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Vagus nerve stimulation is an emerging therapy that seeks to offset pathological conditions by
electrically stimulating the vagus nerve through cuff electrodes, where an electrical pulse is
defined by several parameters such as pulse amplitude, pulse width, and pulse frequency.
Currently, vagus nerve stimulation is under investigation for the treatment of heart failure,
cardiac arrhythmia and hypertension. Through several clinical trials that sought to assess
vagus nerve stimulation for the treatment of heart failure, stimulation parameters were
determined heuristically and the results were inconclusive, which has led to the suggestion
of using a closed-loop approach to optimize the stimulation parameters. A recent investigation
has demonstrated highly specific control of cardiovascular physiology by selectively activating
different fibers in the vagus nerve.Whenmultiple locations andmultiple stimulation parameters
are considered for optimization, the design of closed-loop control becomes considerablymore
challenging. To address this challenge, we investigated a data-driven control scheme for both
modeling and controlling the rat cardiovascular system. Using an existing in silico physiological
model of a rat heart to generate synthetic input-output data, we trained a long short-term
memory network (LSTM) tomap the effect of stimulation on the heart rate and blood pressure.
The trained LSTM was utilized in a model predictive control framework to optimize the vagus
nerve stimulation parameters for set point tracking of the heart rate and the blood pressure in
closed-loop simulations. Additionally, we altered the underlying in silico physiological model to
consider intra-patient variability, and diseased dynamics from increased sympathetic tone in
designing closed-loop VNS strategies. Throughout the different simulation scenarios, we
leveraged the design of the controller to demonstrate alternative clinical objectives. Our results
show that the controller can optimize stimulation parameters to achieve set-point tracking with
nominal offset while remaining computationally efficient. Furthermore, we show a controller
formulation that compensates for mismatch due to intra-patient variabilty, and diseased
dynamics. This study demonstrates the first application and a proof-of-concept for using a
purely data-driven approach for the optimization of vagus nerve stimulation parameters in
closed-loop control of the cardiovascular system.
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1 INTRODUCTION

Cardiovascular diseases are a prevalent health risk and financial
burden. According to the annual statistics report from the
American Heart Association (Benjamin et al., 2018), coronary
heart disease (43.8%) is the leading cause of deaths attributable to
cardiovascular disease (CVD) in the United States, followed by
stroke (16.8%), high blood pressure (9.4%), heart failure (9.0%),
diseases of the arteries (3.1%), and other CVDs (17.9%). It is
projected that more than 130 million adults in the US population
(45.1%) will have some form of CVD by 2035, leading to total
costs of CVD reaching $1.1 trillion. The heart failure alone is
projected to reach a total cost of $70 billion in 2030 (Heidenreich
et al., 2013). Current pharmaceutical therapies lack adequate
efficacy in treating cardiovascular diseases as demonstrated by
the mortality rates (Ovbiagele et al., 2013; Savarese and Lund,
2017; Benjamin et al., 2018), which has motivated investigation
efforts into alternative therapeutic approaches. Vagus nerve
stimulation (VNS) has been identified and proposed as a
potential therapy for a variety of cardiac conditions such as
heart failure, atrial fibrillation, hypertension, and stroke
(Capilupi et al., 2020). VNS involves sending electrical pulses
through a cuff electrode to the vagus nerve, with the electrical
pulse characterized by several parameters such as pulse width,
pulse amplitude, and pulse frequency (Howland, 2014). A major
challenge present in VNS delivery involves recruitment of specific
fibers in the vagal nerve, as not all fibers have the same effect on
the functioning of the cardiac system. A recent study has
demonstrated the ability to recruit specific fiber types through
the use of different stimulation locations in a rat heart (Plachta
et al., 2014).

Another challenge present in delivering VNS therapy involves
the optimal selection of VNS parameters to achieve a desired
physiological response. Currently, VNS parameters are
determined through manual titration in an open-loop
configuration, as was used in the three clinical trials that
investigated VNS for the treatment of heart failure
(Premchand et al., 2014; Zannad et al., 2015; Gold et al.,
2016). These clinical trials reached different conclusions
regarding the efficacy of VNS. The different conclusions could
be attributed to the different operating regimes for each trial,
leading to the suggestion of finding optimal VNS parameters in
future trials to clearly evaluate the efficacy of VNS (Asad and
Stavrakis, 2019).

To address the challenge of finding the optimal VNS
parameter selection, studies investigating the closed loop
control of VNS stimulation has been accomplished in previous
studies performed in sheep by using a proportional-integral
controller design (Ugalde et al., 2015), and state-space
transition models (Romero-Ugalde et al., 2017). Other studies
have investigated using proportional-integral controller designs
to control the heart rate of rats (Greenwald et al., 2016), pigs
(Tosato et al., 2006), and dogs (Zhang et al., 2002). The previously
discussed controllers only controlled the heart rate, and did not
control multiple physiological outputs such as heart rate and
blood pressure. Further, these controller studies did not optimize
multiple input stimulation parameters, nor did they consider the

possibility of different stimulation location sites. A recent in silico
study developed a cardiac model of a rat heart with the influence
of VNS and used a model predictive control (MPC) framework to
optimize multiple VNS parameters (pulse width and pulse
frequency) at multiple locations to control the heart rate and
blood pressure simultaneously (Yao and Kothare, 2020).

For this application of MPC, there are challenges revolving
around the development and validation of in silico cardiac
models. Often such an approach becomes a challenging task in
selecting the correct dynamical equations that govern the cardiac
system, and then fitting the parameters to those specific
equations. Such tasks can be guided by a deep mechanistic
understanding of the system, however the definition of the
system can vary, as shown by the variety of in silico cardiac
models in the literature that range from modeling the individual
neuronal cells in a cardiac tissue (Mangoni et al., 2006), to
modeling the whole cardiovascular system as a pump (Suga
et al., 1973). There have been some models that incorporate
the effects of extrinsic stimulation on the cardiac system, such as
simulating an orthostatic response in a human cardiovascular
system (Melchior et al., 1992). However, most in silico
computational models do not include the necessary variables
to account for physiological changes mediated through VNS,
leaving a challenging task for their application in VNS parameter
optimization. Further, such models may be difficult to validate in
experiments due to the variability of fiber recruitment in the
vagus nerve. Adding to the challenge of using full-scale in silico
physiological models is the computational expense associated
with simulating these models for real-time closed-loop control.

Data driven modeling techniques are a viable approach that
address the challenges associated with the previously described in
silico physiological models. A common approach for data driven
modeling includes machine learning, which can learn a compact
representation of the nonlinear dynamics present in a variety of
systems (Goodfellow et al., 2016). There are no underlying
assumptions about the data fed to train the network or the
distribution of the data fed to the network. Together, these
features have led to the widespread application of machine
learning for the modeling of nonlinear dynamical systems.
More specifically, recurrent neural networks (RNNs) are well
suited for time-series modeling shown by their state-of-the-art
performance in challenging applications that include forecasting
river flows (Sahoo et al., 2019), power usage in residential areas
(Kong et al., 2017), and short-term traffic patterns (Zhao et al.,
2017). Of noteworthy importance in these applications, a RNN
was consistently shown to give better predictive performance of
the time-series data when compared to a simple feedforward
neural network. Thus, the hidden state embodied in a RNN
improves the learning of intrinsic temporal symmetries that allow
for more accurate predictions of future time-series data.
Previously, long short-term memory (LSTM) neural networks
which are a type of RNN, have been used to model the effect of
current injection on a pyramidal neuron (Plaster and Kumar,
2019). Additionally LSTMs have been shown to be less
computationally expensive for function evaluation, which
motivates their application in real-time control of the
cardiovascular system.
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In this paper, we demonstrate a computationally efficient data-
driven closed-loop control scheme to control the heart rate (HR)
and the mean arterial blood pressure (MAP) in an in silico
physiological model of a rat heart (Yao and Kothare, 2020).
The approach presented in this paper is a “mimic” of how
models and controllers could be developed from real data. In
the absence of real-data, we create “simulated” or “artificial” data
sets from a biophysical model and demonstrate the entire
approach of model and controller development on this
simulated/synthetic data. Once validated on this simulated
system, the approach has a higher confidence of being relevant
when applied to real data from a clinical or animal experimental
setting. Specifically, we develop and use a LSTMmodel in a MPC
framework to optimize the VNS parameters to achieve the desired
set points in HR and MAP. We formulate unique optimization
problems that consider different physiological contexts, and
discuss their influence on the closed-loop controller
performance. Our results show that our designed controllers
lead to set point tracking with nominal offset for both HR and
MAP. Next, we modify the in silico physiological model to exhibit
intra-patient variability, caused by a unique concentration of
neuronal fiber recruitment at the cuff electrode. To account for
the intra-patient variability in the closed-loop control
formulation, we include additional constraints in the
optimization problem, thus enabling the control of the
physiological variables without training another LSTM on the
data from the modified in silico physiological model. We
investigate this approach further by modifying the controlled
in silico physiological model to demonstrate a case of an elevated
sympathetic nervous system and a decreased vagal tone, similar to
a diseased state. Through simulations, we show that our closed-
loop control design can efficiently control HR and MAP for both
the intra-patient and diseased state systems while using the same
previously trained LSTM in designing the controller. Together,
we demonstrate a novel computationally efficient data-driven
closed-loop VNS design for modeling and controlling HR and
MAP, which could potentially be translated to animal
experiments for real-time control of the cardiac system.

2 RESULTS

2.1 Data-Driven Mapping of VNS
Parameters to the Heart Rate and Mean
Arterial Blood Pressure
We recently developed a novel data-driven machine learning-
based computational modeling approach to map the effect of
VNS on the heart rate (HR) and the mean arterial blood pressure
(MAP) (Branen et al., 2021). Briefly, we used a published
computational model of the rat cardiovascular system (Yao
and Kothare, 2020) to generate synthetic data by varying three
VNS locations, pulse width, and stimulation frequency and
measuring the effect of VNS parameters on HR and MAP (see
the details of the in silico physiological model and the range of the
VNS parameters in Materials andMethods Section 4.1). We then
trained several neural networks, including recurrent neural

networks (RNNs) and long short-term memory (LSTM)
network, on this synthetic data by systematically varying the
model hyperparameters, such as the number of hidden layers,
hidden-state dimensionality, and activation functions, and
compared the performance of the models in predicting HR
and MAP in response to VNS. Our results showed that a
single hidden layer LSTM network with a hidden-state
dimensionality of 10 and a hyperbolic tangent activation
function led to the best performance (Branen et al., 2021).
Although we published these modeling results in Branen et al.
(2021), for the completeness of this manuscript, we provide the
details of our modeling approach and the comparison of various
trained neural networks in the Materials and Methods
Section 4.4.

Figure 1 shows a specific prediction of HR and MAP by our
LSTM model and its comparison with the in silico physiological
model (ground truth data), where we have varied the VNS
parameters after every 50 cardiac cycles. As shown in this
figure, the LSTM model is able to predict the response of the
in silico physiological model with high accuracy, following the
selection of time-varying VNS parameters. Notably, this
predictive task requires the trained LSTM to recursively
predict all 200 cardiac cycles, given the initial HR and MAP
and the VNS parameters for all 200 cardiac cycles. In this way, the
LSTM has correctly learned the mapping of the VNS parameters
to the physiological effect on HR and MAP. Importantly, our
LSTM model took 2.10 s to predict HR and MAP for 100 cardiac
cycles on a local PC machine (Intel(R) Core I7-9700 CPU
3.00 GHz with 16 GB RAM) compared to 19.99 s by the in
silico physiological model.

In conclusion, our results in Branen et al. (2021) demonstrated
a computationally efficient data-driven machine learning
approach to predict HR and MAP in response to VNS
stimulation with high accuracy directly from the data. In the
remainder of this paper, we will use our LSTM model to
demonstrate how this model can be used to design a model-
based optimal control strategy to regulate HR and MAP by
optimizing the VNS parameters in a feedback-based closed-
loop framework.

2.2 Model-Based Optimal Control
Framework to Optimize VNS Parameters for
Cardiac System
As described in the previous section, the in silico physiological
model of a rat cardiovascular system (Yao and Kothare, 2020) has
three distinct VNS locations, with each location having two
design parameters, i.e., the pulse width and the stimulation
frequency. These different stimulation locations, along with
the pulse width and stimulation frequency as the design
parameters at each location, have a distinctive effect on
cardiac physiology, such as heart rate (HR) and mean arterial
blood pressure (MAP). The presence of several stimulation design
parameters raises the challenge of optimizing these parameters to
achieve a desired physiological response.

In an experimental/clinical setting, the choice of these
stimulation design parameters is typically accomplished
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manually based on the clinical experience. In order to automate
this process, we developed a closed-loop optimal control
approach to optimize the VNS parameters to achieve the
desired HR and MAP in an in silico physiological model of
the rat cardiac system using the model predictive control
(MPC) framework. Figure 2 shows a schematic of our closed-
loop control framework with the model-based controller utilizing
predictions from the trained LSTM.

Briefly, MPC is an optimal control strategy that uses a model
of the system in designing and optimizing the control actions.
Specifically, at the current time, the measurements of the outputs
are obtained from the system, and amodel of the system is used to
predict the system’s outputs in the future over a specified time
horizon (prediction horizon) in terms of the current and future
control actions over a specified time horizon (control horizon).
Then an optimization problem is formulated and solved to

minimize the difference between the predicted model outputs
and the desired outputs over the prediction horizon by
optimizing the VNS parameters over the control horizon. The
first computed optimal control action is implemented on the
system, and the prediction and control horizons are receded by
one time-step in the future. This process is repeated until the
system is driven to the desired outputs. One of the significant
advantages of using MPC over other optimal control approaches
in controlling the cardiac system is its flexibility in incorporating
physiological constraints and uncertainties explicitly in the
optimization problem formulation.

To demonstrate our approach, we considered the in silico
physiological model of the rat cardiovascular system (Yao and
Kothare, 2020) as the physiological cardiac system to be
controlled. We adapted the MPC framework to design and
optimize the VNS parameters—pulse width, stimulation
frequency, and three VNS locations (i.e., 6 input
parameters)—to control HR and MAP in the in silico
physiological model of the rat cardiac system. To design our
model-based controller, we used the LSTM model presented in
the previous section as a predictive model of the in silico
physiological model of the rat cardiovascular system and
formulated the following optimization problem to be solved at
each cardiac cycle:

min J k( )
�u k + j − 1|k( ), j � 1, 2, . . . , Nc

s.t. �umin ≤ �u k + j − 1|k( )≤ �umax, j ∈ 1, Nc[ ]
�̂y k + i|k( ) � fNN

�̂y k + i − 1|k( ), �u k + i − 1|k( )( ), i ∈ 1, Np[ ]
�̂y k|k( ) � �y0 k( )

(1)

Here, fNN(·, ·) denotes the LSTM model described in the
previous section, �̂y(k + i|k) is the vector of predicted
physiological outputs (i.e., HR and MAP) from the LSTM
model at the discrete time (i.e., cardiac cycle) k + i, given that
the outputs are measured from the in silico physiological model at
the current time k, Nc and Np are the control horizon and
prediction horizon, respectively, and �u(k + i|k) denotes the

FIGURE 1 | LSTM predictions (shown in red) compared to the output from the in silico physiological model of the rat cardiac system (PM, shown in black) for 200
simulated cardiac cycles of (A) heart rate and (B)mean arterial blood pressure (MAP). For cycles 1–50 (light green), location 1 was active with a pulse width of 0.36 ms
and pulse frequency of 31 Hz. For cycles 51–100 (light blue), location 2 was active with a pulse width 0.19 ms and a pulse frequency 17 Hz. For cycles 101–150 (yellow),
location 3 was active with a pulse width of 0.42 ms and a pulse frequency of 47 Hz. The last 50 cycles did not have any locations active.

FIGURE 2 | A Schematic showing our model-based predictive closed-
loop optimal control framework for optimizing the vagus nerve stimulation
(VNS) parameters to control multiple cardiac physiological biomarkers such as
heart rate (HR) and mean arterial blood pressure (MAP). Here, a long
short-term memory (LSTM) based recurrent neural network model has been
used tomake predictions of HR andMAP in response to VNS and optimize the
VNS parameters within the model predictive control (MPC) framework.
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vector of VNS input parameters (i.e., the pulse width and the
stimulation frequency at three VNS locations) at a future time k +
i, given that the outputs are measured from the in silico
physiological model at the current time k. �y0(k) is the vector
of measured HR and MAP from the in silico physiological model
at the current time (or cardiac cycle) k and J(k) is the user defined
scalar cost function. In the optimization problem (1), the first
constraint represents the upper and lower bounds on the VNS
parameters over the control horizon. The second constraint states
that the evolution of outputs over the prediction horizon must
satisfy the LSTM model dynamics. The last constraint states that
the current outputs of LSTM model are same as the measured
outputs from the in silico physiological model at time k.

2.2.1 Sparsity Promoted Closed-Loop VNS Design
As noted in the description of the optimization problem (1), the
manipulated (or designed) VNS inputs consist of three VNS
locations, with each location having two VNS design parameters,
the pulse width, and the stimulation frequency. The presence of
discrete or integer variables (locations of VNS) requires the
formulation of the optimization problem (1) in the form of a
well-known mixed-integer programming problem, which is
typically computationally expensive to solve (Trespalacios and
Grossmann, 2014). To keep our control strategy computationally
efficient while achieving a similar performance compared to the
mixed-integer programming solution, we formulated the cost
function in the optimization problem (1) by introducing a L1
penalty on the VNS parameters as follows:

J k( ) � ∑Np

i�1
�r k + i( ) − �̂y k + i|k( )( )T

Q �r k + i( ) − �̂y k + i|k( )( )
+ λ∑Nc

j�1
‖ �u k + j − 1|k( )‖1.

(2)
Here, the first term in the sum is a weighted quadratic cost

defining the error between the target output (or reference) to be
achieved by the controller and the predicted output from the
LSTM model over the prediction horizon Np. �r(k + i) ∈ R2×1 is a
vector of the time varying target output (HR andMAP) at discrete
time k + i and Q ∈ R2×2 is the weighting matrix emphasizing the
importance of specific outputs. The second term in the sum is a L1
cost on the manipulated inputs (the pulse width and stimulation
frequency at three VNS locations) over the control horizon Nc.
The parameter λ defines the importance of these two terms in the
cost function. We define the L1 cost as

∑Nc

j�1
‖ �u k + j − 1|k( )‖1 � ∑Nc

j�1
∑6
i�1

|ui(k + j − 1|k)|. (3)

Here, |·| represents the absolute value of the argument. L1
penalty in the cost function is well-known to introduce sparsity in
the optimization variables, both in the control community and
machine-learning community (Vidaurre et al., 2013).

To solve the optimization problem (1) with the cost function
(2), we setNp = 10,Nc = 5, and λ = 0.001. The initial measured HR

and MAP from the physiological rat cardiac model were 409
(bpm) and 138 (mmHg), respectively. We selected the heart rate
going from 392 (bpm) to 346 (bpm) followed by 393 (bpm), and
mean arterial blood pressure going from 111 (mmHg) to 144
(mmHg) followed by 125 (bpm) with each pair lasting for 50
cardiac cycles as the desired set point trajectory to be followed by
the controller.

Figure 3 shows our simulation results on the sparsity
promoted closed-loop VNS design to control HR and MAP
simultaneously. In Figures 3A,B, we note that the designed
controller efficiently drove the in silico physiological model to
the desired time-varying set points with minimal to no steady-
state offset for HR andMAP, respectively. Figures 3C,D show the
optimized pulse width and stimulation frequency, respectively,
delivered to the in silico physiological model at each cardiac cycle.
As noted in Figures 3C,D, the controller activated locations 1 and
2 in the first and the last 50 cardiac cycles and locations 2 and 3 in
the second 50 cardiac cycles to achieve the desired set points in
each 50 cycles period.

We also note in Figures 3C,D that the controller actions are
oscillating slightly. A possible reason for this behavior may be due
to influence from the MAP variable, which exhibits fluctuations
even at the steady-state (see Figure 1). Since there is no cost term
forcing a constant solution on the controller inputs, the controller
attempts to compensate for this fluctuation by altering its actions,
thus leading to similar fluctuations in the controller actions.
Additionally, it is worth noting that the LSTM had a higher
error for MAP predictions (compared to HR) for this reason.

In summary, we showed a data-driven model-based closed-
loop control strategy to optimize the VNS parameters with
multiple stimulation location sites, leading to a sparse selection
of VNS parameters in controlling cardiac physiology efficiently.
This strategy may find applications in developing efficient closed-
loop VNS therapy for cardiac diseases by minimizing the side
effects of specific stimulation locations. Although we have not
considered all possible physiological constraints in formulating
our optimization problem, the framework is general enough to
introduce additional physiological constraints within the
optimization problem.

2.2.2 Minimum Energy-Based Closed-Loop VNS
Design
In the previous section, we presented a sparsity-promoted
closed-loop VNS strategy that selectively stimulated specific
VNS locations to control the heart rate (HR) and mean arterial
blood pressure (MAP). Although this strategy could
potentially minimize the location-specific side effects
induced by VNS, the bang-bang nature of this strategy
(i.e., delivering VNS at the maximum allowable pulse width
and frequency) may damage tissues over a longer period of
VNS application (Agnew et al., 1989). To minimize the
duration of the applied VNS at the maximum allowable
pulse width and frequency, we designed a closed-loop
optimal control strategy by minimizing the stimulation
energy required to drive HR and MAP to the desired set
points. To implement this strategy, we chose the following
cost function in the optimization problem (1):
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J k( ) � ∑Np

i�1
�r k + i( ) − �̂y k + i|k( )( )T

Q �r k + i( ) − �̂y k + i|k( )( )
+ λ∑Nc

j�1
‖ �u k + j − 1|k( )‖22.

(4)
Here, the first term in the sum is a weighted quadratic cost

defining the error between the target output (or reference) to be
achieved by the controller and the predicted output from the
LSTM model over the prediction horizon Np. �r(k + i) ∈ R2×1 is a
vector of the time varying target output (HR andMAP) at discrete
time k + i and Q ∈ R2×2 is the weighting matrix emphasizing the
importance of specific outputs. The second summation term is a
L2 cost on the manipulated inputs (the pulse width and
stimulation frequency at three VNS locations) over the control
horizon Nc. The parameter λ defines the importance of these two
terms in the cost function. It should be noted that the cost
function (4) is same as the sparsity promoted cost function (2)
described in the previous section except we replaced the L1
penalty in (2) by a L2 penalty. We define the L2 cost as

∑Nc

j�1
‖ �u k + j − 1|k( )‖22 � ∑Nc

j�1
�u
T
k + j − 1|k( )R �u k + j − 1|k( ). (5)

Here (·)T represents a vector transpose and R ∈ R6×6 is the
weighting matrix defining the importance of individual inputs. L2
penalty in the cost function is well-known to achieve a minimum

energy solution by suppressing large amplitude control actions
(Kwakernaak et al., 1974).

To solve the optimization problem (1) with the cost function
(4), we set Np = 10, Nc = 5, and λ = 0.001. We set the design
parameters Q and R to an identity matrix of appropriate
dimensions. The initial measured HR and MAP from the
physiological rat cardiac model were 409 (bpm) and 138
(mmHg), respectively. We selected the heart rate going from
392 (bpm) to 346 (bpm) followed by 393 (bpm), and mean
arterial blood pressure going from 111 (mmHg) to 144 (mmHg)
followed by 125 (mmHg) with each variable lasting for 50 cardiac
cycles as the desired set point trajectory to be followed by the
controller.

Figure 4 shows our simulation results on the minimum
energy-based closed-loop VNS design in controlling HR and
MAP of the in silico physiological model of rat cardiovascular
system simultaneously. In Figures 4A,B, we show that the
designed controller can efficiently drive the in silico
physiological model to the desired time-varying set points with
minimal to no offset for HR and MAP, respectively. We note that
the output performance of the designed controller is similar to the
sparsity promoted design described in the previous section, with
slight oscillations in MAP. Figures 4C,D show the optimized
pulse width and stimulation frequency, respectively, delivered to
the physiological model at each cardiac cycle. As noted in Figures
4C,D, the controller activated all the locations to achieve the
desired set points in each 50 cycle period as opposed to the
sparsity-promoted design shown in Figures 3C,D. More

FIGURE 3 | Sparsity-promoted closed-loop control of the heart rate (HR) and the mean arterial blood pressure (MAP) of the in silico physiological model of the rat
cardiac system. (A) and (B) show the closed-loop control response from the in silico physiological model (shown in red dots) and the target (or reference) for the controller
(shown in black line) for HR and MAP, respectively. (C) and (D) show the pulse width and the stimulation frequency, respectively, designed by the controller at each VNS
location.
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importantly, the designed controller selected minimum values on
the VNS parameters (pulse width and frequency) required to
drive HR and MAP to the desired set points by minimizing the
input energy.

In summary, we showed a data-driven model-based
closed-loop control strategy to optimize the VNS
parameters with multiple stimulation location sites, leading
to a minimum energy based selection of VNS parameters in
controlling cardiac physiology efficiently. This strategy may
find applications in developing efficient closed-loop VNS
therapy for cardiac diseases by enhancing the battery life
of the VNS device. Moreover, this strategy could easily be
combined with the sparsity promoted closed-loop VNS
design by including an additional L1 penalty term in the
cost function (4).

2.2.3 Minimum Overshoot Based Closed-Loop VNS
Design
In the previous two closed-loop VNS designs, we noted that the
controller actions oscillate around the steady-state values (see
Figures 3C,D, 4C,D). To eliminate or reduce the oscillatory
behavior in the controller actions, we included an additional
term in the cost function that penalizes the deviation in inputs,
when comparing the current and future stimulation
parameters to the previously implemented optimal
stimulation parameters to the in silico physiological model.
Particularly, we formulated the cost function J(k) in the
optimization problem (1) as follows:

J k( ) � ∑Np

i�1
�r k + i( ) − �̂y k + i|k( )( )T

Q �r k + i( ) − �̂y k + i|k( )( )
+λ1 ∑Nc

j�1
‖ �u k + j − 1|k( )‖1 + λ2 ∑Nc

j�1
‖ �u k + j − 1|k( ) − �uk−1‖1.

(6)
Here, the first two terms of the cost function (6) are same as

the sparsity promoted cost function (2), as described in Section
2.2.1. The last term in the cost function (6) is the difference
between the current and future control inputs over the control
horizon Nc and the last applied optimal control input �uk−1 on the
in silico physiological model of the rat cardiovascular system
(i.e., the physiological system). λ1 and λ2 are the weighting
parameters.

By including the difference in controller action term in the cost
function (6), we forced the controller actions to take values close
to the last implemented optimal control action on the in silico
physiological model. As a result of the constant controller actions,
the physiological variables should exhibit minimal overshoot as
they gradually reach the setpoint. Additionally, any fluctuations
in HR or MAP at the setpoint are the result of intrinsic model
dynamics. The inclusion of the L1 cost term in the cost function
(6) serves to maintain a sparse solution.

For the closed-loop simulation, we set Nc = 5, Np = 10, λ1 =
0.001, and λ2 = 0.00005. It should be noted that different
selections of Nc and Np can lead to similar performance,
provided that the weights (λ1, λ2) are appropriately selected.

FIGURE 4 |Minimum energy-based closed-loop control of the heart rate (HR) and the mean arterial blood pressure (MAP) of the in silico physiological model of the
rat cardiac system. (A) and (B) show the closed-loop control response from the in silico physiological model (shown in red dots) and the target (or reference) for the
controller (shown in black line) for HR and MAP, respectively. (C) and (D) show the pulse width and the stimulation frequency, respectively, designed by the controller at
each VNS location.
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The initial values of HR and MAP were 409 (bpm) and 138
(mmHg), respectively. The values for Q and R were again an
identity matrix of the appropriate dimensions. The duration and
set points for both HR and MAP were the same as mentioned in
previous sections.

Figures 5A,B show the controller performance in driving HR
and MAP of the in silico physiological model to the desired set
points. As shown here, adding an input difference term (the last
term in the right hand side of the cost function (6)) minimized the
previously seen fluctuations in MAP and leads to a smoother
behavior in both HR and MAP compared to the sparsity-
promoted and minimum energy-based strategies. Notably, this
strategy resulted in no overshoot in the last set point for HR and a
minimal overshoot for the other two target set points for HR.

The impact of the input difference term in the cost function (6)
becomes more pronounced in the controller actions, as depicted
in Figures 5C,D for VNS pulse width and frequency, respectively.
We particularly foundminimal to no oscillations in the controller
actions as compared to the sparsity promoted and minimum
energy-based strategies. Interestingly, the minimum overshoot
based controller does not achieve the sparse solution at all target
set points, evidenced by having all three locations active for the
last set point.

In summary, we showed a data-driven model-based closed-
loop control strategy to optimize the VNS parameters with
multiple stimulation location sites, leading to smooth selection
of VNS parameters in controlling cardiac physiology efficiently.
This strategy may find applications in developing efficient

closed-loop VNS therapy for cardiac diseases by avoiding
overshoots/fluctuations in the controlled outputs.

2.3 Controlling Individual Patient Mismatch
So far, we have only considered scenarios where the developed
LSTM model accurately predicted the heart rate (HR) and the
mean arterial blood pressure (MAP) of the in silico physiological
model of the rat cardiovascular system in response to VNS. We
then used this LSTM model to design control strategies to
optimize the VNS parameters to achieve a desired HR and
MAP in the in silico physiological model. We demonstrated
that the designed controller could efficiently drive HR and
MAP to the desired set points as long as the LSTM
predictions are reasonably accurate compared to the in silico
physiological model (i.e., there is a minimal or no model
mismatch between the LTSM and the in silico physiological
model). In general, it may not always be feasible to obtain an
accurate system model, mainly if experimental/clinical data are
used to develop a system model. Should a reasonably good
quantitative model be developed from the available
experimental data, there may always be subject-to-subject
variability in response to VNS which could potentially result
in a significant model mismatch between the developed model
and the physiological system. This model mismatch could lead to
degraded performance of the designed controller in driving HR
and MAP to the desired set points.

To illustrate this point, we created a specific case where we
modified the neuronal fiber recruitment concentrations at each

FIGURE 5 |Minimum overshoot-based closed-loop control of the heart rate (HR) and the mean arterial blood pressure (MAP) of the in silico physiological model of
the rat cardiac system. (A) and (B) show the closed-loop control response from the in silico physiological model (shown in red dots) and the target (or reference) for the
controller (shown in black line) for HR and MAP, respectively. (C) and (D) show the pulse width and the stimulation frequency, respectively, designed by the controller at
each VNS location.
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VNS location in the in silico physiological model of the rat
cardiovascular system (Yao and Kothare, 2020). Specifically,
we changed the neuronal fiber concentrations at each location
(Ci,j) whose impact affects the output of Eq. 20, and ultimately
leads to a different influence of VNS on the cardiac variables
when compared to the baseline in silico physiological model.
Figure 6 shows the predicted HR and MAP from the modified in
silico physiological model in response to various VNS parameters
and their comparison with the LSTM predicted values and the
original in silico physiological model. As shown here, although
the LSTM model did not predict the physiological HR and MAP
quantitatively in response to VNS for the modified in silico
physiological model, it indeed predicted the HR and MAP
qualitatively. As noted in Figure 6 for the cardiac cycles
between 150 and 200, the LSTM predicted both HR and MAP
quantitatively with reasonable accuracy in the absence of VNS,
which we expect since the modified in silico physiological model
only differs from the original in silico physiological model (Yao
and Kothare, 2020) in terms of how it responds to VNS.

We then used the same control formulation as described in the
sparsity-promoted control design (see Section 2.2.1) but with the
modified in silico physiological model in the closed-loop instead
of the original in silico physiological model. Figure 7 shows the
closed-loop performance of the designed controller. As noted in
Figures 7A,B, the designed controller failed to drive HR and
MAP to the desired set points. Specifically, the designed
controller led to significant steady-state offset at most of the
set-points. Interestingly, the sparsity promoted controller drove
MAP to the desired set point for the cardiac cycles 150–300. This
surprising result highlights one of the inherent advantages of
model-based predictive control, wherein the feedback to the
model provides inherent integral action to compensate for offsets.

To eliminate the steady-state offsets in the closed-loop
performance, we adopted an approach of nonlinear offset-free
control (Morari and Maeder, 2012) and reformulated our MPC
optimization problem as follows:

min J k( ),
�u k + j − 1|k( ), j � 1, 2, . . . ,Nc

�us , �̂ys

s.t. �umin ≤ �u k + j − 1|k( )≤ �umax , j ∈ 1,Nc[ ],
�̂y k + i|k( ) � fNN,aug

�̂y k + i − 1|k( ), �d k( ), �u k + i − 1|k( )( ), i ∈ 1,Np[ ],
�̂y k|k( ) � �y0 k( )
�r k( ) � fNN,aug

�̂ys ,
�d k( ), �us( ).

(7)

Here, �u(k + j|k) ∈ R6×1 is a vector of VNS parameters at the
discrete time k + j, given that HR and MAP were measured
from the modified in silico physiological model at time k. �umin

and �umax are the minimum and maximum bound on the VNS
parameters, respectively. �̂y(k + i|k) ∈ R2×1 is a vector of
outputs (HR and MAP) predicted by the LSTM model at
the discrete time k + i, given that HR and MAP were
measured from the modified in silico physiological model
(the physiological system to be controlled in our case) at
time k. The function fNN,aug(·) represents the LSTM model
augmented with a disturbance model (see Eq. 8b). Np and Nc

are the prediction and control horizon, respectively.
�y0(k) ∈ R2×1 is the output (HR and MAP) measured from
the in silico physiological model at time k in response to the
optimal VNS parameters �u(k − 1|k − 1). �r(k) ∈ R2×1 is a vector
consisting of the reference or target HR and MAP. The vector
�d(k) ∈ R2×1 is a disturbance term which models the mismatch
between the LSTM and the in silico physiological model at time

k (see Eq. 8c). For a given �r(k) and �d(k), �̂ys and
�us are the

steady-state solution of the disturbance-augmented
LSTM model.

The optimization problem (7) is notably different from the
previously formulated optimization problem (1) in two ways.
First, this new optimization problem aims to minimize a scalar
cost function J(k) with respect to two steady-state variables
�us ∈ R6×1 and �̂ys ∈ R2×1 in addition to the VNS parameters
�u(k + j − 1|k) ∈ R6×1 over the control horizon Nc used in the

optimization problem (1). And second, we introduced an

additional constraint in the optimization problem formulation

FIGURE 6 | Comparison between the physiological outputs predicted from the modified in silico physiological model (IP, shown in blue), the in silico physiological
model (PM, shown in black) and LSTM model (shown in red) in response to the vagus nerve stimulation (VNS) for 200 simulated cardiac cycles. (A) shows the heart rate
(HR, bpm) and (B) shows the mean arterial blood pressure (MAP, mmHg). For cycles 1–50 (light green), location 1 was active with a pulse width of 0.36 ms and pulse
frequency of 31 Hz. For cycles 51–100 (light blue), location 2 was active with a pulse width 0.19 ms and a pulse frequency 17 Hz. For cycles 101–150 (yellow),
location 3 was active with a pulse width of 0.42 ms and a pulse frequency of 47 Hz. The last 50 cycles did not have any locations active.
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which ensures that the current target ( �r(k)) is returned when the
disturbance-augmented LSTM is evaluated at the steady-state
optimized variables �ys and

�us for a given �d(k).
To account for the model mismatch between the output

predictions from the LSTM model and the modified in silico
physiological model (the physiological system to be controlled in
our case) in the computation of optimal control actions, we
introduced the following disturbance model:

fNN,aug
�̂y k( ), �d k( ), �u k( )( ) � fNN

�̂y k( ), �u k( )( ) + �d k( ) (8a)
�d k + 1( ) � �d k( ) + Ld

�ϵ k( ) (8b)
�ϵ k( ) � fNN,aug

�̂y k − 1( ), �d k − 1( ), �u k − 1( )( ) − �y k( ) (8c)

Here, the augmented LSTM function

fNN,aug( �̂y(k), �d(k), �u(k)) described by Eq. 8a is the sum of

the LSTM function fNN( �̂y(k), �u(k)) and the disturbance

variable �dk. The disturbance model (8c) updates the model
mismatch between the measured outputs (HR and MAP) from
the modified in silico physiological model and the predicted
outputs from the LSTM model at the next time step by
integrating a scaled error. Eq. 8c computes the model
mismatch between the predicted outputs from the LSTM
model and the measured outputs (HR and MAP) �y(k) from
the modified in silico physiological model at time k. Ld ∈ R2×1 is a
vector of constant gains.

At the beginning of the simulation, the disturbance variable
�d(0) was initialized to zero. To select the gain, Ld on the
disturbance update model (8c), the authors in Morari and
Maeder (2012) computed Ld based on the system model (well-
behaved differential equation model in this case) linearized
about the origin using the steady-state Kalman filter algorithm.
In principle, the observer must be nominally asymptotically
stable and satisfy: Ld(ϵ = 0) = 0. In our case, such linearization
was not possible for the LSTM model. Therefore, we selected
the gain Ld based on a trial-and-error procedure. Particularly,
we ran different trials of closed-loop simulations and
examined the plot of the disturbance evolution over time.
Typically, if a sufficiently inappropriate value was selected,
the solver ceased to converge, often requiring a decrease in the
Ld values. If the values were within the range required for the
convergence, then the effect of increasing those values led to
faster convergence to the steady-state solution. However, if the
selected values were too large, then the error signal (Eq. 8c)
was significantly emphasized, and the controller became
unstable, often causing a failure in the convergence of the
optimization solver. If the values of Ld were decreased, the
controller took more iterations or a longer time to compensate
for the offset. Based on this approach, we selected the following
value of the gain Ld:

Ld � 0.06 0
0 0.05

[ ]

FIGURE 7 | Sparsity-promoted closed-loop control of the heart rate (HR) and themean arterial blood pressure (MAP) of the modified in silico physiological model of
the rat cardiac system. (A) and (B) show the closed-loop control response from the modified in silico physiological model (shown in blue dots) and the target (or
reference) for the controller (shown in black line) for HR andMAP, respectively. (C) and (D) show the pulse width and the stimulation frequency, respectively, designed by
the controller at each VNS location.
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We formulated the following cost function to be minimized
within the optimization problem (7):

J k( ) � ∑Np

i�1
�̂ys − �̂y k + i|k( )( )T

Q �̂ys − �̂y k + i|k( )( )
+ ∑Nc−1

j�0
�us − �u k + j|k( )( )TR �us − �u k + j|k( )( ). (9)

Here, the first summation term is the squared difference
between the LSTM model predictions and the optimized
variable �̂ys. Note that this optimized variable represents the
new target set point for the controller that accounts for the
model mismatch. The second summation term is the squared
difference between the control input and the optimized variable
�us. Again, note that this additional optimized variable is the

actuation that together with �̂ys satisfies the last constraint in the

optimization problem (7) for a given �r(k) and �d(k). Consistent
with the previous cost functions, Q and R were set to an identity
matrix of the appropriate dimensions. The constrained
optimization problem (Eq. 7) together with the disturbance
update (Eq. 8b), and the cost function (Eq. 9) enable the
designed controller to achieve the steady-state offset free
control of HR and MAP.

Figure 8 shows the closed-loop performance of our
designed controller. For the first 150 cardiac cycles, the set
point �r(k) was set to 356 (bpm) and 150 (mmHg) for HR and

MAP, respectively. For the next 150 cardiac cycles, the set
point was set to 393 (bpm) and 129 (mmHg) for HR and MAP,
respectively. Finally, for the final 150 cardiac cycles, the set
point was set to 377 (bpm) and 143 (mmHg) for HR and MAP,
respectively. The initial values were 409 (bpm) and 138
(mmHg) for HR and MAP, respectively. For the controller,
we set Np = 20 and Nc = 10 for this simulation. For each set
point, we ran the simulation for 100 cardiac cycles longer (150
cardiac cycles as opposed to 50 cardiac cycles in previous
closed-loop simulations) to ensure the convergence of the
offset-free closed-loop control formulation.

As shown in Figure 8, the controller is able to achieve offset-
free control within the first 50 cardiac cycles of each set point
change. As the controller approaches each set point, there is an
overshoot of each target for the first 20 cardiac cycles of the set
point change. Notably, the optimized VNS parameters are
generally smooth and constant near the steady-state.

Concisely summarized, we developed a closed-loop optimal
control approach that accounts for the intra-patient variability of
vagus nerve stimulation (VNS) response to the heart rate (HR)
and the mean arterial blood pressure (MAP) in optimizing the
VNS parameters for controlling HR and MAP. This specific
closed-loop control formulation is appropriate in clinical/
experimental settings where intra-patient variability is critical
in designing VNS strategies, and the response of the implanted
VNS device is sufficiently different from the responses used to
train the LSTM model. A notable limitation of this approach is

FIGURE 8 |Offset-free closed-loop control of the heart rate (HR) and the mean arterial blood pressure (MAP) of the modified in silico physiological model of the rat
cardiac system in the presence of intra-patient variability in the VNS response to HR and MAP. (A) and (B) show the closed-loop control response from the modified in
silico physiological model (shown in blue dots) and the target (or reference) for the controller (shown in black line) for HR and MAP, respectively. (C) and (D) show the
pulse width and the stimulation frequency, respectively, designed by the controller at each VNS location.
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that it requires the controller’s task to be a set point tracking
problem due to the offset-free constraint formulation.

2.4 Closed-Loop Control of Overactive
Sympathetic System
To demonstrate whether the designed control strategy presented
in the previous section could be used to regulate the heart rate
(HR) and the mean arterial blood pressure (MAP) in a diseased
case, we constructed an example of overactive sympathetic
pathway case in the cardiac system. Specifically, we modified
the parameters of the original in silico physiological model (Yao
and Kothare, 2020) in a way such that the response to the
sympathetic nervous system dominated over the
parasympathetic response. These changes led to a higher
resting heart rate, and a higher blood pressure, both of which
are consistent with the behavior of some cardiovascular diseases
(Malpas, 2010). We provide the specific parameter changes in
Table 2. Particularly, this autonomic nervous system imbalance
promotes heart failure, and vagal nerve stimulation has been
suggested as a treatment therapy (Kishi, 2012). Similarly, the
dominance of the sympathetic system corresponds to the
increased blood pressure present in hypertension (Carthy,
2014). Additionally, hypertension has been shown to occur in
parallel with other cardiovascular diseases (Palatini and Julius,
2009). Figure 9 shows the difference between this new in silico
pathological behavior model and the original in silico
physiological model. Notably, in the absence of VNS, the in
silico pathological behavior model does not return to the same
value as the original in silico physiological model, which is
different from the intra-patient mismatch shown previously
(compare with Figure 6).

To drive the HR andMAP to the desired set points, we applied
the control formulation developed in the previous section (Eqs 7
and Eq. 8a, Eq. 8b, Eq. 8c, 9). Figure 10 shows the closed-loop

controller performance for our designed controller. For this
simulation, we set the initial heart rate to 452 bpm and the
initial blood pressure to 152 (mmHg). For the first 300 cycles, the
controller’s target was 356 (bpm) and 150 (mmHg) for HR and
MAP, respectively. The following 300 cardiac cycles had the
target changed to 393 (bpm) and 129 (mmHg), and the final
300 cardiac cycles the target was set to 377 (bpm) and 143
(mmHg). These are the same set points used for the intra-
patient case (Figure 8). Regarding the controller, the
controller parameters were set to the same previous values (Np

= 20 and Nc = 10). We set the disturbance gain vector Ld to

Ld � 0.06 0
0 0.018

[ ]
The length of simulation was considerably longer than

the previous simulations (900 cardiac cycles compared to
450 cardiac cycles) because the disturbance variable, used
for model mismatch compensation, took a longer time to
reach the saturation due to a large model mismatch in this
case. Nevertheless, the designed controller drove both HR
and MAP to the desired set points with no steady-state
offsets.

As noted in Figure 10B, the controller initially drives theMAP
in the opposite direction of the target. This behavior is likely due
to the significant model mismatch between the LSTM model and
the modified in silico physiological model for the overactive
sympathetic case. After about 50 cardiac cycles, the
disturbance variable starts compensating for the mismatch and
the MAP variable starts moving toward the target. After about
220 cardiac cycles, the disturbance variable has saturated leading
to offset free control. As discussed previously, the MAP variable
exhibits inherent fluctuations, and these fluctuations have grown
larger with the new parameter selection. Even with the inherent
model fluctuations, the MAP variable mean hits all of the set

FIGURE 9 | Comparison between the physiological outputs predicted from the modified in silico physiological model of an overactive sympathetic system
(Sympathetic, shown in purple), the original in silico physiological model (PM, shown in black) and LSTMmodel (shown in red) in response to the vagus nerve stimulation
(VNS) for 200 simulated cardiac cycles. (A) shows the heart rate (HR, bpm) and (B) shows the mean arterial blood pressure (MAP, mmHg). For cycles 1–50 (light green),
location 1 was active with a pulse width of 0.36 ms and pulse frequency of 31 Hz. For cycles 51–100 (light blue), location 2 was active with a pulse width 0.19 ms
and a pulse frequency 17 Hz. For cycles 101–150 (yellow), location 3 was active with a pulse width of 0.42 ms and a pulse frequency of 47 Hz. The last 50 cycles did not
have any locations active.
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points and thus providing an offset-free control. Figures 10C,D
show the optimal pulse width and stimulation frequency selected
by the controller, respectively.

In summary, we modified the in silico physiological model of the
rat cardiovascular system (the system to be controlled in our case) to
exhibit increased responses in the sympathetic nervous system and
decreased responses in the parasympathetic nervous system, and
demonstrated that the offset-free controller formulation reached
several set point tracking targets without a steady-state offset. This
proof-of-concept suggests that a controller can be designed for cases
where the diseased hemodynamics are considerably different from
the hemodynamics used to train the LSTM or other neural network
model to be used in designing a model-based optimal controller.

2.5 Impact of Prediction and Control
Horizons on the Controller Performance
and Computational Cost
In previous sections, we demonstrated various closed-loop
optimal VNS designs for controlling the heart rate (HR) and
the mean arterial blood pressure (MAP). In this section, we
systematically evaluated the computational time required for
simulating closed-loop control designs presented in the
previous sections. Additionally, we compared the effect of the
prediction horizon Np and the control horizon Nc on the
computational time and the closed-loop performance. All the
comparisons were performed on an INTEL(R) CORE I7-9700
CPU 3.00 GHz with 16.0 GB of RAM Desktop.

Table 1 shows a summary of the computational time required
to simulate 100 cardiac cycles (shown in terms of Average Time/
Cycle) in closed-loop under specific control policy along with the
closed-loop performance in terms of the mean absolute steady-
state error between the desired setpoint and the closed-loop
controlled output computed over the last 10 cardiac cycles for
each setpoint. We estimated the computational time by taking
the total time to run the closed-loop simulation for 100 cardiac
cycles and subtracting the time it took the full in silico
physiological model (the cardiac system to be controlled in
our case) to simulate the number of cycles and dividing this
difference by the total number of cycles in the simulation. For the
sake of comparison, we set the parameter λ, λ1, and λ2 in the
optimization problems to 0.001. As expected, when the control
horizon Nc was increased, the computational time increased as
well. A longer control horizon led to longer times for
optimization to converge because the number of optimized
variables increased by a six-fold rate as there were six
additional parameters for the controller to optimize for every
additional control horizon. Similarly, as the predictive horizon
Np increased, the time of optimization also increased as there
were more predictions to be computed from the LSTM model.
However, this additional computational time was not as
significant compared to the increase in the control horizon
Nc. It should be noted that there were 8 additional variables
to be optimized in the case of offset-free VNS design and
overactive sympathetic case due to the different optimization
problem formulation.

FIGURE 10 |Offset-free closed-loop control of the heart rate (HR) and themean arterial blood pressure (MAP) in an in silico overactive sympathetic systemmodel of
the rat cardiac system. (A) and (B) show the closed-loop control response from the modified in silico physiological model (shown in purple dots) and the target (or
reference) for the controller (shown in black line) for HR andMAP, respectively. (C) and (D) show the pulse width and the stimulation frequency, respectively, designed by
the controller at each VNS location.
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To compare the closed-loop performance over different
prediction and control horizons across the implemented
control strategies, we computed the steady-state mean absolute
error (SS MAE) by taking the average of the mean absolute
difference between the controlled output and the target setpoints
for the last 10 cycles of each setpoint. It should be noted that SS
MAE represents the combined absolute mean error of both the
heart rate and the mean arterial blood pressure. We noted in
Table 1 that the performance of the controller decreased to the
point of showing a clear steady-state offset from the setpoints for
the control horizon Nc = 1. It is expected that an increase in both
Nc or Np should exhibit less offset. This trend is not entirely
shown by the results in Table 1 because the weights of the cost
function (i.e., λ, λ1, λ2) were held constant. These results highlight
how the selection of controller parameters can lead to different
performances. Thus, the controllers with higher values ofNc orNp

likely need to be tuned to obtain comparable performance.
Based on the results shown in Table 1, we conclude that it is

likely that selections with Nc ≥ 5 and Np ≥ 20 would be difficult to
implement in real-time due to large computational time. This
leaves Nc ≤ 5, and Np ≤ 10 as plausible choices for the real-time
implementation of our closed-loop VNS designs. This analysis is
based on the estimation that the controller would be continuously
optimizing with roughly one second to optimize the result. In the
case of Nc > 1, control actions can be implemented one at a time

from the previous step optimization in case the next optimization
has not converged in time.

3 DISCUSSION

In this paper, we developed a model-based predictive closed-loop
optimal control framework that utilizes a data-driven machine
learning model of a system in optimizing vagus nerve stimulation
(VNS) parameters to control the cardiovascular physiological
outputs such as heart rate (HR) and mean arterial blood pressure
(MAP). Using a synthetic dataset generated from a previously
published in silico physiological model of the rat cardiovascular
system (Yao and Kothare, 2020), we developed a long short-term
memory (LSTM) based neural network model to predict HR and
MAP of the in silico physiological model in response to VNS. The
predictions of HR and MAP from our LSTM model showed
quantitative consistency with the in silico physiological model in
response to VNS with reasonable accuracy. We then used this
model in designing various model-based optimal control
strategies and demonstrated the efficacy of our closed-loop
optimal control designs in controlling HR and MAP of the in
silico physiological model of the rat cardiovascular system (the
physiological system to be controlled in our case) in simulation.
Finally, we showed in the simulation how our control designs
could address intra-patient variability in closed-loop VNS designs
and control HR and MAP in pathological conditions (e.g.,
overactive sympathetic cardiac system) where the model
mismatch between the LSTM model and the system to be
controlled is significant. Overall, our results highlight the
advantage of using a closed-loop model predictive optimal
control framework in optimizing VNS parameters to control
multiple cardiac biomarkers.

Throughout our closed-loop designs and simulations, we
chose appropriate design parameters such as the control and
prediction horizons and various weighting matrices to obtain the
best performances. Regarding the selection of these control design
parameters, there are some guiding principles to select these
parameters based on the observed closed-loop response of the
designed controller. For example, in the case of the sparsity-
promoted design presented in Section 2.2.1, a large value of λ
instructs the controller to emphasize suppressing the inputs more
than reaching the target value. A significant offset would evidence
the occurrence of such a scenario in the controlled system’s
outputs. Similarly, in the minimum energy-based design
presented in Section 2.2.2, a large value of λ can lead to a
similar situation where the controller is more focused on
minimizing the energy than driving the outputs to the desired
target.

As for this study, we have not found any significant difference
in the closed-loop performance for different choices of prediction
and control horizons, as shown in Section 2.5. However, we had
noted that the computational time increased by approximately
3 times when we changed the prediction and control horizons
from 10 and 5, respectively, to 20 and 20 (see Section 2.5). In
general, the choice of control horizon Nc and prediction horizon
Np can have a significant impact on the closed-loop stability,

TABLE 1 |Comparison of computational time and closed-loop performance of the
designed closed-loop VNS strategies. Simulations were performed on an
INTEL(R) CORE I7-9700 CPU 3.00 GHZ with 16.0 GB of RAM Desktop.

Nc (Cycles) Np (Cycles) Variables Est. Time/Cycle (s) SS MAE

Sparsity-promoted VNS design (Section 2.2.1)

1 10 6 0.21 2.41
5 10 30 0.89 0.96
10 10 60 1.15 0.99
1 20 6 0.57 5.46
5 20 30 1.89 0.80
10 20 60 2.35 0.75
20 20 120 2.75 1.10

Minimum energy-based VNS design (Section 2.2.2)

1 10 6 0.24 2.52
5 10 30 0.81 0.87
10 10 60 0.97 0.84
5 20 30 1.72 0.92
10 20 60 2.2 0.86
20 20 120 2.33 0.79

Minimum overshoot-based VNS design (Section 2.2.3)

1 10 6 0.33 1.43
5 10 30 1.00 1.40
10 10 60 1.55 2.12
10 20 60 3.81 2.04
20 20 120 6.34 2.32

Offset free VNS design (Section 2.3)

10 20 68 1.03 0.34

Overactive Sympathetic Case (Section 2.4)

10 20 68 1.06 0.70
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performance, and computational time. Typically, a large
prediction horizon can help in stabilizing the closed-loop
system, while a large control horizon (less than or equal to the
length of the prediction horizon) can provide less aggressive
closed-loop performance. However, selecting large values for
these parameters could also lead to large computational time
to simulate the closed-loop response of the system, which may
prevent the real-time implementation of the closed-loop control
design in experiments.

Our optimal control problem formulation in this paper is in
the form of a multi-objective optimization problem (Gunantara,
2018), where we have chosen these weights (Q and R) to be
identity matrices of appropriate dimensions. The matrix Q allows
to weigh specific output of interest more than other outputs to be
controlled, and thus the optimization problem focuses more on
minimizing this specific output than other outputs. Similarly, the
matrix R allows to weigh specific input of interest more than other
inputs to be optimized, and thus the optimization problem
emphasizes minimizing this specific input compared to other
inputs. Previously, it has been shown that artificial neural
networks in model predictive control have improved the
performance of biventricular assist devices for the treatment of
heart failure (Ng et al., 2018). Similarly, our results have indicated
that this approach allows for performance improvements.

The closed-loop control framework developed in this work
provides flexibility in designing a control strategy for a specific
situation. The optimization problem formulation can incorporate
any relevant cost function and physiological constraints
depending on the specific application. Additionally, as shown
in Sections 2.3 and 2.4, the control problem formulation allows
using the LSTM model trained on the data obtained from one
subject to be applied in designing control strategy for a different
subject, thus allowing a possibility to develop a model from the
healthy subjects and use the model in designing control strategy
for treating diseased cases.

While we showed the efficacy of the designed closed-loop VNS
strategies in controlling the cardiac physiological biomarkers in
an in silico physiological model of the rat cardiovascular system,
the inclusion of the neural network permits the flexibility of
developing a model of an in vivo physiological system as well. For
example, consider an in vivo system where a single location VNS
device with paramters of pulse amplitude, pulse width, and pulse
frequency are used to control the heart rate. To provide the neural
network with the data required to predict this relationship, open-
loop trials involving the selection of a VNS pulse (i.e., the
selection of pulse amplitude, pulse width, and pulse frequency)
are applied according to a predefined duty cycle while recording
the heart rate. With this dataset, a neural network can be trained
using the change in the heart rate while the VNS device is on to
learn the effect of VNS parameters on the cardiovascular system.
While it does not necessarily matter in which order the VNS
stimulation parameters are chosen, there is reason to gradually
increase the parameters for ease of subject comfort (Ardell et al.,
2017). Additionally, collecting open-loop data over several days
to assess temporal variation (analgous to different initial
conditions in the in silico physiological model) may improve
the accuracy of the neural network. Similarly, the neural

network’s predictive performance may improve through data
collection during different states of the subject (i.e., stress,
level of physical activity, etc.), provided this can be done so
safely. These additional considerations seek to provide the neural
network with the variety of data required to tune its predictions
based on the different operating regimes of the cardiovascular
system, which will likely improve the performance of the
accompanying controller.

Should these controller designs be deployed in the
experimental/clinical setup, there is a potential that the
controller could switch its objective function to meet the
demands of the physiological system. In a therapeutic context,
stimulating all locations at all times could lead to a loss in the
efficacy of specific treatment. Conversely, there may be times
when power consumption holds a higher priority than enforcing
a sparse solution. For the therapeutic application, the closed-loop
control formulation in Section 2.2.3 could drive the physiological
system to reach the desired targets with more smooth transitions,
which may be more gentle for the patient or subject of the
therapy. These different contexts are why we have investigated
multiple controller designs in this paper. Importantly, all the
control designs have been shown to reach the target set point with
a nominal to no steady-state offset. Their similar performances
suggest a potential of employing them in the experimental system
while accounting for multiple external factors (battery level,
physiological feedback, stimulation time, etc.) to provide the
context for selecting the specific controller design used at a
particular time.

Due to limitations of the in silico physiological model, there
are additional details concerning implementation that we could
not investigate here. For instance, heart rate is not necessarily a
directly measurable biomarker and is derived from the
electrocardiograph (ECG) measurement, leading to the
question of abstracting a sufficient correlation directly from
data containing the ECG and the applied VNS parameters.
The presence of noise in an in vivo system can be addressed
through designing an observer to estimate the true values of the
biomarkers of interest, although this has not been demonstrated
here. As a consequence of the in silico physiological model used
for training the LSTM, we have omitted the pulse amplitude as an
optimized VNS parameter. We anticipate that the inclusion of
this parameter would not cause any fundamental problem to our
approach. Additionally, most of the published studies on
optimizing VNS for cardiac system did not consider the
influence of disease pathology on controller performance
(Zhang et al., 2002; Tosato et al., 2006; Ugalde et al., 2015;
Greenwald et al., 2016; Romero-Ugalde et al., 2017; Yao and
Kothare, 2020). While we have considered this by modifying the
physiological dynamics (see Sections 2.3 and 2.4), it is worth
noting that the offset-free controller formulation is limited to
overcoming the steady-state offsets in the closed-loop
performance. Thus, should the controller’s objective change to
a tracking problem (as opposed to a constant set point), then the
controller’s performance would not necessarily achieve nominal
offset in the presence of model mismatch. While this limitation
may appear exceptionally prohibitive, depending on the
application of the VNS device, such a limitation may not
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restrict all applications. Additionally, assessing the controller
performance when training a neural network with open-loop
data from multiple subjects as opposed to a single subject could
lead to insight regarding a generalized way to model the in vivo
system. These topics are under active investigation and comprise
future work.

4 METHODS

4.1 In Silico Rat Cardiac Model
We used a previously published in silico physiological model of
the rat cardiac system that includes the effect of two VNS
parameters (pulse width in ms and pulse frequency in Hz) on
the two physiological variables (heart rate (HR) in bpm and
mean arterial blood pressure (MAP) in mmHg) (Yao and
Kothare, 2020). Here, we provide a brief description of this
in silico physiological model and refer the reader to this study
for a full model description. The model was composed of three
different parts: the cardiovascular system, the baroreflex
system, and the vagus nerve stimulation (VNS) device.
Regarding the VNS device, there were three different
locations to apply VNS, following the experimental setup of
Plachta et al. (2014), and thus there were six total VNS
parameters (three locations with two parameters each). To
determine the effects of VNS on the physiological outputs,
each location contained a concentration of vagal,
baroreceptive, and sympathetic neuronal fibers. The
application of VNS led to different fiber recruitment levels
depending on the parameters chosen. From the fiber
recruitment, the effect on the physiological variables were
determined through the interactions between the simulated
central nervous system, and the cardiac system.

4.1.1 Cardiovascular Model
Design of the cardiovascular system were based on the previously
published models (Djabella et al., 2005; Ferreira et al., 2005).
Parameters for the cardiovascular system came from (Ferreira
et al., 2005) and were adjusted by the body volume ratio of rats to
humans, resulting in values similar to those measured in
experimental rats (Pacher et al., 2004). The pressure volume
relationship was described as

Pi � Ei Vi − Vi,d( ), (10)
where the instantaneous blood pressure of compartment i is
denoted by Pi, the total volume is denoted by Vi, unstressed
volume is denoted by Vi,d, and the elastance is denoted by Ei. The
elastance, E(t), was described, by following the formulation of
(Stergiopulos et al., 1996), as:

E t( ) � Emax a
tn
α1T
( )n1

1 + tn
α1T
( )n1 1

tn
α2T
( )n2⎛⎝ ⎞⎠ + Emin, (11)

where tn denotes the periodic time, T denotes the cardiac period,
Emax denotes the end-systolic elastance, Emin denotes the end-
diastolic elastance, and a, α1, α2, n1, n2 are all dimensionless

constants. The flow, Q, between chambers of the cardiac system
was modeled as follows:

Q � Pin − Pout

CiRsys
. (12)

Here, Pin and Pout represent the pressure difference causing
blood flow, Ci represents a compliance constant, and Rsys
represents the cardiac system’s resistance to blood flow.
Following a mass balance, the change in volume was given by

dV

dt
� Qin − Qout, (13)

where Qin represents the flow into the compliance chamber, and
Qout represents the flow out of the compliance chamber. Finally,
the inertial flow out of the left ventricle was described as

ΔP � L
dQ

dt
, (14)

where L denotes the inertance, and ΔP denotes the pressure
difference due to the inertial blood flow.

4.1.2 Baroreflex Model
The baroreflex system model was derived from (Lau and
Figueroa, 2015), and was composed of several parts: the
central nervous system, the baroreceptor model, and a
modulation of efferent responses. Following the activation of
the sympathetic drive, the modulation of efferent responses was
described by the left ventricle systolic elastance (Emax) and the
cardiac resistance to blood flow (Rsys) exhibiting a positive
response, and conversely the heart period (T) exhibiting a
negative response. A previously developed input-output
relationship of the interactions between the central nervous
system and baroreceptive fibers was used to determine the
effect of the baroreflex system on cardiovascular functioning
(Ursino, 1998). The parameters for the baroreceptive model
were taken from (Mahdi et al., 2013), and the parameters of
the baroreflex system model were taken from (Ursino, 1998). To
keep generality, each location was assumed to be concentrated
with 100% of a specific neuronal fiber type (i.e., location 1 was
assumed to be concentrated with only baroreceptive fibers),
which led to a qualitative match with the experimental data
presented in (Plachta et al., 2014). The sympathetic efferent
pathway was described using the following equation:

dθes
dt

� − 1
τθes

θes − θ0( ) + Gθes ln max fes t −Dθes( ) − fes,min, 1{ }( ).
(15)

Here, θes denotes each of the efferent path variables: the heart
period T, the systolic elastance of the left ventricle Emax, and the
inertial cardiac flow resistance, Rsys. The baseline value in the
absence of external input is given by θ0, τθes denotes the time
constant, fes(t) represents the firing rate of the sympathetic
efferents, Gθes denotes the gain, Dθes denotes the delay of the
effector, and fes, min denotes the minimum firing rate of the
sympathetic efferents. Following the activation of vagal fibers,
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the first-order dynamics were used to capture the corresponding
change in the heart period as follows:

dTev

dt
� − 1

τTev

Tev − T0( ) + GTev fev t −DTev( ). (16)

Here, Tev denotes the change in the heart period due to
activation of vagal fibers, T0 denotes the resting heart period,
τTev is the time constant, GTev is the gain of the heart period, and
DTev is the delay of the vagal pathway. The effects on the heart
period (T) from sympathetic activation were assumed to be
independent of the effects from the vagal activation, leading to
the following calculation for the heart period from the total effects
of stimulation:

T � Tev + Tes − T0. (17)
Here, Tev denotes the effect of vagal (parasympathetic)

efferents on the heart period, Tes denotes the effect of
sympathetic efferents on the heart period, and T0 is the resting
heart period.

4.1.3 VNS Device Model
The stimulation device translates VNS parameter selection into
neural firing rate changes, with an assumption that the device
increases the firing rates of the baroreceptive fibers, efferent
sympathetic fibers, and vagal fibers. The fiber recruitment due
to pulse width was given by

F Pi
w( ) � Pi

w/kw�����������
1 + Pi

w/kw( )2√ , (18)

where i = 1, 2, . . . , n is the location index, kw denotes a
dimensionless scaling parameter, Pi

w denotes the pulse width,
and F(Pi

w) denotes the fiber recruitment at each location. The
change in firing rates due to pulse frequency was given by

ΔR Pi
f( ) � Pi

f/kf�����������
1 + Pi

f/kf( )2√ , (19)

where i = 1, 2 . . . , n denotes the location index, kf denotes a
dimensionless scaling parameter, Pi

f denotes the pulse
frequency, and ΔR(Pi

f) denotes the change in firing rates of
each fiber. Since the change in fiber firing rates leads to the
change in physiological variables, this aggregate effect of fiber
recruitment regarding the selection of the pulse width and the
pulse frequency on the firing rates of neuronal fiber type j was
described by

Δfj � Gj

n
∑n
i�1

δiCi,jF Pi
w( )ΔR Pi

f( ). (20)

Here, i = 1, 2, . . ., n is the location index, j = 1, 2, 3 indicates the
fiber type index, δi indicates an on/off of the ith location, Ci,j

represents the concentration of fiber type j at location i. The gain
of each fiber’s excitability is represented by Gj, and fj denotes the
final change in the firing rate of the fibers.

Thus, Eqs 10–20, together describe the complete physiological
dynamics of the in silico rat cardiac system with the influence
of VNS.

4.2 Intra-Patient Variation Cardiac Model
In Plachta et al. (2014), the authors showed that there is a
significant variation across rats in response to the vagus nerve
stimulation (VNS) parameter selection. Particularly in their
study, they showed that the qualitative response to the specific
stimulation parameters on the heart rate was consistent across the
animals, but there were significant statistical variations in the
quantitative responses (i.e., a 20% decrease in heart rate was
observed in one rat, while a 10% decrease in the heart rate was
observed in another rat for the same stimulation parameter
selection). To demonstrate how our closed-loop VNS design
can account for this subject-to-subject variability in response
to VNS, we constructed an example by modifying the in silico
physiological model of the rat cardiac system. Specifically, we
modified the concentration of fiber recruitment at each VNS
location (see C in Eq. 20) from an identity matrix to:

C �
1.1 0.1 0.2
0.1 0.8 0.0
0.2 0.2 0.6

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
Here, the row in the matrix C represents the specific location,

and the column represents the fiber type recruited at that
location. For example, row 1 in the matrix C indicates that the
VNS location 1 activates 110% of barorecpetive fiber, 10% of
sympathetic fibers, and 20% of vagal fibers compared to the
baseline responses. Note that these values were set to an identity
matrix in the in silico physiological model, which says that each
location has a 100% concentration of an individual fiber type
(baroreceptive, sympathetic, and vagal). Since this modification
in the in silico physiological model only affects the actuation side
of the model (i.e., the VNS effect), the model mismatch shown in
Figure 6 is due to the stimulation parameters exhibiting
differential effects on the physiological variables.

4.3 Overactive Sympathetic Cardiac Model
Often, throughout the progression of specific cardiovascular
disease pathology, the sympathetic system becomes overactive
at the resting state (Malpas, 2010). This hyperactivity is typically
observed by a higher resting heart rate, a higher resting blood
pressure, or both, depending on the specific disease considered.
Since VNS is a therapy that targets disease pathology, we
questioned if a closed-loop VNS control design could perform
through a potential mismatch in the hypothetical case of an
overactive sympathetic system. To investigate this question, we
constructed a hypothetical example of an overactive sympathetic
case where we modified the parameters of the in silico
physiological model of rat cardiac system to increase the
influence of the sympathetic system and decrease the influence
from the parasympathetic system, consistent with disease
pathology that exhibits a reduced parasympathetic tone. We
summarize the specific changes we made in the in silico
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physiological model parameters, described in Section 4.1, in
Table 2.

The behavior of the in silico physiological model has changed
considerably with the new parameter selection, as demonstrated
by Figure 9. As expected, the physiological cardiac model with
overactive sympathetic system exhibited a higher heart rate and
higher blood pressure. In addition to the changes in the model
parameters shown in Table 2, we also changed the concentration
of fiber recruitment at each VNS location (see C in Eq. 20) from
an identity matrix to:

C �
1.3 0.1 0.1
0.1 1.4 0.1
0.1 0.1 1.3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
By changing the actuation matrix of the model and the model

parameters, we considered both the intra-patient model
mismatch and the disease model mismatch. Should a
controller be deployed in the clinical setting, the controller
would likely be required to compensate for both sources of
mismatch simultaneously.

4.4 LSTM Model Development
We recently developed a purely data-driven long short-term
memory (LSTM) based neural network modeling approach to
map the VNS parameters on the cardiac physiology (Branen
et al., 2021). LSTM is the state-of-art in data-driven modeling
of dynamical systems and sequence based tasks (Hochreiter
and Schmidhuber, 1997) demonstrated by its use for
forecasting traffic patterns (Zhao et al., 2017), natural
language processing (Radford et al., 2019), handwriting
recognition (Graves et al., 2008), and speech recognition
(Sak et al., 2014). The LSTM uses a combination of a
hidden state, a cell state, and the incoming data to predict
the sequential evolution of the system. The inclusion of the cell
state allows for learning of long-scale temporal dynamics, and
is managed by a gating process where incoming data with the
previous hidden state is used to forget a portion of the previous
information from the cell state. Additionally, an input gate
allows the relevant information from the incoming data and
previous hidden state to be stored in the cell state. The output

from a LSTM is based on the updated cell state, previous
hidden state, and the incoming data.

In this work, we used a LSTM based modeling approach to
predict the effect of VNS parameters on the dynamics of the heart
rate (HR) and the mean arterial blood pressure (MAP) (Branen
et al., 2021). We generated a synthetic input-output dataset by
simulating the in silico physiological rat cardiac model (Eqs
10–20) for 15,198 individual trials using VNS parameters from
a randomly sampled uniform distribution with a range between 0
and 0.5 ms for the pulse width and 0 and 50 Hz for the pulse
frequency. Each location was also turned on/off by sampling from
a uniform random distribution between 0 and 1. The specific
location is turned off if the selected value is 0 and turned on if the
selected value is 1. An individual trial consists of 100 consecutive
cardiac cycles with constant VNS parameters. These open loop
trials were then used to train the neural network using a 40%–
20%–40% split for the training, validation, and testing sets
respectively. We note that this synthetically generated dataset
represents a similar task to real data collection methods, and
could be extended to an in vivo experimental system where
different experimental trials are used to generate a sweep of
the VNS parameters. In the case of data collection from the in
vivo system, random sampling of VNS parameters and locations
is not required, and can be replaced with a systematic
investigation of the parameter space, such that the full range
of parameters have been swept. The LSTM was trained for 250
epochs using the adaptive moment estimation (Adam) optimizer
(Kingma and Ba, 2014) with a mean squared error loss function.
Prior to feeding the data to the LSTM for training, the open-loop
dataset was normalized using the following equation:

x̂ � x − μ

xmax − xmin
(21)

where μ is the mean of the training set, xmin is the minimum of the
training set, and xmax is the maximum value of the training set for
each variable. Statistics from the training set are used to avoid
providing any information about the validation or test datasets to
the trained network, as this is a standard practice in the machine
learning community. As a note, since the LSTMwas trained in the
normalized space, all control applications required incoming data

TABLE 2 | Description of the modified parameters in the in silico physiological model of rat cardiovascular system Yao and Kothare (2020) to construct an overactive
sympathetic case.

Parameters Description Initial value Diseased value Equations

R1 systemic resistance 0.01 0.007 15
R2 mitral valve resistance 0.0001 0.0002 12
R3 aortic valve resistance 0.008 0.006 12
C2 veneous compliance 20 25 12
C3 systemic compliance 1.8 1.4 12
Emin end-diastolic elastance 0.02 0.01 11
Emax end-systolic elastance 1.2 1.1 11
T0 baseline HR 60/450 60/480 17
GR gain of systemic resistance 0.06 0.07 15
GTs gain of heart period from sympathetic fibers −0.01 −0.015 15
GTev gain of heart period from vagal fibers 0.015 0.011 16
G2 gain of sympathetic fibers 30 33 20
G3 gain of vagal fibers 30 27 20
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for predictions to be normalized, and the controller actions to be
un-normalized before applying to the in silico physiological
model during closed-loop operation.

To compare different trained architectures, the test set of data
was used in such a way that the trained network was required to
recursively predict 99 consecutive cardiac cycles (1 trial) for both
HR and MAP. A baseline model that predicted no change in the
initial value for all 99 cycles was used to provide context to the
normalized mean absolute error (MAE) and emphasize a trained
network’s ability to learn the dynamics. These results are
summarized in Figure 11, with different recurrent networks
(GRU is a gated recurrent unit) shown in Figure 11A, the
influence of number of LSTM layers on predictive
performance is shown in Figure 11B, and the influence of
LSTM input neuron size shown in Figure 11C.

To conclude the study of several different neural network
architectures, the best trained model resulted in a LSTM with a
single layer, hidden dimensionality of 10, and a hyperbolic
tangent (tanh) activation function. Hyperbolic tangent is a
common nonlinear function used in machine learning, and is
centered about 0 (x = 0, tanh(x) = 0) and demonstrates saturating
nonlinearity with very large inputs (x > 5 or x < − 5) saturating at
output values of 1 and −1, respectively. The output from this
LSTM was fed to a dense layer with dimensionality of two, and
tanh activation function. The performance of this LSTM is
highlighted by a normalized mean absolute error of 0.0072 on
the test set. A prediction from the LSTM for time varying VNS
inputs is shown in Figure 1. The LSTM model reasonably
predicts the output from the full in silico physiological model,
and is capable of mapping VNS parameters to the effect on the
cardiac variables of heart rate and mean arterial blood pressure.

4.5 Simulation Environment and Relevant
Software Packages
Throughout this work, we used MATLAB (version R2019b)
to simulate the in silico physiological model of rat cardiac

system. The LSTM model was developed in Python (version
3.7) using TensorFlow2. The controller was synthesized in
Python (version 3.7) and the formulated optimization
problems were solved using the sequential least squares
programming (SLSQP) algorithm in Scipy (version 1.6).
The closed-loop simulations were performed through the
interaction of Python with MATLAB. For the healthy
cases, the optimization solver’s tolerance was set to 10e −
5 and the maximum number of iterations was set to 50. While,
for the intra-patient and diseased cases, the solver’s tolerance
was set to 10e − 4 and the maximum number of iterations was
set to 500 (although the algorithm converged in less than 50
iterations in our simulations).
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FIGURE 11 | Performance comparison of different trained neural network architectures based on the mean absolute error for the same test set. (A) shows a
comparison of baseline performance to a traditional (or conventional) RNN, gated recurrent unit (GRU) and LSTM. (B) Shows the a comparison of the effect of the number
of LSTM layers on the model’s predictive performance. (C) Shows a comparison of the effect of the number of inputs on the model’s predictive performance.
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