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Gestational diabetes mellitus (GDM) is a type of diabetes that usually resolves at the
end of the pregnancy but exposes to a higher risk of developing type 2 diabetes
mellitus (T2DM). This study aimed to unravel the factors, among those that quantify
specific metabolic processes, which determine progression to T2DM by using machine-
learning techniques. Classification of women who did progress to T2DM (labeled as
PROG, n = 19) vs. those who did not (labeled as NON-PROG, n = 59) progress
to T2DM has been performed by using Orange software through a data analysis
procedure on a generated data set including anthropometric data and a total of
34 features, extracted through mathematical modeling/methods procedures. Feature
selection has been performed through decision tree algorithm and then Naïve Bayes
and penalized (L2) logistic regression were used to evaluate the ability of the selected
features to solve the classification problem. Performance has been evaluated in terms
of area under the operating receiver characteristics (AUC), classification accuracy
(CA), precision, sensitivity, specificity, and F1. Feature selection provided six features,
and based on them, classification was performed as follows: AUC of 0.795, 0.831,
and 0.884; CA of 0.827, 0.813, and 0.840; precision of 0.830, 0.854, and 0.834;
sensitivity of 0.827, 0.813, and 0.840; specificity of 0.700, 0.821, and 0.662; and F1
of 0.828, 0.824, and 0.836 for tree algorithm, Naïve Bayes, and penalized logistic
regression, respectively. Fasting glucose, age, and body mass index together with
features describing insulin action and secretion may predict the development of T2DM
in women with a history of GDM.

Keywords: pathophysiology, predictive biomarker, disease prediction, statistical learning, logistic regression,
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INTRODUCTION

Diabetes is a chronic metabolic disease characterized by
the presence of high levels of glucose in the blood (i.e.,
hyperglycemia). Several pathogenic processes can be at the
basis of diabetes development leading to the identification of
different diabetes categories, namely, type 1 diabetes mellitus
(T1DM), type 2 diabetes mellitus (T2DM), and gestational
diabetes mellitus (GDM; American Diabetes Association, 2020).
Among these, T2DM is the most common, and the three main
processes underlying its development are tissue resistance to
the action of insulin (i.e., insulin resistance), altered insulin
secretion by the pancreas, and altered insulin clearance (i.e.,
removal of insulin from the blood in the entire organism)
(Bizzotto et al., 2021). According to the most recent definition,
GDM is defined as a diabetes diagnosed in the second or third
trimester of pregnancy that was not clearly overt diabetes prior
to gestation (American Diabetes Association, 2020); although
it usually resolves at the end of the pregnancy, women who
experienced GDM are known to have a higher risk of developing
T2DM later in their life (American Diabetes Association,
2020). Therefore, determination of factors influencing the
development of T2DM may also shed light on GDM and
potentially accelerate opportunities for prevention and treatment
(Plows et al., 2018).

In the past years, research on T2DM has been taking advantage
on one side of the availability of a huge amount of heterogeneous
data and on the other side of machine-learning techniques that
can be used to automatically extract knowledge from them
(Kavakiotis et al., 2017). The application of machine-learning
techniques to this field has been done on a wide variety of
data and has been aimed at different purposes, for example,
early diagnosis (Perveen et al., 2016; Zheng and Zhang, 2017;
El_Jerjawi and Abu-Naser, 2018; Sarwar et al., 2018; Zou et al.,
2018; Bernardini et al., 2020; Garcia-Carretero et al., 2021),
estimation of T2DM risk (Dalakleidi et al., 2017; Talaei-Khoei and
Wilson, 2018; Garcia-Carretero et al., 2020), detection of subjects
in the general population affected by T2DM or prediabetes
(Yu et al., 2010), T2DM characterization and classification
(Maniruzzaman et al., 2017; Bernardini et al., 2019), and T2DM
care (Huang et al., 2007).

However, the application of such techniques to determine
factors influencing the development of T2DM in women with a
history of GDM has still been scarcely explored, and few studies
addressing this topic have focused on metabolomics and/or
lipidomics (Lappas et al., 2015; Allalou et al., 2016; Khan et al.,
2019), which consist of the identification and determination of
the set of metabolites or specific metabolites, such as lipids,
in biological samples (i.e., tissues, cells, fluids, or organisms)
under normal conditions in comparison with altered states
promoted by disease or specific stimuli (e.g., drug treatment,
dietary/activity regimen, or environmental modulation) (Klassen
et al., 2017). Although metabolomics and lipidomics are
promising approaches to allow a more personalized control of
T2DM, there are still many limitations and challenges that need
to be addressed for the translation of the research outcomes into
clinical tests (Pinu et al., 2019).

A more traditional approach with respect to metabolomics
and lipidomics in the field of T2DM research consists of the
extraction, sometimes with sophisticated mathematical modeling
methodologies, of features describing parameters of physiological
interest from raw data measured during standard clinical tests
(Mari et al., 2020). However, to the best of our knowledge, the
application of machine-learning techniques to analyze data set
containing this kind of features has never been performed in
women with a history of GDM and at risk of developing T2DM.
Thus, the aim of this study was to unravel the factors, among
those that quantify specific metabolic processes, which determine
the development of T2DM in women with a history of GDM
by using machine-learning techniques. The rest of the article
is structured as follows: the section “Materials and Methods”
presents the clinical data that were used, how the features
have been extracted from them to generate the data set to be
analyzed, and how the classification problem was performed; the
sections “Results” and “Discussion” present the obtained results
and discuss them, respectively; the final section “Conclusion”
concludes the presentation.

MATERIALS AND METHODS

Clinical Data
Data used in this study were already analyzed in previous studies
(Tura et al., 2012, 2020) and were collected in agreement with
the Declaration of Helsinki and upon approval of the local
Ethics Committee. Written informed consent for participation
in the study has been given by each participant. A group of 78
women who experienced a history of GDM were considered.
All women were analyzed early postpartum (4–6 months after
delivery) and then re-examined over a period of up to 7 years.
During the follow-up period, some women developed T2DM
(n = 19), whereas the others did not develop T2DM (n = 59).
All women were non-diabetic at the time of the first analysis
(early postpartum), and none of the women was treated with
antidiabetic agents before the possible onset of T2DM.

All women underwent a frequently sampled insulin modified
intravenous glucose tolerance test (IM-IVGTT) early postpartum
and at the end of the follow-up period. Glucose was injected
at time 0–0.5 min (300 mg/kg), and insulin (0.03 IU/kg) was
infused intravenously at time 20 min for 5 min. Venous blood
samples were collected at fasting and for 180 min following
glucose injection (at 3, 4, 5, 6, 8, 10, 14, 19, 22, 27, 30, 35, 40,
50, 70, 100, 140, and 180 min) for the measurement of glucose
(mmol·L−1), insulin (pmol·L−1), and C-peptide (pmol·L−1)
plasma concentrations.

Feature Extraction and Data Set
Generation
From the original clinical data, a new data set has been generated
by including for each woman her anthropometric data [i.e., age,
body weight (BW), height (h), and body mass index (BMI)] and
extracted features, related to parameters of physiological interest,
derived by applying mathematical models and methods to her
IM-IVGTT data at early postpartum condition. In the generated
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data set, women who progressed to T2DM have been labeled
as progressors (PROG), whereas those who did not progress
have been labeled as non-progressors (NON-PROG). In detail,
extracted features included the following: (i) mean areas under
the glucose, insulin, and C-peptide curves (GMEAN, IMEAN, and
CpMEAN, respectively), computed as the areas under the curve
(AUCs) divided by the test duration (Morettini et al., 2020b); (ii)
area under the insulin curve during the first phase (AUCINS−1P)
and second phase (AUCINS−2P) of the test; (iii) rate of glucose
disappearance before and after insulin infusion (KG1 and KG2,
respectively), computed as the slope (absolute value) of loge
glucose multiplied by 100 in the 10–20- and 20–40-min intervals,
respectively (Morettini et al., 2020a); (iv) insulin-dependent and
insulin-independent glucose disappearance, quantified through
insulin sensitivity (SI) and glucose effectiveness (SG), respectively,
as assessed by the minimal model of glucose kinetics, which
also provides an estimate of glucose distribution volume (V)
(Pacini et al., 1998); (v) basal insulin effect (BIE) and glucose
effectiveness at zero insulin (GEZI), representing SG components
(Kahn et al., 1990); (vi) first-phase insulin secretion, quantified
through the acute insulin response (AIR; Johnston et al., 1987)
and the acute C-peptide response (ACPR) indexes, which have
been computed as the mean of suprabasal insulin and C-peptide
curves, respectively, in the time interval 3–8 min during the
IM-IVGTT; and (vii) combined contribution of insulin action
and β-cell function, assessed through the disposition index (DI),
computed as the product between SI and AIR (Kahn et al., 1993).

Moreover, insulin secretion rate [ISR(t)] has been derived
by deconvolution of plasma C-peptide concentrations during
the IM-IVGTT (Van Cauter et al., 1992), and exploiting it,
the following features were extracted: (i) basal secretion rate
(BSR) and β-cell responsivity to glucose (81c); (ii) AUC of
ISR(t) for the whole test (AUCSECR) and also for the first
part (AUCSECR−1P) and the second part (AUCSECR−2P) of the
test; (iii) insulin clearance during the whole test (CLMEAN)
and also during the first part (CLMEAN−1P) and second part
(CLMEAN−2P) of the test (Morettini et al., 2020b); and (iv)
insulin clearance with segregation of its hepatic (FEL) and extra-
hepatic (CLP) contribution, derived by applying the approach
proposed by Polidori et al. (2016).

Peak insulin after glucose injection (IPEAK−FIRST) and after
insulin injection (IPEAK−INJECT), peak C-peptide (CPEAK), and
glucose dose injected (DOSE) have been also included in the
generated data set. Fasting plasma glucose (gb) has also been
included since it is the most important clinical marker for the
diagnosis of glucose tolerance deterioration (American Diabetes
Association, 2020). Description of the generated data set is
summarized in Table 1.

Classification Problem and Data Analysis
The classification problem consisted of classifying PROG vs.
NON-PROG considering the complete generated data set as
input. Data analysis has been performed by using Orange
(version 3.28)1, an open-source data visualization, machine
learning, and data mining toolkit which provides a visual

1https://orange.biolab.si/

TABLE 1 | Description of all the features included in the generated data set.

Name Acronym Units

Age age years

Body weight BW kg

Height h cm

Body mass index BMI kg·m−2

Basal glucose gb mg·dL−1

Mean area under the glucose curve GMEAN mmol·L−1

Mean area under the insulin curve IMEAN pmol·L−1

Mean area under the C-peptide
curve

CpMEAN pmol·L−1

Area under the insulin curve during
the 1st phase of test

AUCINS−1P pmol·L−1
·min−1

Area under the insulin curve during
the 2nd phase of test

AUCINS−2P pmol·L−1
·min−1

Disappearance rate of glucose
before insulin injection

KG1 %/min

Disappearance rate of glucose after
insulin injection

KG2 %/min

Insulin sensitivity SI 10−4
·min−1/(µU·mL−1)

Glucose effectiveness SG min−1

Distribution volume of glucose V L

Basal insulin effect of glucose
effectiveness

BIE 10−3
·min−1

Glucose effectiveness at zero
insulin

GEZI 10−2
·min−1

Mean of suprabasal insulin in the
time interval 3–8 min

AIR pmol·L−1

Mean of suprabasal C-peptide in
the time interval 3–8 min

ACPR pmol·L−1

Disposition index DI min−1

Basal secretion rate BSR pmol·L−1
·min−1

β-cell responsivity to glucose 81c (pmol·L−1
·min−1)/(mg·dL−1)

Area under the secretion curve
during the entire test

AUCSECR pmol

Area under the secretion curve
during the 1st phase of test

AUCSECR−1P pmol

Area under the secretion curve
during the 2nd phase of test

AUCSECR−2P pmol

Mean insulin clearance during the
entire test

CLMEAN L·min−1

Mean insulin clearance during the
1st phase of test

CLMEAN−1P L·min−1

Mean insulin clearance during the
2nd phase of test

CLMEAN−2P L·min−1

Extra-hepatic insulin clearance CLP L·min−1

Hepatic insulin clearance FEL %

Peak insulin after glucose injection IPEAK−FIRST µU·mL−1

Peak insulin after insulin injection IPEAK−INJECT µU·mL−1

Peak C-peptide CPEAK ng·dL−1

Glucose dose injected DOSE g

programming front-end (called Orange Canvas) for explorative
rapid qualitative data analysis and interactive data visualization
(Demšar et al., 2013). The input data set has been preprocessed
by detecting the outliers in PROG and NON-PROG through
local outlier factor (LOF), which measures the local deviation
of the density of a given sample with respect to its neighbors
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(Breuniq et al., 2000), and then parameters have been set
as follows: “Contamination” = 4%, “Neighbors” = 20, and
“Metric” = Euclidean. Cases (PROG/NON-PROG) identified
as outliers by LOF were removed from the data set. The
preprocessed data set has been given as input to a classification
algorithm based on decision tree, which determines the best
predictive features by splitting the data into nodes by class purity;
information gain ratio has been used as a score to evaluate
features for splitting instances in a node. Parameters of the
decision tree were set as follows: “Minimum number of instances
in leaves” = 3, meaning that the algorithm does not construct
a split that would put less than 3 training examples into any
of the branches; “Do not split subsets smaller than” = 5, which
forbids the algorithm to split the nodes with less than 5 instances;
“Maximal tree depth” = 100, which limits the depth of the tree
to 100 node levels; “Induce binary tree,” which builds a binary
tree; and “Stop when majority reaches 95%,” indicating that the
algorithm stops splitting the nodes after 95% of the classified
example is reached.

To evaluate the ability of the selected features to solve the
classification problem, they were given as input to different
classification algorithms, namely, Naïve Bayes (a probabilistic
classifier based on Bayes’ theorem with the assumption of
feature independence) and penalized logistic regression. Naïve
Bayes did not require any setting for the parameters, whereas
logistic regression parameters were set as follows: “Regularization
type” = RIDGE (L2), Cost strength (C) = 1. L2 regularization
has been used since penalized regression models showed
advantages in scenarios with small sample size and multiple
highly correlated metabolic variables in previous studies (Göbl

et al., 2015). All the classification algorithms (i.e., decision tree,
Naïve Bayes, and penalized logistic regression) have been built
by using a 5-fold cross-validation; features given as input of
the classification algorithms have been normalized (“Mean” = 0,
“Variance” = 1) to adjust their values to a common scale. The
average performance of the classification algorithms on 5-fold
has been evaluated. The Orange workflow for data analysis is
reported in Figure 1.

Performance Measures
By considering PROG class as positive and NON-PROG class as
negative, the PROG cases classified as PROG by the classification
algorithm were considered true positive (TP); the NON-PROG
cases classified as NON-PROG by the classification algorithm
were considered true negative (TN); the PROG cases classified
as NON-PROG by the classification algorithm were considered
false negative (FN); and the NON-PROG cases classified as
PROG by the classification algorithm were considered false
positive (FP).

The performance of each classification algorithm has been
evaluated by computing the AUC of the receiver operating
characteristics (ROC) and by computing the following measures:
classification accuracy (CA, i.e., the proportion of cases correctly
identified by the classification algorithm), precision (i.e., the
proportion of TP among cases classified as positive), sensitivity
(also indicated as recall, i.e., the proportion of positive cases that
are correctly classified), specificity (i.e., the proportion of negative
cases that are correctly classified), and F1 (i.e., the weighted
harmonic mean of precision and recall).

FIGURE 1 | Orange workflow for data analysis.
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Statistics and Classification Algorithms
Comparison
The Lilliefors test was used to evaluate the hypothesis that
each variable had a normal distribution with unspecified mean
and variance. Normally distributed variables were presented as
mean ± standard deviation (SD); skewed distributed variables
were presented as median [interquartile range, IQR]. Differences
in mean/median values of variables between the two groups
were tested by unpaired Student’s t-test for equal mean and
equal but unknown variance or Wilcoxon rank-sum test for
equal median.

Comparison of classification algorithms in terms of correctly
classified and misclassified cases has been performed by using
Venn diagrams. Moreover, comparison of the performance
measures (i.e., AUC, CA, precision, sensitivity, specificity, and
F1) has been performed by using the Bayesian interpretation
of the pairwise Student’s t-tests (Corani and Benavoli,
2015). The statistical significance level was set at 5% for all
the tests.

RESULTS

Characteristics of the preprocessed data set are reported in
Table 2. With respect to the generated data set given as input
to the data analysis procedure, three outliers have been removed
(1 NON-PROG and 2 PROG), thus resulting in a total of 75
cases; comparing the characteristics of NON-PROG and PROG,
25 out of 34 characteristics have been found statistically different.
Feature selection performed through decision tree provided
six features for the classification of PROG vs. NON-PROG,
specifically DI, BMI, BSR, age, gb, and CpMEAN; thresholds
identified by decision tree were 0.3 min−1, 28.7 kg·m−2,
32.4 pmol·L−1

·min−1, 39 years, 95 mg·dl−1, and 240 pmol·L−1

for DI, BMI, BSR, age, gb, and CpMEAN, respectively (Figure 2).
All the selected features have been found to be significantly
different between PROG and NON-PROG; however, statistical
difference in CpMEAN is not strongly significant (p = 0.04, refer
to Table 2).

Confusion matrices for decision tree, Naïve Bayes, and
penalized logistic regression are reported in Figure 3. Correctly
classified cases by each classification algorithms were 62, 61,
and 63, respectively. The related ROC curves are reported
in Figure 4. Results related to the performance of each
classification algorithm in terms of AUC, CA, precision,
sensitivity, specificity, and F1 are reported in Table 3, and
comparison among algorithms are reported in Table 4.
Penalized logistic regression outperformed tree and Naïve Bayes
in terms of AUC (88.7 vs. 71.7%), CA (57.5 vs. 62.0%),
sensitivity (57.5 vs. 62.0%), and F1 (52.8 vs. 54.0%), but
not in terms of precision and specificity (in which Naïve
Bayes was superior with 64.1 and 86.7%, respectively). The
Venn diagrams for comparison among models of correctly
classified/misclassified cases are shown in Figure 5; correctly
classified or misclassified cases by all the classification algorithms
were 53 and 5, respectively.

TABLE 2 | Characteristics of the preprocessed data set.

Characteristics NON-PROG (n = 58) PROG (n = 17) p-value

age 33.3 ± 4.2 36.6 ± 4.7 <0.01

BW 65.8 [15.0] 75.0 [18.8] 0.03

h 164 [12] 158 [12] 0.04

BMI 25.4 ± 3.9 30.6 ± 6.4 <0.001

gb 84 [8] 96 [11.50] <0.001

GMEAN 5.1 [0.7] 5.9 [0.8] <0.001

IMEAN 201.8 [78.3] 211.9 [102.8] n.s.

CpMEAN 182.4 [97.2] 240.9 [65.4] 0.04

AUCINS−1P 2125.5 [1053.2] 1520.9 [1120.0] <0.01

AUCINS−2P 34468.1 [1417.8] 36992.9 [18872.1] n.s.

KG1 1.93 [0.88] 1.56 [0.63] <0.001

KG2 4.7 ± 1.8 3.4 ± 1.8 0.01

SI 4.7 [2.7] 3.1 [2.0] 0.02

SG 0.022 [0.005] 0.018 [0.008] <0.01

V 13.4 [1.36] 13.9 [1.00] n.s.

BIE 3 [2.4] 2.4 [1.5] n.s.

GEZI 1.9 [0.7] 1.7 [0.6] n.s.

AIR 194.4 [126.5] 132.8 [103.0] <0.01

ACPR 254.0 [138.8] 158.2 [150.0] <0.01

DI 1.36 [1.25] 0.52 [0.76] <0.001

BSR 31.8 [10.4] 39.6 [10.9] <0.001

81c 67.80 [31.90] 42.02 [33.31] <0.01

AUCSECR 24734.9 [15607.7] 32324.0 [11317.6] 0.03

AUCSECR−1P 7146.2 [3591.8] 6252.9 [3285.6] 0.02

AUCSECR−2P 17450.7 [15298.7] 27324.0 [9849.6] <0.01

CLMEAN 0.69 [0.42] 0.78 [0.47] 0.03

CLMEAN−1P 3.30 [0.92] 4.17 [1.76] n.s.

CLMEAN−2P 0.53 [0.39] 0.68 [0.35] <0.01

CLP 0.39 ± 0.42 0.56 ± 0.53 n.s.

FEL 0.53 [0.14] 0.50 [0.13] n.s.

IPEAK−FIRST 53.2 [39.5] 36.0 [39.3] <0.01

IPEAK−INJECT 493 [281] 559 [150] n.s.

CPEAK 465 [197] 380 [140] 0.04

DOSE 19.7 [4.5] 22.5 [5.6] 0.02

Data are presented as mean ± standard deviation or median [interquartile range].
Significance level: p-values < 0.05. n.s., not significant. Bold values indicate
significant differences.

DISCUSSION

This study provided an overview of the most relevant factors
that may determine the development of T2DM in women
with a history of GDM. Machine-learning techniques were
applied to a data set appropriately generated by including
features quantifying specific metabolic processes such as
insulin sensitivity, β-cell function, and insulin clearance, which
are all relevant processes underlying T2DM development
(Bizzotto et al., 2021). Inclusion of these features provided
a deeper interpretability of the findings, with respect to
raw data such as plasma concentrations of glucose, insulin,
and C-peptide measured during specific metabolic tests
(e.g., IM-IVGTT).

The application of machine-learning techniques to such
a kind of database is the main novelty of this study in the
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FIGURE 2 | Best predictive features according to decision tree classification algorithm.

FIGURE 3 | Confusion matrix for decision tree, Naïve Bayes, and logistic regression.

context of T2DM risk assessment in women with a history
of GDM. In fact, previous studies in the same context have
focused on lipidomics or metabolomics (Lappas et al., 2015;
Allalou et al., 2016; Khan et al., 2019). In particular, Lappas
et al. (2015) aimed to determine whether circulating lipid
levels 12 weeks following a pregnancy with GDM were
associated with an increased risk of developing T2DM and
identified lipid species CE 20:4, PE (P-36:2), and PS 38:4 as
significant risk factors. Allalou et al. (2016) and Khan et al.
(2019) proposed different predictive signatures, including
different metabolites; moreover, reduced sphingolipids have
been associated with the pathophysiology of transition
from GDM to T2DM (Khan et al., 2019). Since “omics”

approaches are still not typically viable in the clinical
practice, our study proposed an easier alternative from the
technical point of view. In addition, it should be noted that
metabolomics/lipidomics predictive power could be enhanced
complementing it with classical clinical and biochemical
markers (Pallares-Méndez et al., 2016); therefore, our
approach could be also used to complement, rather than
replace, omics approaches when they will be available in
clinical practice.

The main result of this study is the identification of DI, BSR
of insulin, and mean area under the C-peptide concentration
curve among the most relevant features for the progression
to T2DM. DI represents the combined contribution of insulin
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FIGURE 4 | Receiver operating characteristics (ROC) for decision tree
(purple), Naïve Bayes (green), and logistic regression (orange).

TABLE 3 | Performance of the three classification algorithms.

Classification algorithm

Performance measures Tree Naïve Bayes Logistic regression

AUC 0.795 0.831 0.884

CA 0.827 0.813 0.840

Precision 0.830 0.854 0.834

Sensitivity 0.827 0.813 0.840

Specificity 0.700 0.821 0.662

F1 0.828 0.824 0.836

secretion and insulin sensitivity and was already found to
predict conversion to T2DM in a large epidemiological study
(Lorenzo et al., 2010); BSR of insulin and mean area under
the C-peptide concentration curve are indexes that provide
a quantification of insulin secretion. Besides these indexes
quantifying specific metabolic processes, age, BMI, and fasting
glycemia have been selected.

Three different classification algorithms were tested, namely
the decision tree, the Naïve Bayes, and the penalized logistic
regression. Comparisons between models were based on AUC,
CA, precision, sensitivity, specificity, and F1 and showed that
logistic regression resulted the best model for the classification of
progression to T2DM since it reported higher values than Naïve
Bayes and decision tree in four out of six measures, specifically
in AUC, CA, sensitivity, and F1. Naïve Bayes performed better
only in precision and specificity, while decision tree reported
lower values than the other models in all the measures. Moreover,
logistic regression presented higher value of correct classification
and lower value of misclassification, followed by decision tree
and Naïve Bayes. Moreover, regularized regression methods (L1
or L2, as in this study) are characterized by including a small

TABLE 4 | Comparison of the performance measures among classification
algorithms through Bayesian interpretation of the pairwise Student’s t-tests.

AUC

Tree Naïve Bayes Logistic regression

Tree 26.2 11.3

Naïve Bayes 73.8 28.3

Logistic regression 88.7 71.7

CA

Tree Naïve Bayes Logistic regression

Tree 57.5 42.5

Naïve Bayes 42.5 38.0

Logistic regression 57.5 62.0

Precision

Tree Naïve Bayes Logistic regression

Tree 35.9 42.0

Naïve Bayes 64.1 54.0

Logistic regression 58.0 46.0

Sensitivity

Tree Naïve Bayes Logistic regression

Tree 57.5 42.5

Naïve Bayes 42.5 38.0

Logistic regression 57.5 62.0

Specificity

Tree Naïve Bayes Logistic regression

Tree 13.3 57.6

Naïve Bayes 86.7 86.6

Logistic regression 42.4 13.4

F1

Tree Naïve Bayes Logistic regression

Tree 52.0 47.2

Naïve Bayes 48.0 46.0

Logistic regression 52.8 54.0

Probability that the score for the classification algorithm in the row is higher than
that of the classification algorithm in the column is reported.

bias into the maximum likelihood estimation; the inclusion
of this bias helps to reduce the variance, thus improving the
predictions for new subjects (or the generalization of results)
(Hastie, 2017).

Machine-learning techniques have been extensively explored
in recent years for the prevention and management of T2DM
(Huang et al., 2007; Yu et al., 2010; Perveen et al., 2016;
Dalakleidi et al., 2017; Maniruzzaman et al., 2017; Zheng
and Zhang, 2017; Talaei-Khoei and Wilson, 2018; Bernardini
et al., 2019, 2020) but also showing possible criticalities. In
fact, very often, the analysis with these techniques on large
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FIGURE 5 | Venn diagrams with (A) correct classifications and (B)
misclassifications.

amounts of heterogeneous data leads to identify spurious
correlations (Rumbold et al., 2020), indicating that the creation
of appropriate databases, with selected groups of subjects and
characteristics, as done in this study, is an aspect of primary
importance and which cannot be disregarded in order to
achieve reliable results. Thus, even though the considered
population of women with a history of GDM was constituted
by a limited number of subjects, they have been strictly
controlled and monitored during a long follow-up. Moreover,
the subjects have been carefully screened to detect outliers,
and these were dropped out from the data set before the
analysis; decision of dropping out the outliers instead of
performing data imputation only for specific features was
taken to reduce as much as possible bias and uncertainty.
Adoption of machine-learning techniques, usually devoted to
the analysis of large amounts of data, is justified in this study
by the high number of features included in the generated data
set, from which such techniques may allow determination of
the most relevant ones. At the same time, when considering

a low number of subjects with a high number of features,
overfitting may occur and achieved results may be a bit
optimistic, especially when using decision tree algorithm. It
has to be acknowledged that this may be the risk of this
study. However, well-known strategies have been adopted to
mitigate this risk, namely, pruning (through which the redundant
branches can be cut beforehand) and k-fold cross-validation
(Zhou et al., 2021).

In this study, data analysis has been performed by using
Orange (Demšar et al., 2013), an open-source data visualization,
machine learning, and data mining toolkit. This software has
the advantage of providing a visual programming front-end
for explorative rapid qualitative data analysis and interactive
data visualization; on the other side, possibilities in data
analysis are limited by the procedures implemented in the
Orange “building blocks.” Further studies may explore different
and more customizable learning algorithms starting from the
results of this study.

CONCLUSION

This study was the first to apply machine-learning techniques to
databases that contain features quantifying metabolic processes
based on such standard clinical test in women with a history of
GDM and at risk of developing T2DM. We found that DI, BSR of
insulin, mean area under the C-peptide concentration curve, age,
BMI, and fasting glycemia were identified as the most relevant
features for the progression from GDM to T2DM. The obtained
information from this pattern could be of interest for the study
and characterization of diabetes pathophysiology.
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