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One of the hallmarks of acute respiratory distress syndrome (ARDS) is an excessive increase 
in pulmonary vascular permeability. In settings of ARDS, the loss of barrier integrity is 
mediated by cell–cell contact disassembly and actin remodelling. Studies into molecular 
mechanisms responsible for improving microvascular barrier function are therefore vital in 
the development of therapeutic targets for reducing vascular permeability seen in ARDS. Bitter 
taste receptors (T2Rs) belong to the superfamily of G-protein-coupled receptors found in 
several extraoral systems, including lung epithelial and smooth muscle cells. In the present 
study, we show for the first time that several T2Rs are expressed in human pulmonary 
arterial endothelial cells (HPAECs). Our results focus on those which are highly expressed 
as: T2R10, T2R14 and T2R38. Agonists for T2R10 (denatonium) and T2R38 (phenylthiourea), 
but not T2R14 (noscapine), significantly attenuated lipopolysaccharide (LPS)-induced 
permeability and VE-cadherin internalisation in HPAECs. In T2R10- or T2R38-siRNA 
knockdown cells, these endothelial-protective effects were abolished, indicating a direct 
effect of agonists in regulating barrier integrity. Our further findings indicate that T2R10 and 
T2R38 exert their barrier-protective function through cAMP but via Rac1-dependent and 
independent pathways, respectively. However, using an in vivo model of ARDS, the T2R38 
agonist, phenylthiourea, was not able to protect against pulmonary edema formation. Taken 
together, these studies identify bitter taste sensing in the pulmonary endothelium to regulate 
barrier integrity in vitro through cAMP-Rac1 signalling.
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INTRODUCTION

Over 10% of patients in intensive care units worldwide suffer from acute respiratory distress 
syndrome (ARDS), associated with a mortality rate of nearly 40% (Rubenfeld et  al., 2005; 
Matthay et  al., 2019). The main predisposing factors which lead to ARDS are pneumonia, 
major surgery, trauma or sepsis (ARDS Definition Task Force et  al., 2012) and, more recently, 
SARS-CoV2 (COVID-19) infection (Huang et  al., 2020). Patients with ARDS suffer from acute 
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hypoxemic respiratory failure, so mechanical ventilation is one 
of the key therapeutic approaches to improve hypoxemia; 
however, this treatment has been linked to worsening of the 
respiratory failure for some patients (ARDS Definition Task 
Force et al., 2012). One of the hallmarks of ARDS is an increase 
in lung endothelial permeability, associated with the development 
of pulmonary edema in these patients (Matthay et  al., 2019). 
It is therefore vital to understand the mechanisms which regulate 
endothelial permeability, with the aim of reducing respiratory 
failure in patients with ARDS.

One of the key mechanisms which mediates vascular leak 
across the endothelial monolayer is the disruption of cell–cell 
contacts, maintained by the adherens junction complex, and 
an increases in actin-myosin contractility (Komarova and Malik, 
2010; Kuppers et  al., 2014; Trani and Dejana, 2015). In the 
case of the barrier-disruptive agent lipopolysaccharide (LPS), 
an endotoxin from Gram-negative bacteria, increased 
permeability is mediated through its binding to Toll-like receptor 
4 (Aoki et  al., 2015; Modhiran et  al., 2015). The resulting 
pathway, through guanine exchange factor, Rho, Rho-associated 
coiled-coil containing protein kinase, rapidly accelerated 
fibrosarcoma and mitogen-activated protein kinase, destabilises 
endothelial junctions, through downregulation of intracellular 
3′,5′-cyclic adenosine monophosphate (cAMP) levels and 
inactivation of the small Rho GTPase, Rac1, to cause myosin 
light chain (MLC) phosphorylation and vascular leak (Schlegel 
and Waschke, 2009; Haidari et  al., 2012). Targeting these 
molecular mechanisms has been shown to attenuate LPS-induced 
pulmonary edema formation in vivo (Birukova et  al., 2013; 
Barabutis et  al., 2018; Wang et  al., 2021) and therefore offers 
potential therapeutic value in treating patients with ARDS.

Previous studies demonstrate the expression of the G-protein-
coupled sweet taste receptor, taste receptor type 1 member 3 
(T1R3), in the pulmonary vasculature, with expression levels 
downregulated following exposure to LPS (Harrington et  al., 
2018). Exposure of lung microvascular endothelial cells to 
sucralose, an agonist of T1R3, attenuated LPS-induced endothelial 
barrier dysfunction. Likewise, sucralose exposure attenuated 
bacteria-induced lung edema formation in vivo. Inhibition of 
the sweet taste signalling pathway, through zinc sulphate, or 
siRNA for T1R3 or alpha gustducin, blunted the protective 
effects of sucralose on the endothelium. Further studies indicate 
the role of key endothelial signalling molecules, such as Src, 
p21-activated kinase (PAK) and MLC2, as regulated by T1R3 
agonists. While this research demonstrates the importance of 
the sweet taste receptor signalling in the lung endothelium, 
there have been fewer such studies with other taste receptors.

The expression of bitter taste receptors (T2Rs) and their 
downstream signalling molecules have been found in several 
extraoral systems, including the digestive, respiratory and 
genitourinary systems, as well as in brain and immune cells 
(Lu et  al., 2017; Conaway et  al., 2020) where they carry out 
different biological functions tailored to their location. Research 
interest in taste receptors in the lung has focused on bitter 
taste receptors in the specialised airway epithelium (Shah et al., 
2009) and smooth muscle (Deshpande et al., 2010) rather than 
the endothelium. More recently, T2R protein and TAS2R mRNA 

have also been identified in resident and tissue infiltrating 
immune cells in the lungs (Shah et  al., 2009; Orsmark-Pietras 
et  al., 2013; Ekoff et  al., 2014; Lee et  al., 2014). T2R agonists, 
including those identified in bacteria such as quinolones, cause 
relaxation of the airway smooth muscle and decreased airway 
resistance, as well as enhanced movement of motile cilia and 
increased phagocytosis (Deshpande et  al., 2010; Sharma et  al., 
2016, 2017; Gopallawa et  al., 2021). Therefore, T2R agonists 
are being further investigated as a potential therapeutic approach 
to reduce airway inflammation and hyperresponsiveness 
associated with allergic asthma. While immunofluorescence 
staining of human omental arteries suggests the presence of 
taste 2 receptor member 7 (T2R7) in the endothelium of 
mesenteric and omental arteries (Chen et al., 2017), the complete 
identification of T2R in the endothelium or the potential role 
in pulmonary function of these G-protein-coupled receptors 
(GPCRs) has not previously been studied.

In humans, 25 members of the T2R family have been 
identified to sense bitter taste agonists with high specificity 
to ensure high sensitivity of humans to bitter, and likely toxic, 
stimuli (Meyerhof et al., 2010; Raka et al., 2019). In the present 
study, we  investigate the expression of T2Rs in a cell culture 
model of the human pulmonary endothelium, human pulmonary 
large vessel arterial endothelial cells (HPAEC). We further study 
the effect of specific T2R agonists on endothelial barrier function 
and establish the molecular mechanism through which T2Rs 
regulate the pulmonary endothelium.

MATERIALS AND METHODS

Cell Lines and Reagents
HPAEC and media were purchased from ATCC (Teddington, 
United  States). Cells were cultured in vascular cell media, 
supplemented with endothelial cell growth kit-BBE and 1% 
penicillin/streptomycin, and used between passage 3 and 8. 
Reagents for siRNA studies (siRNA, transfection reagent and 
scrambled control) were purchased from Dharmacon (Cambridge, 
United  Kingdom). Antibodies for bitter taste receptors T2R10, 
T2R14 and T2R38 were obtained from Santa Cruz (Texas, 
United States), BosterBio (California, United States) and Novus 
Bio (Abingdon, United  States), respectively, whereas the 
VE-cadherin antibody was purchased from Millipore (Watford, 
United  Kingdom). The cAMP-Screen Direct System kit was 
purchased from Applied Biosystems (now Thermo Fisher, Paisley, 
United  Kingdom) and the G-LISA® Rac1 Activation Assay 
Biochem Kit™ was obtained from Cytoskeleton, Inc. (Colorado, 
United  States). Human-specific primers for TAS2R (Table  1) 
were designed based on previously published studies (Upadhyaya 
et  al., 2014) and purchased from Thermo Fisher Scientific 
(Paisley, UK), as were primers specific to human GADPH, 
β-actin and TBP and the TRIzol™ reagent. Pseudomonas 
aeruginosa strain PA103 was a kind gift from Dr. Troy Stevens 
(University of South Alabama, Mobile, AL). All other materials, 
including fluorescent secondary antibodies and LPS endotoxin 
from Escherichia coli serotype 0111:B4, were purchased from 
Sigma Aldrich/Merck (Dorset, United  Kingdom).
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mRNA Expression Analysis
mRNA analysis of TAS2R expression in HPAECs was performed 
using previously published primers specific to human TAS2Rs 
(Upadhyaya et al., 2014). Total RNA was extracted from HPAEC 
using the TRIzol™ reagent and following the manufacturer’s 
instructions. RNA was purified and reverse transcribed as 
previously described (Harrington et  al., 2018; Lizunkova et  al., 
2019) and T2R transcripts were measured using PCR primers 
(Table 1). TBP was used as the housekeeping gene and analysis 
was verified with housekeeping genes β-actin and 
GAPDH. Relative gene expression level was analysed for each 
T2R using the ΔCt method where ΔCt = (CtTAS2R – CtTBP) 
corresponding to the detected threshold cycles for the target 
and housekeeping gene.

Whole Cell ELISA and Western Blotting
Cell surface expression of VE-cadherin and T2Rs (T2R10, 
T2R14 and T2R38) was measured using the whole cell ELISA 
as previously described (Chichger et al., 2015). In brief, HPAEC 
were treated with LPS in the presence and absence of T2R 
agonists noscapine, denatonium or phenylthiourea (0.1 mm) 
for 48 h. Studies were also performed with the addition of 
NSC-23766 (10 μm; Birukova et  al., 2013) to inhibit Rac1 
activity. Cells were then fixed using 1% paraformaldehyde at 
room temperature for 10 min. Whole cell ELISA was then 
performed using antibodies specific to the extracellular domain 

of VE-cadherin (BV6, amino acid unspecified; Su and Kowalczyk, 
2017), T2R10 (D-12, amino acid unspecified, sc-169,473), T2R14 
(Boster BioPA5-39,710, amino acid 229–278) and T2R38 (Novus, 
NBP2-33711), and 488-fluorescent-conjugated secondary 
antibodies measured at 1 s exposure time at 485/552 ex/em 
using a fluorescent plate reader (Victor, Perkin Elmer).

Whole cell expression of VE-cadherin and T2Rs (T2R10, 
T2R14 and T2R38) was performed using Western blotting and 
using T1R3, TBP and actin as reference. HPAEC were treated 
as for the whole cell ELISA and lysed with RIPA buffer, scraped 
over ice, centrifuged and resuspended in Laemmli buffer (50 μg). 
Samples were then subjected to immunoblot analysis with 10% 
SDS-PAGE and using primary antibodies specific to T2R10, 
T2R14, T2R38, T1R3 and reference proteins at a dilution of 
1:1000, except TBP and actin (1,5,000), and secondary antibodies 
at dilutions of 1:5000. Densitometry was performed using gel 
analysis software on ImageJ.

In vitro Permeability Assay
Endothelial monolayer permeability was measured using the 
fluorescein isothiocyanate (FITC)-dextran assay, as previously 
described (Lizunkova et  al., 2019). HPAEC were seeded into 
Transwell inserts in a 24-well plate and cultured for 26 h, 
followed by exposure to LPS (1 μg/ml) and T2R agonists 
noscapine, denatonium or phenylthiourea (0.1 mm) for a  
further 10 h. At this time point, FITC-conjugated 4 kD dextran 

TABLE 1 | DNA primer sequences used to detect human T2R in HPAEC (based on Upadhyaya et al., 2014).

Bitter taste 
receptor (TAS2R)

  Gene accession ID   Primer sequence (5′–3′)

Forward Reverse

TAS2R1 NM_019599 TGTGGTGGTGAATGGCATTG CAGCACTTACTGTGGAGGAGGAAC
TAS2R3 NM_016943 ACACATGATTCAGGGATAATAATGCAAA TTAGCCATCTTGGTTTTTGGTAGGAAATT
TASR4 NM_016944 TACAGTGGTCAATTGCAAAACTTGG AATGTCCTGGAGAGTAAAGGGTGG
TASR5 NM_018980 TGGTCCTCATATAACCTCATTATCCTGG CTGCCATGAGTGTCTCCCA
TASR7 NM_023919 TGTTTTATATTGGTGCTATATCCAGATGTCTATGC GGATAAATGAATGACTTGAGGGGTAGATTAGAG
TASR8 NM_023918 TTGATATGGTGGTGCACTGG GTGAGTGACCCAAGGGGTAG
TASR9 NM_023917 TGAATTGACCATAGGGATTTGGG ATAATTAGAATGAATGAATGGCTTGATGG
TASR10 NM_023921 GACTTGTAAACTGCATTGACTGTGCC AAAGAGGCTTGCTTTAGCTTGCTG
TASR13 NM_023920 GGGTCAGTAAAAGAGAGCTGTCCTC ATCAGAAGAAAGGAGTGGCTTGAAG
TASR14 NM_023922 GCTTTGGCAATCTCTCGAATTAGC CTCTAAATTCTTTGTGACCTGAGGGC
TASR16 NM_016945 CCTGGGAATTTTTTAATATCCTTACATTCTGGT GAAGCGCGCTTTCATGCTT
TASR38 NM_176817 ACAGTGATTGTGTGCTGCTG GCTCTCCTCAACTTGGCATT
TASR39 NM_176881 TGTCGCCATTTCTCATCACCTTA ATTGAGTGGCTGGCAGGGTAG
TASR40 NM_176882 AGAGTGCATCACTGGCATCCTT GAGGATGAGAAAGTAGCTGGTGGC
TASR41 NM_176883 GGTTGCTGCCCTTGGATATGA TGAAGATGAGGATGAAGGGATGG
TASR42 NM_181429 ATGGCCACCGAATTGGACA GCTTGCTGTTTCCCAGAATGAG
TASR43 NM_176884 GGTCTCCAGAGTTGGTTTGC TCTTGTTTCCCCAAATCAGG
TASR44 NM_176885 CATTGGTAAATTCCATTGAGC GATATCATTATGGACAGAAAGTAAAC
TASR45 NM_176886 CTCCTTTGCTGACCAAATTGTC GAACGGGTGGGCTGAAGAAC
TASR46 NM_176887 GAGTTGAATCCAGCTTTTAAC ATAGCTGAATGCAATAGCTTC
TASR47 NM_001097643 GGTGTTATTACTACATTGGTATGCAACTC AAGACAGGTTGCTTTTCCAGC
TASR48 NM_176888 GGTTTACTCTGGGTCATGTTATTC TTTGCTCTGCTGTGTCCTAAG
TASR49 NM_176889 GCACTGATAAATTTCATTGCCTGG TTGTTCCCCCAAATCAGAATGAA
TASR50 NM_176890 ATGTGGCTTGCTGCTAACCT CAGCCTTGCTAACCATGACA
TASR60 NM_177437 CAGGCAATGGCTTCATCACTG TCCCACACCCAGAATTTAAAGTCC
TBP NM_003194.4 CAGCTTCGGAGAGTTCTGGG GGGCACTTACAGAAGGGCAT
GAPDH NM_002046 TGTGAGGAGGGGAGATTCAG ACCCAGAAGACTGTGGATGG
β-actin NM_001101.3 CACCAACTGGGACGACAT ACAGCCTGGATAGCAACG
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(1 mg/ml) was added to the upper chamber of the Transwell 
insert for 30 min. Media was then collected from the lower 
chamber of the Transwell insert (100 μl) and measured for 
FITC concentration at 485/535 ex/em using a fluorescent plate 
reader (Victor, Perkin Elmer). Permeability in relative fluorescence 
units was used to calculate % permeability as the fluorescence 
in the lower chamber divided by that in the upper chamber 
and multiplied by 100 and normalised to vehicle treatment.

siRNA Transfection
For some experiments, HPAEC were transiently transfected with 
T2R10 and T2R38 SMARTpool siGENOME siRNA duplexes 
(100 nm), or non-specific (ns), scrambled duplexes, using the 
Dharmafect™ reagent 4, as per the manufacturer’s guidelines. 
At 42 h following transfection, cells were exposed to denatonium 
or phenylthiourea (0.1 mm) in the presence or absence of LPS 
(1 μg/ml) for a further 6 h and permeability, VE-cadherin surface 
expression, cAMP activity or Rac1 activity were measured. 
Confirmation of knockdown was performed using Western blotting 
and whole cell ELISA with antibodies specific to T2R10 or T2R38.

cAMP and Rac1 Activity Assays
cAMP levels and Rac1 activity were measured using a cAMP-
screen direct system assay kit and a Rac1 activation assay kit, 
respectively. For both assays, HPAEC were seeded and cultured 
for 42 h, followed by exposure to LPS (1 μg/ml) and T2R 
agonists noscapine, denatonium or phenylthiourea (0.1 mm) 
for a further 6 h. Alternatively, siRNA knockdown was performed 
followed by treatment. Cell lysates were then prepared and 
the assay kits were performed as per the manufacturer’s guidelines. 
For cAMP, levels were quantified as relative luminescence units 
from the CSPD®/Sapphire-II™ RTU substrate/enhancer solution 
and measured at 1 s exposure time using a plate reader (Victor, 
Perkin Elmer). For Rac1 activity, the absorbance of HRP-conjugate 
was measured at 490 nm optical density using a plate reader 
(SUNRISE, Tecan).

In vivo Permeability Assay
Pulmonary edema was measured as wet-dry lung weights, as 
previously described (Harrington et al., 2018). Adult male 8–10 week 
old C57BL/6 mice were administered with bitter agonist, 
phenylthiourea (10 mg/kg) by retro-orbital injection or the vehicle 
control (H2O). At 44 h post-injection, live Gram-negative bacteria 
P. aeruginosa (PA103), or saline vehicle, administered via a single 
intratracheal injection (107 colony-forming units) for 4 h. Mice 
were then euthanised with 1–4% isoflurane and lungs were 
excised for wet and dry weights. All animal experimental protocols 
were approved by the Institutional Animal Care and Use 
Committees of the Providence Veterans Affairs Medical Center 
and Brown University and comply with the Health Research 
Extension Act and the National Institutes of Health guidelines.

Statistical Analysis
Data was analysed using GraphPad Prism 7 software and presented 
as mean ± standard deviation (SD) with significance denoted as 

p < 0.05. Sample size is 5–6 for in vitro studies and 7–8 for in 
vivo studies. Statistical analysis was performed using either an 
unpaired Student’s t-test, one-way or two-way ANOVA and, where 
relevant, a Tukey multiple comparison post-hoc test was performed.

RESULTS

T2R10, T2R14 and T2R38 Are Highly 
Expressed in Human Pulmonary Arterial 
Endothelial Cells
To investigate whether T2Rs were expressed in pulmonary arterial 
endothelial cells, primers mapped to 25 human TAS2R were used 
(Table  1). mRNA expression of 16 TAS2R was undetected in 
HPAECs, whereas TAS2R10, TAS2R14 and TAS2R38 were highly 
expressed relative to the internal reference, TATA-box binding 
protein (TBP; Table  2). Further, mRNA expression of six TAS2R 
(TAS2R1, TAS2R3, TAS2R4, TAS2R16, TAS2R40 and TAS2R43) 
was found to be  expressed at lower levels (0.82- to 0.12-fold 
expression relative to TBP). Protein expression of T2R10, T2R14 
and T2R38 was confirmed in cell lysate, using Western blotting, 
and at the cell surface, using whole cell ELISA, with VE-cadherin 
used as an internal reference. All three T2Rs were expressed at 
a protein level in HPAEC lysate and at the cell surface, with 
levels comparable to that seen for the sweet taste receptor (T1R3; 
Table  3). Taken together, these data demonstrate the mRNA 
expression of several TAS2Rs and protein expression of T2R10, 
T2R14 and T2R38 in human pulmonary arterial endothelial cells.

Agonists for T2R10, T2R14 and T2R38 
Differentially Regulate Pulmonary Barrier 
Function in an in vitro Model of ARDS
Previous studies have demonstrated a role for the sweet taste 
receptor in protecting the pulmonary endothelium against 
LPS-induced increase in permeability (Harrington et al., 2018). 
Our next set of experiments therefore assessed the effect of 
T2Rs in regulating endothelial barrier function using the 
documented agonists for T2R10, T2R14 and T2R38: denatonium, 

TABLE 2 | mRNA expression levels of bitter taste receptors in human pulmonary 
endothelial cells.

Bitter taste receptor (TAS2R) mRNA expression (relative to TBP)

TAS2R38 2.43 ± 0.29
TAS2R14 2.41 ± 0.48
TAS2R10 2.09 ± 0.37
TBP (positive control) 1 (reference)
TAS2R4 0.82 ± 0.55
TAS2R16 0.52 ± 0.29
TAS2R1 0.49 ± 0.46
TAS2R3 0.49 ± 0.23
TAS2R40 0.35 ± 0.49
TAS2R43 0.12 ± 0.28

mRNA expression of TAS2R demonstrated as relative to the positive control (TBP) 
which was normalised as 1. Expression < 0.1 was considered too low to accurately 
demonstrate expression. Data are presented as mean ± S.D, n=5-6.
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noscapine and phenylthiourea, respectively (Kim et  al., 2003; 
Sainz et  al., 2007; Meyerhof et  al., 2010; Born et  al., 2013).

Using the Transwell permeability assay, in the absence of 
LPS, agonists for T2R10 (denatonium) and T2R38 (phenylthiourea) 
had no effect on endothelial barrier function of HPAECs while 
the agonist for T2R14 (noscapine) significantly increased baseline 
permeability (Figure  1A). Following exposure to LPS, 
phenylthiourea and denatonium blunted endothelial monolayer 
permeability, whereas noscapine exacerbated LPS-induced leak 
(Figure  1A). These findings were mirrored in measurement of 
VE-cadherin cell surface expression using the whole cell ELISA, 
with phenylthiourea and denatonium preserving VE-cadherin 
surface expression in the presence of LPS and noscapine resulting 
in significantly reduced VE-cadherin surface levels (Figure 1B).

To establish that the T2R agonists phenylthiourea and denatonium 
are regulating barrier function through T2R38 and T2R10, 
respectively, siRNA knockdown studies in HPAECs were performed 
with each taste receptor. A significant reduction in protein expression 
of T2R10 and T2R38, following siRNA knockdown, was confirmed 
in cell lysate (Western blot) and at the cell surface (whole cell 
ELISA) compared to the non-specific siRNA control [Figures 1C(i), 
D(i)]. Interestingly, knockdown of each receptor, in the absence 
of taste agonist, did not impact baseline or LPS-induced monolayer 
permeability [Figures  1C(ii), D(ii)] or VE-cadherin surface 

expression [Figures 1C(iii), D(iii)]. In the presence of denatonium, 
endothelial cells transfected with T2R10 siRNA were unable to 
protect against LPS-induced barrier leak [Figure  1C(ii)] or 
VE-cadherin internalisation [Figure  1C(iii)]. Likewise, following 
exposure to phenylthiourea, cells transfected with T2R38 siRNA 
were unable to protect the endothelium against LPS-induced 
barrier disruption [Figure  1D(ii).

Taken together, these data show that bitter taste agonists, 
phenylthiourea and denatonium, protect the pulmonary 
endothelium against LPS-induced barrier disruption, through 
T2R38 and T2R10, respectively.

A

D

B C

FIGURE 1 | Denatonium (Dena) and phenylthiourea (Phenyl) protect against LPS-induced permeability and VE-cadherin internalisation in human pulmonary arterial 
endothelial cells by acting directly through T2R10 and T2R38, respectively. Panels A and B: HPAEC were exposed to noscapine, denatonium or phenylthiourea 
(0.1 mm) in the presence (closed bars) or absence (open bars) of LPS (1 μg/ml) for 24 h. Monolayer permeability was measured using the FITC-dextran essay (panel 
A) and VE-cadherin surface expression was assessed using whole cell ELISA (panel B). Panels C and D: T2R10 (panel C)- and T2R38 (panel D)-specific siRNA was 
used to knockdown expression in HPAEC and confirmed using Western blot (inset) and whole cell ELISA [panels C(i) and D(i)]. Denatonium or phenylthiourea 
(0.1 mm) was added after 24 h in the presence (closed bars) or absence (open bars) of LPS (1 μg/ml) and monolayer permeability [panels C(ii) and D(ii)] and VE-
cadherin surface expression [panels C(iii) and D(iii)] were studied. Data are presented as mean ± S.D. n = 6. Panel *p < 0.05 versus vehicle for LPS; #p < 0.05 versus 
vehicle for bitter agonists; δp < 0.05 versus non-specific siRNA.

TABLE 3 | Protein expression levels of bitter taste receptors in human 
pulmonary endothelial cells.

Bitter taste receptor Whole cell protein 
expression (relative 
to VE-cadherin)

Cell surface protein 
expression (relative 
to VE-cadherin)

T2R38 0.56 ± 0.11 0.28 ± 0.04
T2R14 0.68 ± 0.09 0.16 ± 0.09
T2R10 0.22 ± 0.15 0.22 ± 0.03
VE-cadherin (positive control) 1 ± 0.30 (reference) 1 ± 0.11 (reference)
T1R3 0.51 ± 0.22 0.25 ± 0.06

Cell surface and lysate protein expression was evaluated using whole cell ELISA and 
Western blot of cell lysate respectively. Data are presented as mean ± S.D, n=5-6.
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T2R38, but Not T2R10, Agonist Protects 
Against LPS-Induced Barrier Disruption 
Through Preservation of Rac1 Activity
LPS has been observed to reduce cAMP and Rac1 expression 
in endothelial cells resulting in barrier leak (Schlegel and 
Waschke, 2009). Therefore, to understand the molecular 
mechanism through which denatonium and phenylthiourea 
exert barrier-protective effects on human pulmonary arterial 
endothelial cells, these signalling molecules were studied.

In the absence of LPS, the T2R10 and T2R38 agonists, 
denatonium and phenylthiourea, had no effect on cAMP levels 
(Figure  2A). As anticipated, exposure of HPAEC to LPS 
significantly decreased cAMP levels but, interestingly, 
phenylthiourea and denatonium attenuated the LPS-induced 
reduction in cAMP levels to preserve the signalling molecule 
(Figure  2A). Further study using HPAEC transfected with 
T2R10 [Figure  2B(i)] or T2R38 [Figure  2B(ii)] siRNA 
demonstrates that each agonist preserves cAMP levels through 
their respective bitter taste receptor. That is, siRNA knockdown 
of T2R10 blocks the protective effect of denatonium in 
preserving cAMP levels [Figure 2B(i)] and T2R38 knockdown 
attenuates the ability of phenylthiourea to maintain cAMP 
expression in endothelial cells [Figure  2B(ii)]. These studies 
indicate that both denatonium and phenylthiourea are 
dependent on their respective T2R to protect against 
LPS-induced loss of cAMP levels.

Similar to cAMP levels, in the absence of LPS, denatonium 
and phenylthiourea had no impact on Rac1 activity levels while 
LPS exposure, as expected, significantly reduced Rac1 activity 
(Figure  2C). In contrast, however, in the presence of LPS, 
only phenylthiourea was able to maintain Rac1 activity levels 
(Figure 2C). siRNA knockdown of T2R38 significantly blunted 
the ability of phenylthiourea to protect against LPS-induced 
loss of Rac1 activity (Figure 2D), indicating that phenylthiourea 
preserves Rac1 activity, in settings of LPS injury, through T2R38.

The role of Rac1  in mediating the barrier-protective effect 
of phenylthiourea was investigated next using the established 
Rac1 inhibitor, NSC-23766 (Birukova et  al., 2013). Exposure 
of HPAEC to the Rac1 inhibitor, in the absence of LPS, 
significantly increased endothelial barrier leak [Figure  2E(i)] 
and reduced VE-cadherin surface expression [Figure  2E(ii)]. 
Interestingly, when exposed to the Rac1 inhibitor, 
phenylthiourea was unable to attenuate LPS-induced barrier 
disruption [Figure  2E(i)] or VE-cadherin internalisation 
[Figure 2E(ii)]. These data indicate that phenylthiourea protects 
the endothelium against LPS-induced injury through preserving 
Rac1 activity.

Phenylthiourea Does Not Protect the 
Pulmonary Endothelium in vivo
In the last set of experiments, the barrier-protective effect 
of phenylthiourea was assessed using an established in vivo 

A B

C D E

FIGURE 2 | Phenylthiourea (Phenyl), but not denatonium (dena), acts through a cAMP-Rac1-dependent signalling pathway to protect the pulmonary endothelial 
barrier. Panel A and C: HPAEC were exposed to noscapine, denatonium or phenylthiourea (0.1 mm) in the presence (closed bars) or absence (open bars) of LPS 
(1 μg/ml) for 24 h. cAMP (panel A) and Rac1 (panel C) levels were measured using commercially available ELISA kits. Panel B and D: T2R10 [panel B(i)]- or T2R38 
[panel B(ii)]-specific siRNA was used to knockdown expression in HPAEC and denatonium or phenylthiourea (0.1 mm), respectively, was added after 24 h in the 
presence (closed bars) or absence (open bars) of LPS (1 μg/ml). cAMP (panel B) and Rac1 (panel D) levels were measured using commercially available ELISA kits. 
Panel E: HPAEC were exposed to the Rac1 inhibitor, NSC-23766, with phenylthiourea (0.1 mm) in the presence (closed bars) or absence (open bars) of LPS (1 μg/
ml) for 24 h. Monolayer permeability was measured using the FITC-dextran essay [panel E(i)] and VE-cadherin surface expression was assessed using whole cell 
ELISA [panel E(ii)]. Data are presented as mean ± S.D. n = 5, 6. Panel *p < 0.05 versus vehicle for LPS; #p < 0.05 versus vehicle for NSC-23766.
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model of endothelial barrier leak, live P. Aeruginosa bacteria 
(PA103; Harrington et  al., 2018). Lung wet to dry ratio was 
assessed following retro-orbital injection with the T2R38 
agonist in the presence and absence of P. Aeruginosa. In 
the absence of bacteria exposure, phenylthiourea had no 
impact on wet-dry ratio (vehicle: 4.90 ± 0.18; phenylthiourea: 
4.84 ± 0.29; p > 0.05; n = 7, 8). Exposure to P. Aeruginosa 
resulted in a significant increase in lung wet-dry weight 
ratio from 4.90 ± 0.18 (n = 8) to 6.63 ± 0.64 (n = 7), p < 0.05. 
Rather than protecting the pulmonary endothelium against 
P. Aeruginosa, phenylthiourea exposure exacerbated bacteria-
induced increase in lung wet-dry ratio from 6.63 ± 0.64 (n = 7) 
to 7.55 ± 0.57 (n = 7), p < 0.05. These data demonstrate that 
the in vitro protection exerted by phenylthiourea, against 
endotoxin-induced leak across the pulmonary endothelial 
barrier, was not observed using an in vivo bacterial model 
of leak in the lungs.

DISCUSSION

In this study, we  identify, for the first time, the presence of 
bitter taste receptors in human pulmonary arterial endothelial 
cells. We  further demonstrate that agonists for two highly 
expressed receptors (T2R10 and T2R38) protect the pulmonary 
endothelium against LPS-induced barrier disruption and confirm 
that this protective mechanism is directly through the taste 
receptors. The findings here observe that denatonium, the 
agonist for T2R10, protects the endothelium through a cAMP-
dependent, Rac1-independent mechanism while, phenylthiourea, 
the agonist for T2R38, attenuates LPS-induced barrier disruption 
in a cAMP/Rac1-dependent pathway. Finally, we  demonstrate 
that this in vitro protection is not observed using an in vivo 
model of pulmonary endothelium leak.

T2Rs are a family of G-protein-coupled receptors (GPCRs) 
which consist of at least 25 receptor subtypes (Adler et  al., 
2000; Chandrashekar et  al., 2000). In recent years, T2Rs 
have been localised to several extraoral systems where they 
exert different functions depending on their locations (Lu 
et  al., 2017; Conaway et  al., 2020). For example, agonists 
for T2R38 can increase the ciliary beat frequency in human 
airway epithelia (Lee et  al., 2016) while T2R10 agonists 
attenuated airway hyperresponsiveness in airway smooth 
muscle, indicating the potential therapeutic value of T2Rs 
in the treatment of obstructive airway diseases (Shah et  al., 
2009; Deshpande et  al., 2010). Interestingly, a recent deep 
sequencing study with COVID-19 patients admitted to the 
Intensive Care Unit shows significant alternative transcription 
differences in TAS2R14. Patients who died from COVID-19 
showed 0.15892% splice variant versus 0.03625% in patients 
with COVID-19 who lived (Monaghan et al., 2021) suggesting 
a role for the receptor in injury. Although previous work 
has indicated the effect of bitter taste agonists, naringenin 
and denatonium, in elevating neovascularisation in tumours 
(Dmytrenko et al., 2017), no studies have assessed the presence 
or activity of T2Rs in human pulmonary endothelial cells. 
Our study identifies different levels of mRNA expression of 

various T2Rs on HPAEC and confirms the protein expressions 
of T2R10, T2R14 and T2R38 at similar levels as the sweet 
taste receptor, T1R3, as reported previously (Harrington et al., 
2018). We  have shown here that T2R10 and T2R38 agonists, 
denatonium and phenylthiourea, respectively, also have 
protective effects on the barrier function of endothelium as 
they were able to attenuate the LPS-induced permeability 
and VE-cadherin expression on HPAEC. These studies indicate 
that these bitter taste agonists have the potential to reduce 
pulmonary vascular leak; however, in vivo studies show that 
phenylthiourea, when administered retro-orbitally, exacerbates 
Pseudomonas-induced edema formation. This may be  linked 
to the non-taste related toxic effects of phenylthiourea on 
the lung which outweigh the protective effect of activating 
T2R38 (Scott et  al., 1990). Alternatively, exposure to taste 
molecules via retro-orbital-injection may exert a different 
response to those administered via oral gavage, as done for 
previous studies with sucralose (Harrington et  al., 2018). 
Furthermore, in vitro studies presented were performed using 
human pulmonary arterial endothelial cells, whereas there 
is considerable endothelial cell heterogeneity in the lung 
(Aird, 2007a; Aird, 2007b; Comhair et  al., 2012). Specifically, 
pulmonary microvascular endothelial cells, like pulmonary 
arterial endothelial cells, are often linked to fluid leak (Stevens 
et  al., 2008). It is therefore possible that our findings in 
human pulmonary arterial endothelial cells do not fully mimic 
the pulmonary endothelium in physiological settings. Therefore, 
further studies should focus on studying the effect of T2R10 
and T2R38 agonists in pulmonary microvascular endothelial 
cells, ideally those isolated from ARDS patients or a murine 
model of ARDS. In addition to vascular heterogeneity in 
the lung, there are several other cell types which have been 
shown to express T2Rs, including ciliated epithelium and 
both resident and lung infiltrating immune cells (Orsmark-
Pietras et  al., 2013; Ekoff et  al., 2014). Therefore, while 
phenylthiourea may have a barrier-protective effect in vitro, 
the T2R38 selective bitter agonist may stimulate 
pro-edemagenic signals through epithelial and immune cells 
resulting in a lack of protection against Pseudomonas-induced 
edema formation in vivo. Investigation of the Pseudomonas-
treated lung, following exposure to phenylthiourea, should 
be  expanded to consider cell and protein composition of 
broncho-alveolar lavage fluid (BALF) and lung histology. 
Further studies could also focus on molecular activation of 
T2R38, as well as the route of instillation of the agonist, 
in pulmonary edema models in vivo or design of a selective 
T2R38 activator which lacks lung toxic effects.

LPS-induced endothelial barrier dysfunction is widely 
used as an experimental model for ARDS and characterised 
by increased monolayer permeability, disruption of intercellular 
junctions, increased actin-myosin contractility and edema 
formation (Liu et  al., 2015). cAMP signalling has long been 
known to regulate the integrity of the endothelial barrier, 
strengthen cell–cell adhesions and increase endothelial barrier 
integrity (Birukova et al., 2013; Vassiliou et al., 2020). Studies 
using pulmonary endothelial cells show that the increase 
of intracellular cAMP levels enhances endothelial barrier 
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properties and attenuates LPS-induced endothelial barrier 
dysfunction (Bogatcheva et  al., 2009). Small guanosine 
triphosphatases (GTPases) from the Ras superfamily, primarily 
Rho GTPases (RhoA, Rac1 and Cdc42) or Rap1, have been 
shown to regulate cell adhesion and control permeability 
(Liu et  al., 2015). It has been shown previously that iloprost 
improved LPS-induced endothelial barrier dysfunction in 
HPAEC could be suppressed by a Rac1 inhibitor, NSC-23766 
(Birukova et  al., 2013). In the present study, we  investigated 
the role of cAMP and Rac1  in regulating the molecular 
mechanism through which T2R10 and T2R38 agonists mediate 
endothelial barrier protection. We  found that agonists for 
T2R10 and T2R38 attenuated LPS-induced reduction of 
cAMP levels but only the T2R38 agonist was effective in 
blocking LPS-induced decrease in Rac1 levels. Furthermore, 
inhibition of Rac1 attenuated the barrier-protective effect 
of phenylthiourea. These results implicate the involvement 
of the cAMP/Rac1 pathway in the endothelial-protective 
effects of bitter taste receptors but the differential effects 
of signalling in T2R10 versus T2R38.

The current study focused on the most highly expressed 
T2Rs in HPAEC; however, the involvement of other T2Rs 
expressed (T2R1, T2R3, T2R4, T2R16, T2R40 and T2R43) in 
regulating endothelial barrier function was not explored. This 
should be  the focus of further studies; however, future work 
with these receptors identified in HPAEC will need to consider 
the fact that T2Rs can recognise a repertoire of agonists which 
often overlap. For example, denatonium activates not only 
T2R10 but also T2R4 and T2R43 (Meyerhof et  al., 2010). To 
date, a handful of T2R antagonists from different sources, 
mainly plants, have been found and they could also aid in 
the dissection of the different functions of T2R in 
HPAEC function.
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