to their orthologs in
yeast. Eleven family members are considered classic HDACs, with a highly conserved
deacetylase domain, and fall into Classes I, II, and IV, while class III members are named
Sirtuins and are structurally and mechanistically distinct from the members of the other
classes. HDACs are key regulators of skeletal muscle metabolism, both in physiological
conditions and following metabolic stress, participating in the highly dynamic adaptative
responses of the muscle to external stimuli. In turn, HDAC expression and activity
are closely regulated by the metabolic demands of the skeletal muscle. For instance,
NAD+ levels link Class III (Sirtuin) enzymatic activity to the energy status of the cell,
and starvation or exercise affect Class II HDAC stability and intracellular localization.
SUMOylation or phosphorylation of Class II HDACs are modulated by circulating factors,
thus establishing a bidirectional link between HDAC activity and endocrine, paracrine,
and autocrine factors. Indeed, besides being targets of adipo-myokines, HDACs affect
the synthesis of myokines by skeletal muscle, altering the composition of the humoral
milieu and ultimately contributing to the muscle functioning as an endocrine organ. In
this review, we discuss recent findings on the interplay between HDACs and circulating
factors, in relation to skeletal muscle metabolism and its adaptative response to energy
demand. We believe that enhancing knowledge on the specific functions of HDACs
may have clinical implications leading to the use of improved HDAC inhibitors for the
treatment of metabolic syndromes or aging.
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INTRODUCTION

Skeletal muscle significantly affects body mass and energy
consumption, being characterized by a highly dynamic response
to energy demand (Baskin et al., 2015). Indeed, skeletal muscle is
the most significant metabolic organ, accounting for up to 30%
of resting energy expenditure (Zurlo et al., 1990). Considered
a key site for glucose uptake and storage, and a reservoir of
amino acids, skeletal muscle exerts a crucial role in modulating
energy and protein metabolism throughout the body (Turner
et al., 2014; Ahima and Park, 2015). Adult skeletal muscles have
a diverse pattern of myofibers (Staron, 1997): the slow-twitch,
or type I, myofibers are characterized by a higher content of
mitochondria and have an oxidative metabolism, as opposed
to the fast-twitch, or type II, myofibers, which mostly rely on
a glycolytic metabolism (Schiaffino and Reggiani, 2011; Talbot
and Maves, 2016). Metabolic demand or a disease state both
affect the composition of the skeletal muscle fiber type. For
instance, insulin resistance correlates with an increase in the
anaerobic and glycolytic capacities of muscle, similarly to what
happens in obesity and diabetes (Simoneau et al., 1995). On
the other hand, age-related sarcopenia is characterized by an
increase in the relative amount of slow-twitch fibers and by the
atrophy of the fast ones (Gannon et al., 2009; Daou et al., 2020;
Berardi et al., 2021).

The mechanisms whereby skeletal muscle mediates metabolic
changes in other tissues is a clinically relevant, dynamic avenue
of investigation. An increasingly high number of muscle-derived
soluble molecules is known to induce a plethora of effects in the
whole body and to mediate inter-organ cross-talk (Severinsen
and Pedersen, 2020) and numerous studies also reveal that
changes in skeletal muscle factors can modulate metabolism
systemically (Chen et al., 2010; Correia et al., 2015; Pereira et al.,
2017). The expression of many muscle-derived soluble factors
is reported as being altered in disease, including in cancer, type
2 diabetes, obesity, or heart failure (Liu et al., 2015; Berezin
et al., 2021; Evans et al., 2021; Pin et al., 2021), suggesting the
importance of these factors in the crosstalk between muscle and
other organs/tissues in pathological conditions. However, the
metabolic adaptations of the skeletal muscle, up to now often
merely seen as a consequence of a disease state, may be exploited
in a pro-active way to treat metabolic disorders. In this scenario,

Abbreviations: AcH3K9, Acetyl-Histone H3 (Lys9); AMPK, AMP-activated
protein kinase; ANGPTL4, Angiopoietin-like protein 4; ATF4, Activate
transcription factor 4; AP-1, Activator protein 1; BAIBA, β-aminoisobutyric
acid; BDNF, Brain-derived neurotrophic factor; cAMP, Cyclic adenosine
monophosphate; ER, Endoplasmic Reticulum; FGF-21, Fibroblast growth factor
21; GLUT4, Glucose transporter type 4; HAT, Histone Acetyltransferases; HDAC,
Histone Deacetylases; HDACi, HDAC inhibitors; HFD, High fat diet; IL-1,
Interleukin 1; IL-6, Interleukin 6; IL-15, Interleukin 15; IKK, Nuclear factor-kB
Kinase; JNK, c-Jun N-terminal kinase; LPL, Lipoprotein lipase; MDC, Muscle-
derived cells; MEF2, Myocyte enhancer factor-2; Metrnl, Meteorin-like; mTOR,
Mammalian target of rapamycin; MyoD, Myoblast determination protein 1;
NAD, Nicotinamide adenine dinucleotide; NFkB, Nuclear factor kappa-light-
chain-enhancer of activated B cells; TNFα, Tumor Necrosis Factor-α; TSA,
Trichostatin-A; PGC-1α, Peroxisome proliferator-activated receptor-gamma
coactivator-1α; PPAR-δ, Peroxisome proliferator-activated receptor-δ; SIK1,
Salt-inducible kinase 1; SIRT, Sirtuin; STAT3, Signal Transducer And Activator Of
Transcription 3; VPA, Valproic acid; WAT, White adipose tissue.

exercise training as a preventive and therapeutic strategy in
several diseases has already been proposed (Leal et al., 2018; de
Lima et al., 2020; Severinsen and Pedersen, 2020). Indeed, muscle
contraction represents a major physiological stimulus to activate
the release of a variety of soluble factors, in a time- and intensity-
dependent fashion (Hutchinson et al., 2019; Kurgan et al., 2019;
Piccirillo, 2019; Florin et al., 2020).

Histone deacetylases (HDACs) work as epigenetic factors
by repressing gene transcription through the removal of acetyl
groups from the tails of histone proteins or, alternatively,
modulate various cellular responses through their deacetylase
activity on non-histone proteins (Glozak et al., 2005; Hyndman
and Knepper, 2017). We find it intriguing that HDACs modify
gene expression in the skeletal muscle tissue in response to
humoral factors, and that, in turn, several HDACs modulate
the expression of soluble factors, ultimately affecting their
levels in the circulation. The fact that the genetic expression
of secreted products is regulated by epigenetic factors adds
up to the complexity of the regulatory network controlling
myokine production. Also, that multiple tissues are responsible
for the coordinated production of the same endocrine factors,
such as certain adipo-myokines, highlights this phenomenon in
all its complexity.

In this review article, first we introduce HDACs (paragraph
2) and their key role in skeletal muscle metabolic responses
(paragraph 3), then we review the most recent findings
on how myokines directly or indirectly regulate metabolic
reprogramming (paragraph 4): in particular, we focus on
those myokines that affect HDAC expression and activity
(paragraph 5) and, vice-versa, on those HDACs that affect
myokine synthesis and release (paragraph 6); lastly, we
conclude with the clinical implications of the use of HDAC
inhibitors (paragraph 7).

THE HISTONE DEACETYLASES AND
THEIR CLASSIFICATION

Chromatin is a highly organized nucleoprotein complex,
mainly composed by DNA and histone proteins that form
nucleosomes. The DNA transcription rate depends, among other
factors, on changes in the structure of the nucleosomes. Highly
compact and dense chromatin, known as heterochromatin,
is associated with the repression of transcriptional activity;
whereas open chromatin, or euchromatin, is associated
with transcriptional activation. The packaging of chromatin
depends mainly on modifications, including acetylation,
of the N-terminal histone tails, which protrude from
the nucleosome. Histone acetylation levels are regulated
through the interplay between two families of enzymes,
namely histone acetyltransferases (HATs) and HDACs, and
chromatin (Peserico and Simone, 2011). The deacetylation
of histones increases their positive charge and consequently
their affinity to the DNA, inducing the formation of a
compacted, transcriptionally repressed chromatin structure.
However, HDACs also target non-histone proteins and finely
tune their activity and function by means of deacetylation
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(Bannister and Kouzarides, 2011; Peserico and Simone, 2011;
Hyndman and Knepper, 2017).

To date, 18 different mammalian HDACs have been identified
and divided into four classes according to their sequence
similarity to yeast counterparts (Seto and Yoshida, 2014; Park
and Kim, 2020): Class I HDACs (HDAC1, 2, 3, and 8),
Class II HDACs (HDAC4, 5, 6, 7, 9, and 10), Class III
HDACs (Sirtuins), which differ from the others because they
use NAD+ as a cofactor rather than Zn2+, and Class IV
HDACs (HDAC11). Class II HDACs is further divided into
two subgroups, Class IIa (HDAC4, 5, 7, and 9) and Class
IIb HDACs (HDAC6 and 10), which differ significantly in
many biological aspects, from subcellular localization to their
involvement in diseases. Whereas most Class I HDACs are
ubiquitously expressed and localized in the nucleus, the Class
II HDACs are characterized by tissue-specific expression and
stimulus-dependent nucleus-to-cytoplasm shuttling (Haberland
et al., 2009). Class III HDACs, which are ubiquitously expressed
in human tissues (Frye, 1999), have differential subcellular
localizations: SIRT1, SIRT6, and SIRT7 are primarily detected
in the nucleus, SIRT2 is mainly found in the cytosol, while
SIRT3, SIRT4, and SIRT5 are present exclusively in mitochondria
(Michishita et al., 2005). HDAC11, the only member of Class
IV, seems to be mainly expressed in the kidney, heart, brain,
skeletal muscle, and testis, and is localized in the nucleus of the
cell (Michishita et al., 2005).

Histone deacetylases control essential phenomena such as
cell cycle progression, cell survival and differentiation (Moresi
et al., 2016). Consistently, HDAC deregulation plays a key role in
many pathologies, including cancer, neurological, inflammatory
and cardiac diseases, as well as metabolic and neuromuscular
disorders (Haberland et al., 2009; Volmar and Wahlestedt,
2015; Li and Seto, 2016; Pigna et al., 2019). The involvement
of HDACs in the regulation of skeletal muscle metabolism is
highlighted below.

HISTONE DEACETYLASES ARE KEY
REGULATORS OF SKELETAL MUSCLE
METABOLISM

The interplay between epigenetics and skeletal muscle
metabolism has been thoroughly described (Sharples et al.,
2016; Tzika et al., 2018; Jacques et al., 2019). In particular, HDAC
activity orchestrates the metabolic reprogramming of skeletal
muscle in response to physiological challenges and in several
disease states (Howlett and McGee, 2016; Bianchi et al., 2017;
Astratenkova and Rogozkin, 2019).

The role of HDACs in muscle metabolism has been extensively
studied over the years. Early evidence revealed that Class IIa
HDACs have a main role in regulating myofiber identity in
physiological conditions. Indeed, Class IIa HDACs associate
with MEF2 transcription factors ultimately repressing their
transcriptional activity thereby regulating the metabolism of
oxidative, slow-twitch myofibers (Wu et al., 2000; Potthoff et al.,
2007). In particular, HDAC5 directly binds to the promoter
region of GLUT4, repressing the transcription of this gene. This

ultimately leads to the shift of muscle fibers toward oxidative
metabolism promoting their glucose uptake (McGee et al., 2008).

The Class I members HDAC1 and HDAC2 are essential to
skeletal muscle metabolism and homeostasis in physiological
conditions. The deletion of HDAC1 and HDAC2 in skeletal
muscle induces a shift toward a more oxidative metabolism
and higher energy expenditure, caused by defects in the
autophagy flux (Moresi et al., 2012). More recently, an
important role in muscle energy metabolism was demonstrated
for HDAC3 by means of its muscle-specific deletion: this
causes an insulin resistance associated with higher endurance
and fatigue resistance, due to a decrease in the uptake of
glucose and an increase in the consumption of lipids (Hong
et al., 2017; Song et al., 2019). The involvement of Class I
HDACs in skeletal muscle metabolism was further demonstrated
through the pharmacological inhibition of this class (Galmozzi
et al., 2013), validating previous findings obtained through
genetic approaches.

Being nicotinamide adenine dinucleotide (NAD+)-dependent
enzymes, Sirtuins control gene transcription in response to
changes in nutrient availability and energy demand. Indeed,
an energy deficit increases the cellular NAD+/NADH ratio,
thus activating Sirtuins which promote mitochondrial biogenesis
and fatty acid oxidation in skeletal muscle, by deacetylating
both histone and non-histone proteins (Houtkooper et al.,
2012), as a response to the low energy condition (Ryall,
2012). It is worth noting that the deletion of SIRT1 in
mice has modest effects on skeletal muscle metabolism
(Menzies et al., 2013), implying a biological redundancy of this
adaptative response.

In addition to regulating metabolic homeostasis in the whole
body, by controlling insulin sensitivity and glucose tolerance
(Bhaskara, 2018), the Class IV member HDAC11 has been
recently reported to play a crucial role in skeletal muscle
metabolism and function (Hurtado et al., 2021). HDAC11
localizes in muscle mitochondria and its deletion increases
mitochondrial content, causing a glycolytic-to-oxidative muscle
fiber switch (Hurtado et al., 2021).

Metabolic stresses, such as exercise, obesity, or a high fat diet
(HFD), induce skeletal muscle adaptations through HDACs.
Exercise modulates skeletal muscle metabolism via epigenetic
reprogramming, partially through the phosphorylation-
dependent nuclear export of Class II HDACs (McGee and
Hargreaves, 2011). In addition, exercise also affects Sirtuin
activity, as shown by the fact that a number of histone and
non-histone Sirtuin targets are deacetylated during exercise
(Cantó et al., 2009). Furthermore, obesity and HFD induce
epigenetic reprogramming in skeletal muscle, involving Class I
and II HDACs (Berdeaux et al., 2007; Sun et al., 2011; Moresi
et al., 2012), although, the underlying mechanisms are not
yet fully known.

Given the crucial role of HDACs in the regulation of muscle
metabolism in various pathophysiological conditions, it is not
surprising that not only HDACs in skeletal muscle are targeted
by soluble factors, but also that they regulate the production of
myokines affecting other tissues. The role played by myokines
and adipo-myokines is outlined in the next paragraph, in which
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we describe how these factors of muscle and non-muscle origin
are able to reprogram the metabolic activity of several tissues,
ultimately determining metabolic adaptations in the whole body.

MYOKINES AS MEDIATORS OF
METABOLIC REPROGRAMMING

Skeletal muscle is an important source of secreted factors exerting
autocrine, paracrine and endocrine effects (Di Felice et al., 2020;
Florin et al., 2020). This skeletal muscle secretome varies in
response to ever-changing metabolic demand, dependent on
variable physiological and pathological conditions (Lecompte
et al., 2017; Florin et al., 2020). Among the numerous circulating
factors involved in the regulation of systemic metabolism we
included in our overview those that are expressed in the skeletal
muscle and also have a proved link to HDACs.

Myostatin was the first characterized skeletal muscle-derived
circulating protein (McPherron et al., 1997), originally identified
in mice as a regulator of muscle growth via a negative feedback.
Further studies clarified that myostatin targets other tissues
in addition to muscle. For instance, myostatin is involved
in the crosstalk between skeletal muscle and adipose tissue,
thereby modulating insulin sensitivity and fat accumulation,
both in animals and humans (Argilés et al., 2012). Moreover,
myostatin targets bone, affecting osteogenic differentiation and
enhancing resorption, modulating overall bone mass (Hamrick
et al., 2006, 2007). Follistatin is a myostatin-binding protein
and an inhibitor of myostatin activity, capable of promoting
muscle growth (Yakabe et al., 2020). In humans, following
exercise circulating follistatin increases and targets several organs,
regulating pancreatic cell function and survival and promoting
insulin resistance in skeletal muscle and adipose tissue (Willis
et al., 2019). In this regard, we have shown that the mechanical
stretch of murine myotubes per se alters the amount of
myokines produced by muscle cells in vitro, including follistatin
(Baccam et al., 2019).

In the search for a consensus term to define peptides produced
and released by skeletal muscle, the word “myokine” referring to
Interleukin 6 (IL-6) was first introduced in 2003 (Pedersen et al.,
2003). Ten years later, the term “adipo-myokine” was coined to
indicate those myokines, such as IL-6, that are also expressed
by adipose tissue (Raschke and Eckel, 2013). In humans, the
level of circulating IL-6 is increased after exercise (Northoff
and Berg, 1991), mainly due to its secretion by skeletal muscle
(Steensberg et al., 2000). Studies conducted in mice and humans
highlighted that in response to physical exercise IL-6 exerts a
positive role in modulating muscle mass, insulin secretion and
lipid metabolism (Rosendal et al., 2005; Serrano et al., 2008;
Ellingsgaard et al., 2011; da Silva Vasconcelos and Fernanda
Salla, 2018). In addition, IL-6 produces anti-inflammatory effects,
inhibiting the expression of Tumor Necrosis Factor-α (TNFα)
and Interleukin-1 (IL-1) (Pedersen et al., 2003). However, besides
the above mentioned positive effects, other studies highlighted
the pleiotropic functions of this factor and revealed the
deleterious effect of IL-6 on muscle homeostasis, showing that it
is also a promoter of muscle wasting (Moresi et al., 2019). Indeed,

IL-6 overexpression induces muscle atrophy in transgenic mice
(Tsujinaka et al., 1996) and perturbs redox homeostasis (Forcina
et al., 2019). Consistently, while the acute induction of IL-6
promotes muscle growth, sustained and elevated levels of IL-
6 have been associated with muscle wasting in several human
catabolic conditions (Yudkin et al., 2000; Kern et al., 2001;
Pradhan et al., 2001; Ershler and Keller, 2003). All of the above
shows how important it is to consider the complexity of a
system where the kinetics and the source tissue of a given
factor significantly influence its effects. To this regard IL-6 is
emblematic and all these aspects should be taken into account
when discussing the possible clinical implications of adipo-
myokines.

Metrnl and BAIBA are two myokines whose expression is
regulated by the transcriptional factor peroxisome proliferator-
activated receptor-gamma coactivator-1α (PGC-1α) (Boström
et al., 2012; Rao et al., 2014) and induced upon exercise in
murine and human skeletal muscle (Rao et al., 2014; Roberts
et al., 2014). These myokines target many tissues, exerting
numerous physiological functions, such as promoting neural and
osteocyte differentiation, preserving pancreatic β-cell functions
and browning white adipose tissue (WAT), in addition to
regulating glucose uptake and energy expenditure in skeletal
muscle (Zheng et al., 2016; Darvin et al., 2018; Tanianskii et al.,
2019; Rabiee et al., 2020).

Among other myokines, irisin production (Maak et al., 2021)
has been shown to be induced by exercise in mice and humans
(Boström et al., 2012; Jedrychowski et al., 2015). Studies with
gain- (Boström et al., 2012) and loss- (Xiong et al., 2019) of
function approaches demonstrate the ability of irisin to mediate
the positive effects of physical activity in mice. These effects were
not confirmed in humans (Maak et al., 2021).

The role of irisin, or even its existence in humans (Albrecht
et al., 2015), is still debated, mainly in relation to: (1) the
accuracy and reliability of the methods used to detect circulating
irisin levels (Albrecht et al., 2015; Jedrychowski et al., 2015;
Pourteymour et al., 2017; Bretland et al., 2021); (2) the positive
effects of irisin on target organs or tissues (Raschke et al.,
2013; Elsen et al., 2014; Maak et al., 2021). The debate on
irisin exemplifies how difficult it is to study the crosstalk
between tissues.

Metabolic stresses, such as acute bouts of exercise, fasting
and caloric restriction, induce the expression of ANGPTL4 in
human skeletal muscle (Catoire et al., 2014), likely by increasing
plasma free-fatty acid levels and activating the peroxisome
proliferator-activated receptor-δ (PPAR-δ) (Staiger et al., 2009).
ANGPTL4 stimulates lipolysis in WAT, determining a shift from
fat storage to fat release, and triggers AMP-activated protein
kinase (AMPK) in skeletal muscle, thereby mediating an increase
in its mitochondrial oxidative capacity and ATP production
(Norheim et al., 2014; Chang et al., 2018; Li et al., 2020). It
should be noted that besides skeletal muscle, adipose tissue and
the liver express higher levels of ANGPTL4 following exercise,
likely contributing even more than skeletal muscle to ANGPTL4
exercise-mediated effects (Norheim et al., 2014). Interestingly,
human studies showed that ANGPTL4 mRNA in skeletal muscle
is lower in men than in women at basal conditions, probably due
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to differences in the utilization of glucose and fat mass in the two
genders (Barja-Fernandez et al., 2018; Li et al., 2020). Moreover,
a positive correlation between muscle ANGPTL4, obesity and
glucose metabolism has been reported: indeed, ANGPTL4 muscle
and serum levels are significantly higher in obese patients with
an abnormal glucose tolerance (Barja-Fernandez et al., 2018;
Li et al., 2020).

Fibroblast growth factor 21 targets several organs including:
(1) the liver, where it activates important metabolic responses,
such as the induction of hepatic fatty acid oxidation, ketogenesis,
and gluconeogenesis; (2) the pancreas, where it is necessary
to maintain the digestive and endocrine functions of this
organ; (3) WAT, where it promotes insulin sensitivity, glucose
uptake, fatty acid storage, and oxidative capacity (Cuevas-Ramos
et al., 2019; Martínez-Garza et al., 2019; Keinicke et al., 2020;
Watanabe et al., 2020; Xie and Leung, 2020). Several cellular
stress-signals, such as autophagy impairment, mitochondrial
dysfunction and ER stress, induce FGF21 release from murine
skeletal muscle (Kim and Lee, 2014; Pereira et al., 2017;
Oost et al., 2019). All these induce FGF21 expression via the
activation of transcription factor 4 (ATF4) (Keipert et al., 2014;
Miyake et al., 2016). In addition, both mammalian target of
rapamycin (mTOR) complex 1 (mTORC1) and mTORC2 have
been reported to induce FGF21 expression in murine skeletal
muscle (Guridi et al., 2015; Pereira et al., 2017). Furthermore,
the secretion of FGF21 from human skeletal muscle is strongly
induced upon exercise or in pathophysiological conditions
including in mitochondrial myopathies and aging, suggesting
the involvement of muscle-derived FGF21 in both healthy and
pathological conditions (Hanks et al., 2015; Tanimura et al.,
2016; Villarroya et al., 2018; Tezze et al., 2019). Despite its
beneficial effect on body metabolism, the therapeutic role of
FGF21 to the advantage of human health is still under debate,
due to its paradoxical effects on different tissues. Indeed, FGF21
has negative effects on bone mass and mineral density both
in mice and humans (Wei et al., 2012; Fazeli et al., 2015).
Moreover, the long-term increase of circulating FGF21, triggered
in skeletal muscle by stress conditions, contributes to systemic
inflammation, precocious senescence, and premature death in
mice (Tezze et al., 2017). Additional studies are required to
clarify the specific role of FGF21 secreted from other organs
and its effect on the whole body under physiological and
pathological conditions.

Data available on rodents and humans highlight a rapid
increase of IL-15 in circulation in response to exercise, improving
whole body insulin sensitivity and decreasing adiposity (Carbó
et al., 2001; Nadeau and Aguer, 2019). The data regarding IL-
15 expression and release from skeletal muscle upon exercise in
humans are controversial, probably due to the use of different
exercise protocols in different studies or to differences in the
subjects analyzed (Nielsen et al., 2007). In rats, autocrine IL-
15 release induces a shift toward an oxidative skeletal muscle
phenotype through the induction of PPAR-d and PGC-1α (Carbó
et al., 2001; Busquets et al., 2006; Pistilli and Quinn, 2013),
contributing to the beneficial adaptations to exercise of the
metabolism (Hennigar et al., 2017). IL-15 also inhibits muscle
protein degradation (Pistilli et al., 2007), however, since its levels

decline progressively with aging, this contributes to age-related
sarcopenia (Quinn, 2008; Quinn et al., 2010). In addition, IL-
15 directly targets adipose tissue modulating the WAT mass and
lipid metabolism probably because it decreases lipoprotein lipase
(LPL) and leptin activities (Alvarez et al., 2002). A positive effect
of a greater amount of circulating IL-15 on bone mineral content
has been reported, likely due to the ability of IL-15 to interfere
with TNF-α signaling (Quinn et al., 2009).

The expression of myonectin in murine skeletal muscle is
regulated by the availability of nutrients and by exercise (Seldin
et al., 2012; Laurens et al., 2020). In addition, patients with type
2 diabetes mellitus or those affected by obesity exhibit higher
levels of circulating myonectin compared to healthy individuals
(Li et al., 2018). Circulating myonectin has been shown to
decrease the levels of circulating non-esterified fatty acid, through
the promotion of fatty acid uptake both in hepatocytes and in
adipocytes (Seldin et al., 2012). Moreover, the exercise-induced
myonectin release from skeletal muscle protects cardiac myocytes
from apoptosis, leading to a reduction of acute myocardial
ischemia-reperfusion injury in mice (Otaka et al., 2017, 2018).
Taken together, these data underline the role of myonectin in
regulating systemic fatty acid metabolism and in mediating a
cross-talk between muscle and other metabolic compartments
(Seldin et al., 2012), suggesting possible therapeutic applications.

Brain-derived neurotrophic factor is a member of the
neurotrophic factor family, whose expression is increased in
human and rat skeletal muscles in response to muscle contraction
(Dupont-Versteegden et al., 2004; Matthews et al., 2009). In
human skeletal muscle, BDNF activates AMPK and promotes
lipid oxidation following exercise (Matthews et al., 2009).
In addition to skeletal muscle, exercise greatly increases the
expression and release of BDNF from the brain, in both humans
and mice (Liu and Nusslock, 2018), which, most likely, accounts
for most of the BDNF-mediated effects, since the brain is the
major source of this soluble factor.

The aforementioned studies taken together indicate that major
metabolic adaptations to physiological or pathological alterations
are regulated by soluble factors, mediating a complex crosstalk
involving a network of tissues. Many of these circulating factors
involve changes in HDAC expression or activation in skeletal
muscle. The next paragraph focuses on this aspect.

MYOKINES AFFECT HISTONE
DEACETYLASE EXPRESSION AND
ACTIVITY

Myokines and other soluble factors control tissue homeostasis
through a variety of signaling pathways including the regulation
of HDAC expression or activity (Table 1). For instance, a
correlation between the exercise-induced hormone irisin, known
to regulate energy metabolism and to protect against numerous
diseases, and HDAC4 has already been proposed. In rodents
irisin protects the cardiomyocytes of rats exposed to hypoxic
stress (Zhao et al., 2016) and the myocardium of type II
diabetic db/db mice (Zhao et al., 2016; Wang et al., 2020). This
protective role of irisin correlates with the degradation of HDAC4
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(Zhao et al., 2016; Wang et al., 2020), which causes cell death
and mitochondrial dysfunction in these cells. These findings
highlight the principle, in rodents at least, that a systemic factor,
namely irisin, produces its effects partially involving epigenetic
mechanisms. Since the relevance of irisin-mediated effects in
humans is still debated, more studies are needed to clarify
whether the protective role of irisin on muscle in our species
exists, and whether it involves epigenetic mechanisms.

The secretion of Metrnl by skeletal muscle, increased during
muscle contractions, improves glucose tolerance by inducing
glucose uptake via the AMPK-dependent phosphorylation of
HDAC5, a transcriptional repressor of Glut4 in mice (Lee et al.,
2020): the phosphorylated HDAC5 interacts with 14-3-3 proteins,
is sequestrated in the cytoplasm, and results in the activation
of Glut4 transcription (Figure 1). Glucose uptake by the
musculature represents a paradigmatic behavior, which usually
occurs in response to the classic insulin signaling. The interesting
aspect of the alternative Metrnl signaling stems from the fact
that the upregulation of the Glut4 gene involves an energy-
sensing factor, AMPK, as well as an epigenetic factor, HDAC5. In
addition, the delivery of recombinant Metrnl improves glucose
tolerance in mice with HFD-induced obesity or type 2 diabetes
(Lee et al., 2020), suggesting the potential use of this myokine as
a therapeutic tool to treat metabolic disorders.

Fibroblast growth factor 21 activates a SIRT1-AMPK-
PGC1α pathway in skeletal muscle, thereby promoting myoblast
differentiation and aerobic metabolism, and is also possibly
involved in starvation-induced muscle atrophy (Liu et al., 2017).
In adipocytes the same axis has been proven to be responsible for
increasing mitochondrial oxidative capacity (Chau et al., 2010).
Additionally, the protective role of the FGF21-SIRT1 axis in
different pathological conditions has been reported in multiple
cell types, suggesting that this pathway may be a potential target
for therapeutic approaches. Indeed, FGF21 activates SIRT1 in
hepatocytes, thereby ameliorating multiple metabolic parameters
in alcoholic fatty liver disease (Zhu et al., 2014) or cafeteria-
diet induced steatohepatitis (Abd Elwahab et al., 2017). In
addition, FGF21 also activates SIRT1 in germ cells reducing their
oxidative stress and apoptosis in diabetes (Jiang et al., 2015).
A similar TGF21-induced SIRT1 activation in cardiomyocytes
has a protective effect on type 1 diabetes-induced inflammation
and fibrosis in the heart (Zhang et al., 2016), on doxorubicin-
induced cardiomyopathy (Wang et al., 2017) as well as on
angiotensin-II induced cardiomyocyte apoptosis and cardiac
hypertrophy (Li et al., 2019).

Interleukin 15, a myokine which contributes to the benefits
of physical exercise on muscle metabolism, is responsible
for the post-exercise induction of SIRT1 in muscle, which,
in turn, mediates many of the metabolic effects of physical
exercise (Quinn et al., 2013, 2014). IL-15 Tg mice also exhibit
an induction of the SIRT1 protein and changes in oxidative
metabolism, which may be involved in their phenotype, i.e., the
resistance to diet-induced obesity and higher insulin-sensitivity
(Quinn et al., 2011).

Differently from FGF21 and IL-15, ANGPTL4 represses Sirt1
expression in hepatocytes, thus mediating the inflammatory
response in acute lung injury (Guo et al., 2015).

Leptin has been shown to target multiple tissues, including
skeletal muscle. Evidence of a direct effect of leptin on muscle
cells comes from in vitro experiments showing that, in murine
myotubes, leptin induces the expression of genes involved in
metabolism (including PGC-1α, uncoupling protein 3, muscle
carnitine palmitoyltransferase 1) in addition to that of myokines
such as IL-6 and IL-15 (Nozhenko et al., 2015). Interestingly,
leptin affects SIRT1-mediated PGC-1α deacetylation (García-
Carrizo et al., 2016; Figure 1), even though contradictory data
have been reported. This is probably due to dissimilar leptin
and nutrient concentrations in the culture media, as well as
to different timing of the analyses. In vivo, leptin receptor
deficiency in skeletal muscle leads to muscle atrophy and
compromised primary myoblast proliferation and differentiation
(Arounleut et al., 2013), indicating a possible role for this
adipokine in skeletal muscle homeostasis. Whether or not leptin
influences adult skeletal muscle via modulating HDACs has
not been investigated yet. However, an initial link between
leptin and HDACs has been reported: indeed, the administration
of leptin in conjunction with a HFD induces HDAC4
dephosphorylation and its nuclear import in macrophages in
white adipose tissue, thereby reducing inflammation (Luan
et al., 2014). The molecular mechanism described for leptin-
induced HDAC dephosphorylation consists in a catecholamine-
dependent increase in cAMP, triggered by leptin, which
inhibits salt-inducible kinases. This ultimately promotes HDAC4
dephosphorylation; the dephosphorylated HDAC4 then shuttles
to the nucleus where it inhibits NF-κB transcriptional activity on
pro-inflammatory genes (Luan et al., 2014).

Although experimental evidence in skeletal muscle cells is still
lacking, it is interesting to note that BDNF activates the salt-
inducible kinase 1 (SIK1), a member of the AMPK family, in
rat neurons, leading to the phosphorylation-dependent nuclear
extrusion of HDAC5 and the consequent MEF2-dependent gene
activation (Finsterwald et al., 2013). It would be important to
investigate this signaling in skeletal muscles as well, since it may
underly the beneficial effects of BDNF on muscle metabolism.

So far, we have reported that myokines control the metabolic
shifts occurring in multiple tissues in response to physiological
or pathological stress conditions, and that, at least in muscle
tissues, myokines are capable of inducing epigenetic responses
through HDACs. Conversely, HDACs influence the release of
several factors from skeletal muscle, as outlined next.

HISTONE DEACETYLASES AFFECT
MYOKINE SYNTHESIS

Histone deacetylases regulate the expression of chemokines,
cytokines and adipo-myokines, or that of their receptors, under
physiological and pathological conditions in several tissues (Gatla
et al., 2019). In particular, recent studies highlighted this role of
HDACs in skeletal muscle—and in other cells to a lesser extent
(Table 2). A paramount example of this is the fact that HDAC4
regulates factors secreted by skeletal muscle upon injury, thus
regulating muscle-derived cell (MDC) myogenic potential and
muscle regeneration (Renzini et al., 2018). Indeed, the deletion of
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TABLE 1 | Circulating factors affect histone deacetylase (HDAC) expression or activity in various tissues.

Species Circulating factors Target tissue Downstream effects Link with HDAC References

Rat BDNF Neurons Activation of MEF2 HDAC5 nuclear export Finsterwald et al., 2013

Mouse Fgf21 Skeletal muscle Myoblast differentiation,
improved aerobic

metabolism

SIRT1 activation Liu et al., 2017

Mouse Fgf21 Adipocytes Increased mitochondrial
oxidative capacity

SIRT1 activation Chau et al., 2010

Mouse Fgf21 Hepatocytes, germ
cells,

cardiomyocytes

Protection from oxidative
stress, apoptosis, and

fibrosis

SIRT1 activation Zhu et al., 2014; Jiang et al., 2015;
Zhang et al., 2016; Abd Elwahab
et al., 2017; Wang et al., 2017; Li

et al., 2019

Mouse IL-15 Skeletal muscle Improved oxidative
metabolism

SIRT1 activation Quinn et al., 2011, 2013, 2014

Rodents Irisin Cardiomyocytes Protection from death HDAC4 degradation Zhao et al., 2016; Wang et al., 2020

Mouse Leptin Skeletal muscle Acetylation of PGC-1α SIRT1 activation García-Carrizo et al., 2016

Mouse Leptin Macrophages Reduction of inflammation HDAC4 nuclear import Luan et al., 2014

Mouse Metrnl Skeletal muscle Glucose uptake HDAC5 nuclear export Lee et al., 2020

The table represents an overview of the correlation between circulating factors and changes in the HDAC expression or activation (Link with HDAC) in a given tissue
(Target tissue). The final output (Downstream effects) is also reported, as well as the species where the observations were made and the corresponding references.

FIGURE 1 | The interplay between histone deacetylases (HDACs) and myokines in skeletal muscle. The reciprocal regulation of HDACs and myokines modulates
skeletal muscle metabolism.

HDAC4 in skeletal muscle hampers skeletal muscle regeneration,
even though MDCs from HDAC4 KO mice differentiate well
when cultured in vitro, i.e., isolated from their muscle niche.
Conversely, sera from injured HDAC4 KO mice negatively affect
MDC differentiation, which proves that HDAC4 affects the
release of soluble factors from skeletal muscle upon injury, which,
in turn, are important for muscle regeneration (Renzini et al.,
2018; Figure 1). The characterization of the secretome of HDAC4
KO will clarify this new important function of HDAC4 in skeletal
muscle and provide new insights for a potential therapeutic
application to muscle regeneration.

Myostatin is a member of the transforming growth factor-
beta (TGF-beta) superfamily, expressed and released by
skeletal muscle and that negatively influences muscle growth
(McPherron et al., 1997). Myostatin expression is controlled by
SIRT6, which regulates the binding of NF-kB to the myostatin
promoter (Samant et al., 2017; Figure 1). Indeed, SIRT6 KO mice

display muscle degeneration and atrophy, in addition to reduced
fat and bone density. Conversely, the SIRT6 overexpression
counteracts cytokine-induced myostatin expression in muscle
cells, promoting myogenesis. Therefore, increasing SIRT6 activity
or expression has been proposed as a potential therapeutic tool to
counteract many disease states characterized by muscle cachexia,
thanks to the ability of SIRT6 to influence myostatin expression
and possibly act on multiple tissues.

Follistatin is a secreted protein able to bind with and neutralize
the actions of many members of the TGF-beta family of proteins
(Patel, 1998). General Pan-HDAC inhibitors (HDACi), such as
valproic acid (VPA) or Trichostatin-A (TSA), have been shown to
increase the expression of follistatin in muscle cells, through the
binding of MyoD to the follistatin promoter, a process which is
fostered by local hyperacetylation (Figure 1); in turn, the release
of the soluble factor follistatin counteracts myostatin activity,
enhancing myogenesis (Iezzi et al., 2004). Further studies clarified
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TABLE 2 | HDACs regulate the production of myokines.

HDAC Circulating factor Target tissue Downstream effects References

HDACs Follistatin Skeletal muscle, FAPs Promotion of myogenesis Iezzi et al., 2004; Minetti et al., 2006;
Mozzetta et al., 2013

HDACs BDNF Skeletal muscle, motor neurons Improvement of the myofiber
maturation and of the motor unit

morphology and function

Avila et al., 2007

HDACs ANGPTL4 Adipose tissue Improved lipolysis Zhang et al., 2021

HDAC1 Adiponectin Skeletal muscle Protection from HFD-induced obesity
and insulin resistance; stimulation of

mitochondrial function

Jian et al., 2016

HDAC2, HDAC3 Fgf21 Glia cells, adipocytes Regulation of the outgrowth of
extending processes and of the fatty

acid utilization

Li et al., 2012; Leng et al., 2016

HDAC4 Unknown Skeletal muscle Promotion of muscle cell differentiation Renzini et al., 2018

HDAC5 IL-6 Skeletal muscle Muscle adaptation to exercise Klymenko et al., 2020

SIRT1 Fgf21 Hepatocytes, heart Improved energy expenditure Li et al., 2014; Furukawa et al., 2020

SIRT6 Myostatin Skeletal muscle Promotion of myogenesis Samant et al., 2017

The table shows how the activity of members of different HDAC classes affect the production of myokines (Circulating Factors) ultimately eliciting multiple responses
(Downstream effects). For each of these findings the corresponding reference is cited.

that pan-HDACi improve muscle regeneration in dystrophy by
increasing the expression of follistatin in both muscle stem cells
and fibro-adipogenic progenitors (Minetti et al., 2006; Mozzetta
et al., 2013)—a finding that led scientists to suggest the use of
HDACi in clinical trials for the treatment of Duchenne Muscular
Dystrophy. Although pan-HDACi increase the expression of
follistatin in cancer cachexia as well, this is not sufficient to
prevent muscle wasting in this disease state (Bonetto et al.,
2009). Also, pan-HDACi have been shown to increase BDNF
expression in the skeletal muscles and spinal cord in a murine
model of Spinal Muscular Atrophy (SMA) (Avila et al., 2007;
Figure 1). Since BDNF is an important contraction-induced
secreted factor for the neurogenesis, growth, and survival of
neurons (Murawska-Ciałowicz et al., 2021), its increase may
explain the beneficial effects of HDACi on SMA progression.

Interleukin 6 was recognized in the past as a principal
mediator of muscle adaptation to exercise (Ostrowski et al.,
1998). Muscle contractions induce an increase of IL-6 gene
expression that leads to a release of IL-6 protein in the circulation
(Reihmane and Dela, 2013). An epigenetic modulation of IL-
6 expression driven by HDAC5 has been recently reported in
exercised skeletal muscle. Genetic murine models helped clarify
the metabolic changes, including that of glucose metabolism,
regulated by the HDAC5 activity on the IL-6 promoter
(Klymenko et al., 2020): in resting conditions, HDAC5 negatively
modulates IL-6 transcription by removing histone H3 acetylation
at lysine 9 (AcH3K9), while upon exercise, HDAC5 is exported
to the cytoplasm and results in an increased expression of
GLUT4, thus prompting skeletal muscle cells to uptake glucose
in response to insulin (Klymenko et al., 2020; Figure 1).

Histone deacetylases regulate ANGPTL4 expression in
different cell types. ANGPTL4 is a secreted glycoprotein which
inhibits the activity of lipoprotein lipases, thereby increasing
circulating triglyceride levels (Fernández-Hernando and Suárez,
2020). HDACi sodium butyrate activates lipolysis in pigs, in part
by downregulating ANGPTL4 gene expression in the adipose
tissue (Zhang et al., 2021). In human cells, HDAC3 mediates

a NCOR-dependent transcriptional repression of the ANGPTL4
gene, as shown by using a renal cancer cell line, while additional
investigations are needed to unveil the potential role of HDAC in
regulating ANGPTL4 expression in skeletal muscle.

Different HDACs exert opposite effects on the expression
of Fgf21, an important regulator of carbohydrate and lipid
metabolism, in different cell types. HDAC2 and HDAC3 inhibit
Fgf21 expression in glia cells, thus regulating the outgrowth of
their processes (Leng et al., 2016), and in adipocytes, affecting
fatty acid utilization and ketogenesis (Li et al., 2012). On
the contrary, SIRT1 induces Fgf21 expression in hepatocytes,
preventing fat-induced liver steatosis while promoting white
adipose tissue browning and higher energy expenditure (Li
et al., 2014). SIRT1 also induces Fgf21 expression in the heart,
improving energy metabolism and increasing the contractile
efficiency of pressure-overloaded hearts (Furukawa et al., 2020).

A correlation between SIRT1 expression and irisin serum
levels has been reported in type 2 diabetic patients and mice
(Safarpour et al., 2020; Jiang et al., 2021), suggesting the
involvement of SIRT1 in PGC-1α-mediated irisin release. The
treatment of obese type 2 diabetes patients with vitamin D also
induces higher serum levels of SIRT1 and irisin, further pointing
to the SIRT1-mediated release of irisin (Safarpour et al., 2020).
The SIRT1 activator resveratrol, alone or in combination with all-
trans retinoic acid (ATRA), significantly induces the expression
of irisin in skeletal muscle cells (RongXia et al., 2017; Abedi-
Taleb et al., 2019). Consistently, metformin, another compound
activating SIRT1, increases irisin expression and its release from
skeletal muscle in diabetic mice (Yang et al., 2015). In spite of
the limited evidence to date, it seems likely that the positive
effects of SIRT1 activation on body metabolism (Feige et al., 2008)
are at least in part due to its ability to increase the levels of
circulating irisin.

In skeletal muscle HDACs regulate signaling in response to
adiponectin. This is an adipokine involved in controlling glucose
levels and fatty acid breakdown (Yamauchi et al., 2001), which,
interestingly, also plays a role in skeletal muscle (Fruebis, 2001).
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Here HDAC1 represses the transcription of the genes encoding
adiponectin receptors and uncoupling protein 2 and 3. Since
the latter are important mitochondrial proteins involved in heat
generation and energy expenditure, the inhibition of HDAC1
contributes to the beneficial effects of the pan-HDACi sodium
butyrate on HFD-induced obesity in mice (Jian et al., 2016;
Figure 1).

Based on the substantial experimental evidence above, it is
apparent that myokines, cytokines and adipokines control the
homeostatic and metabolic responses of tissues at organismal
level, while their dysregulation is responsible for many diseases.
Since HDACs affect the synthesis and ultimately the release of
these factors in various organs or, vice-versa, modulate the organ
response to endocrine factors through the regulation of their
receptors, HDACs are very promising pharmaceutical targets.
However, the first attempts to interfere with the activity of
HDACs by means of HDACi must be further supported by
additional investigations on the specific role of each HDAC
family member. This approach alone will provide a solid
ground for the development of HDACi-based therapies for
human diseases. The studies on HDACi performed so far are
summarized below.

CLINICAL IMPLICATIONS OF THE USE
OF HISTONE DEACETYLASE
INHIBITORS

Several preclinical studies highlighted the positive effects of
HDACi in regulating the whole-body metabolism in various
diabetic or insulin-resistance rodent models, thus providing
the rationale for the inclusion of HDACi in clinical trials
targeting metabolic disorders. For instance, pan-HDACi sodium
butyrate and TSA, which improve insulin sensitivity and energy
expenditure in HFD-fed mice (Gao et al., 2009; Li et al., 2012; Lin
et al., 2012; Henagan et al., 2015; Xu et al., 2020), increase the
liver expression of FGF21 and its serum concentration (Li et al.,
2012). Consequently, FGF21 mediates the increase in fatty acid
utilization and ketogenesis, in response to butyrate treatment,
causing resistance to HFD. An added value offered by this study
is the fact that it represents an additional proof of principle
that many HDACi effects on body metabolism may be achieved
through the regulation of soluble factors, such as FGF21 itself.
Butyrate improves glucose and pyruvate tolerance in aged mice,
reducing fat and preserving skeletal muscle mass (Walsh et al.,
2015)—a result that suggests the use of HDACi to counter aging.
Butyrate also increases mitochondrial biogenesis and oxygen
consumption in the skeletal muscle of aged mice; notably, the
use of this HDACi does not affect the HDAC4-myogenin axis,
which is significant in neurogenic muscle atrophy (Moresi et al.,
2010). In addition, another pan-HDACi, Scriptaid, modulates
adaptative metabolic responses to exercise (Gaur et al., 2016).
Considering the beneficial effects of exercise on aging, all these
findings further suggest new future applications for HDACi in
the context of sarcopenia (Pasyukova and Vaiserman, 2017).

In spite of the numerous positive effects that HDACi exert
on metabolism control, additional considerations are needed

concerning the use of pan-HDACi in clinical trials for metabolic
disorders. The use of general HDACi is usually discouraged,
since their use is normally associated with numerous side effects
and since they target a broad range of proteins. This makes
drawing any biological conclusion on the action of specific
HDACs difficult. Indeed, contradictory data were reported on
the effectiveness of specific Classes of HDACi in ameliorating
insulin resistance in obese mice (Sharma and Taliyan, 2016),
probably due to the different concentrations used in the various
studies or to the fact that Class II enzymatic activity depends
on Class I HDACs, which can bias the effects of HDACi
(Fischle et al., 2002).

Thus, further investigations should be carried out, both at
the pre-clinical and clinical level, before proposing the unspecific
pharmacological inhibition of this important enzyme family. The
two major avenues of research in this field should be aimed at
defining: (1) expression and activity of the different members of
the HDAC family, under pathophysiological conditions, and (2)
the functions of each single HDAC member in different tissues.
Only by undertaking this approach will it be possible to design
enzyme- and tissue-specific pharmacological treatments.

CONCLUSION

Myokines are mediators of the crosstalk between skeletal muscle
and other tissues of pivotal importance for body metabolism and
they support the central role of skeletal muscle as a metabolic
hub. HDACs not only are regulators of muscle metabolism,
they also affect other tissues, including liver and fat tissues, by
controlling myokine production. The effects of this production
can be muscle -centered, as is the case of myostatin and related
factors, or have a broader action, such as in the case of pro- and
anti-inflammatory cytokines. In turn, HDAC activity is regulated
in response to the humoral milieu, a fact which suggests how
important epigenetic control is to fine-tune the genetic response
of tissues to hormones or other circulating factors. Given the
broad and pleiotropic effects of HDACs, these may be targets in
the treatment of metabolic and systemic pathological conditions.
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