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Compelling evidence has demonstrated the effect of melatonin on exhaustive exercise
tolerance and its modulatory role in muscle energy substrates at the end of exercise. In line
with this, PGC-1α and NRF-1 also seem to act on physical exercise tolerance and
metabolic recovery after exercise. However, the literature still lacks reports on these
proteins after exercise until exhaustion for animals treated with melatonin. Thus, the aim of
the current study was to determine the effects of acute melatonin administration onmuscle
PGC-1α and NRF-1, and its modulatory role in glycogen and triglyceride contents in rats
subjected to exhaustive swimming exercise at an intensity corresponding to the anaerobic
lactacidemic threshold (iLAn). In a randomized controlled trial design, thirty-nineWistar rats
were allocated into four groups: control (CG = 10), rats treated with melatonin (MG = 9),
rats submitted to exercise (EXG = 10), and rats treated with melatonin and submitted to
exercise (MEXG = 10). Forty-eight hours after the graded exercise test, the animals
receivedmelatonin (10 mg/kg) or vehicles 30 min prior to time to exhaustion test in the iLAn
(tlim). Three hours after tlim the animals were euthanized, followed by muscle collection for
specific analyses: soleus muscles for immunofluorescence, gluteus maximus, red and
white gastrocnemius for the assessment of glycogen and triglyceride contents, and liver for
the measurement of glycogen content. Student t-test for independent samples, two-way
ANOVA, and Newman keuls post hoc test were used. MEXG swam 120.3% more than
animals treated with vehicle (EXG; p < 0.01). PGC-1α and NRF-1 were higher in MEXGwith
respect to the CG (p < 0.05); however, only PGC-1αwas higher for MEXGwhen compared
to EXG. Melatonin reduced the triglyceride content in gluteus maximus, red and white
gastrocnemius (F = 6.66, F = 4.51, and F = 6.02, p < 0.05). The glycogen content in red
gastrocnemius was higher in MEXG than in CG (p = 0.01), but not in EXG (p > 0.05). In
conclusion, melatonin was found to enhance exercise tolerance, potentiate exercise-
mediated increases in PGC-1α, decrease muscle triglyceride content and increase muscle
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glycogen 3 h after exhaustive exercise, rapidly providing a better cellular metabolic
environment for future efforts.

Keywords: peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF-
1), energy metabolism (MeSH ID: D004734), aerobic exercise, N-acetyl-5-methoxytryptamine, recovery, ergogenic
aid, skeletal muscle tissue

1 INTRODUCTION

Melatonin (N-acetyl-5-methoxytryptamine) is considered an
indoleamine with amphiphilic characteristics (Amaral et al.,
2019). Although it is mainly produced by the pineal gland and
directly released into the blood or cerebrospinal fluid, melatonin
is also found in several extra pineal tissues, including the brain,
retina, liver, skeletal muscle, and so on (Acuña-Castroviejo et al.,
2014). Substantial evidence has confirmed the regulatory role of
melatonin in circadian and seasonal rhythms (Reiter et al., 2010;
Brzezinski et al., 2021; Pevet et al., 2021; Hardeland, 2022),
antioxidant (Rodriguez et al. al, 2004; Manchester et al., 2015;
Reiter et al., 2016; Ortiz-Franco et al., 2017; Galano et al., 2018;
Chitimus et al., 2020; Kruk et al., 2021) and anti-inflammatory
effects (Mauriz et al., 2013) among others. In addition to these
benefits, our research group has demonstrated the ergogenic
effect of melatonin in the increasing exhaustive aerobic
exercise tolerance of nocturnal animals (Beck et al., 2015A;
Beck et al., 2016; Faria et al., 2021), whereas the effect of
melatonin on metabolic recovery after physical exercise is less
reported. Specifically, the role of melatonin in muscle glycogen
and triglyceride contents few hours after exercise is not fully
understood. Additionally, little attention has been given to the
role of melatonin administration on PGC-1α and NRF-1, which
are considered representatives of the aerobic energy metabolism.

In this scenario, we sought to study proteins related to aerobic
adaptations that could improve the mitochondrial capacity and
possibly modulate the content of energy substrates in the skeletal
muscle tissue after an exercise session. Regarding the proteins
PGC-1α and NRF-1, the peroxisome proliferator-activated
receptor-γ coactivator 1α (PGC-1α) is a transcriptional
coactivator that interacts with nuclear respiratory factors 1
and 2 (NRF-1 and NRF-2) (Lira et al., 2010; Islam et al., 2018;
Islam et al., 2020) to stimulate the mitochondrial biogenesis and
function (Bonen, 2009; Seebacher and Glanville, 2010; Islam et al.,
2018; Islam et al., 2020). In addition, PGC-1α seems to act on the
energy metabolism through glycogen content increase (Wende
et al., 2007; Wong et al., 2015) and fatty acid oxidation (Wong
et al., 2015), with a concomitant enhancement in exhaustive
exercise tolerance (Tadaishi et al., 2011; Wong et al., 2015).
However, in an opposite scenario of high PGC-1α, there are
evidences showing a lower endurance performance in skeletal
muscle-specific PGC-1α knockout (PGC-1α MKO) (Handschin
et al., 2007) and whole-body PGC-1α knockout animals (PGC-1α
KO) (Leone et al., 2005). Although it is well established that a
single bout of exercise is able to increase content and/or
expression of PGC-1α (Wright et al., 2007; Ikeda et al., 2008;
Seebacher and Glanville, 2010; Fujimoto et al., 2011; Shute et al.,
2018) and NRF-1 (Murakami et al., 1998; Seebacher and

Glanville, 2010; Daussin et al., 2012), reports on these proteins
after exercise until exhaustion are lacking for animals treated with
melatonin.

Based on the aforementioned assumptions, the literature
demonstrates a carbohydrate dependence during prolonged
exercise (Leckey et al., 2016; Burke and Hawley, 2018;
Hargreaves and Spriet, 2020), establishing that its reduction is
a limiting factor for performance (Krssak et al., 2000). Hence, a
rapid glycogen repletion following a bout of exhaustive exercise is
an important adaptative response to prepare the muscle for
subsequent efforts (Wende et al., 2007), at least from a
bioenergetic point of view. Moreover, to produce a better
exercise training strategy it is essential to understand the
beneficial effects of a single bout of exercise since training
adaptations reflect the accumulation of beneficial physiological
functions produced from acute exercise (Park et al., 2021). Even
though some studies suggest that melatonin exerts a modulatory
role in muscle energy substrates immediately at the end of
exercise (Mazepa et al., 2000; Sanchez-Campos et al., 2001),
decreasing carbohydrate utilization and increasing lipid
utilization (Mazepa et al., 2000), no study has investigated the
effect of melatonin on the recovery of muscle glycogen and
triglyceride contents at later times after an exhaustive bout of
exercise at an individual and objective intensity. Therefore, the
current study aims to determine the effects of acute
administration of melatonin on exercise tolerance, glycogen
and/or triglyceride contents in the skeletal muscle and liver, as
well as PGC-1α and NRF-1 expressions in the skeletal muscle of
control rats (non-exercised) and rats subjected to exhaustive
swimming exercise at an intensity corresponding to the
anaerobic lactacidemic threshold (iLAn). We hypothesize that
acute melatonin administration increases PGC-1α, NRF-1, and
muscle glycogen content, in addition to reducing muscle
triglyceride content in exercised skeletal muscle, consequently
providing a better cellular environment for future efforts.

2 MATERIALS AND METHODS

2.1 Animals and Environmental Conditions
Forty young male Wistar rats (45 days old at arrival; weighing
between 120 and 150 g) were provided by the Central Animal
Facility of the Federal University of São Carlos—UFSCar (Brazil).
The animals were housed in controlled environmental
conditions: temperature (22 ± 2°C), relative humidity (between
45 and 55%), noise (<85 dB), and photoperiod (10:14 h light/dark
cycle), as suggest by the guidelines for the housing of rats in
scientific institutions (ARRP Guideline 20). Animals (4–5 per
cage) received commercial chow and filtered water ad libitum. As
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albino animals are easily affected by phototoxic retinopathy
(ARRP, 2007; Castelhano-Carlos and Baumans, 2009), a
stressful condition capable of generating undesirable
interference in experiments, especially those involved with
melatonin and circadian rhythm, incandescent lamps (Philips,
model Soft, 100W, 2700 K; 565–590 nm; 60 lux, measured by a
lux meter) were used during the 10-hour light cycle. To carry out
experimental interventions with the rats during the dark cycle
(nighttime: 4:00 p.m. to 6:00 a.m.), reflectors were installed
around a red filter (ROSCO, model # fire19; > 600 nm; < 15
lux) (Beck and Gobatto, 2013; Beck et al., 2015B; Beck et al., 2016;
Faria et al., 2021). Such a luminous scenario makes it possible to
prevent the relevant influence of light on the activity of
N-acetyltransferase in the pineal gland (Sun et al., 1993), an
extremely important enzyme for melatonin biosynthesis. All
experimental procedures were conducted in accordance with
the Ethical Principles in Animal Research (ARRIVE guidelines
2.0), adopted by the Brazilian College of Animal Experimentation
(COBEA, Brazil), and were approved by the Ethics Committee on
Animal Use (CEUA) of the Federal University of São
Carlos—UFSCar (São Paulo, Brazil) under protocol no.
9144181218.

2.2 Experimental Design
In a randomized controlled trial design, the rats (n = 39) were divided
into four groups: control (CG: n = 10), treated with melatonin (MG:
n = 9), submitted to exercise (EXG: n = 10), and treated with
melatonin and submitted to exercise (MEXG: n = 10). These
groups originally numbered 10 animals each, however, throughout
the experiment we lost one of them with no defined cause. The
animals in the CG and EXG received vehicle solution (ethanol and
NaCl, 0.9%), while those belonging to the MG and MEXG received
melatonin (10mg/kg) 30min before the time to exhaustion test,
being euthanized 3 h after the end of the exercise session.

2.3 Adaptation to Aquatic Environment and
Swimming
After environmental adaptation (from 76 to 89 days old) all rats
were adapted to aquatic environment and swimming exercise,
considering a protocol adapted from Lima et al. (2017). Initially,
the animals were submitted to the aquatic environment in
shallow water (10 cm) for 5 min, with increments of 5 min per
day for 3 days. Then, the rats were exposed to the swimming
exercise protocol in deep water (80 cm) for 2 min in 2-minute
increments per day for 7 days. Subsequently, the animals were
submitted to swimming exercise in deep water (80 cm) with a
load weight of 3% of bodymass (attached to the animal’s back) for
5 min, with increments of 5 min per day for 4 days. The animals
were introduced to individual swimming protocols in cylindrical
and opaque tanks—height: 100 cm (water depth: 80 cm),
diameter: 30 cm, and water temperature: 31 ± 1°C, following
the guidelines of the American Physiological Society (APS, 2006).

2.4 Graded Exercise Test
At 90 days old, all animals were subjected to the graded exercise
test (GXT) to determine the exercise intensity corresponding to

the individual anaerobic lactacidemic threshold (iLAn).
According Beck et al. (2015B), iLAn is found when a
disproportionate increase in the concentration of blood lactate
is observed with respect to proportional increases in the intensity
(imposed through loads corresponding to % of the body mass of
each animal), here denominated as the anaerobic lactacidemic
threshold. Thus, the animals were subjected to 5-min stages with
overloads corresponding to 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, and 7.0% of
the body mass (% BM) attached to the animal’s back through
elastic strap. Each stage was separated by 30-second intervals in
which blood samples (25 µL) were collected from the tip of the
animals’ tail and then stored (4°C) to determine lactatemia. The
blood lactate concentration was plotted against exercise intensity
on a scatter plot, and any change in the blood lactate
concentration was identified by visual inspection, as previously
described by Matsumoto et al. (1999). Then, two linear
regressions were constructed following the break point, and
the intersection of these linear regressions interpolated to the
X axis was used to define the intensity corresponding to the
anaerobic lactacidemic threshold (Beck et al., 2015B). The
interpolation to Y axis corresponded to the blood lactate
concentration in the iLAn.

2.5 Melatonin Administration
Melatonin (Sigma Aldrich Chemical Corporation; St Louis, MO,
United States; M-5250, > 98%) was dissolved in ethanol (< 0.1%)
and diluted in saline (0.9% NaCl) for administration at 10 mg/kg
(Beck et al., 2015A; Beck et al., 2016; Faria et al., 2021). The
preparation was performed prior to its use and stored in an amber
bottle wrapped in aluminum foil. Its administration was made
intraperitoneally 30 min prior to the time to exhaustion test.

2.6 Time to Exhaustion Test (tlim)
At 92 days old, 30 min after receiving melatonin (MG and
MEXG) or vehicle (CG and EXG) the animals from EXG and
MEXG were submitted to swimming exercise until exhaustion in
the iLAn, the so-called time to exhaustion test (tlim). Then, the
animals were introduced to the individual swimming protocol,
and the time to exhaustion was recorded. The criterion for
identifying the animal’s exhaustion was standardized according
to Beck and Gobatto (2013). To this end, the swimming behavior
was analyzed in order to observe the execution of vigorous efforts
without success in returning to the surface for a period of 15 s.
The exhaustion was established by consensus of two experienced
observers considering the above criteria. The timeline of events of
animals aged from 90 to 92 days old is detailed in Figure 1.

2.7 Euthanasia, Obtention and Processing
of Biological Materials
All animals were euthanized 3 h after the end of the experimental
procedures by decapitation in agreement with the guidelines of
the American Veterinary Medical Association (2013). Then, the
skeletal muscle tissue (soleus, gluteus maximus, red and white
portion of gastrocnemius), and the liver were collected,
immediately frozen in liquid nitrogen and stored at −80°C for
further analyses.
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2.7.1 Determination of Blood Lactate Concentration by
an Enzymatic Assay
During the GXT, blood samples (25 μL) were collected from the
animals’ tails in heparinized and calibrated glass capillaries.
Samples were placed inside plastic tubes (1.5 ml) containing
400 μL of trichloroacetic acid (4%), mixed and stored at 4°C.
After stirring and centrifugation (3,000 rpm for 3 min), 50 µL of
supernatant was extracted and transferred to a 96-well
microplate, where 250 µL of reactive solution prepared for
immediate use were added. This reactive solution was
comprised of glycine, EDTA, and hydrazine 25%, and after
pH adjustment to 9.45, β- nicotinamide adenine dinucleotide
(NAD), and L-lactic dehydrogenase bovine heart (LDH) were
incorporated to the resulting solution. After an incubation period
of 20 min at 37°C, the samples were subjected to
spectrophotometric measurements (Spectramax i3, Molecular
Devices; San José, CA, United States) at 340 nm to compare
the sample values to a standard curve constructed from a serial
dilution of 1–15 mmol/L of L-Lactate.

2.7.2 Determination of Glycogen Content
The glycogen content within the skeletal muscle (gluteus maximus,
red andwhite portion of gastrocnemius) and the liverwas determined
as described in Dubois et al. (1956). Both skeletal muscle (250mg)
and liver (500mg) were firstly immersed in potassium hydroxide
(30%; Êxodo Científica; Sumaré, SP, Brazil), and then mixed with
saturated sodium sulfate solution (20 μL; Dinâmica Química
Contemporânea Ltda; Indaiatuba, SP, Brazil) and ethanol [70%]
for glycogen precipitation. The samples were homogenized with
phenol (10 μL; Êxodo Científica; Sumaré, SP, Brazil) and sulfuric
acid (2ml; Dinâmica Química Contemporânea Ltda; Indaiatuba, SP,
Brazil), and heated in water bath for 5min (85°C). Finally, the
absorbance was measured on a spectrophotometer (Hach
Company, Loveland, Colo, United States; 490 nm), and the
glycogen content was calculated using a calibration glucose curve.

2.7.3 Determination of Triglyceride Content
To determine the triglyceride content, the skeletal muscle
(100–200 mg; gluteus maximus, red and white portion of
gastrocnemius) was placed inside plastic tubes (1.5 ml)
containing Triton X-100 [1%] at the same proportions
(200 mg of tissue to 1 ml of Triton). Next, the samples were
homogenized using magnetic bars (5 × 3 mm) overnight (4°C).
After this period, the samples were centrifuged (4,000 rpm for
10 min), and 10 µL of the supernatant was extracted, pipetted
onto a 96-well microplate in a mixture with the kit reagent
(200 μL; LaborLab; Guarulhos, SP, Brazil) and incubated for
20 min (25°C). The triglyceride absorbance was performed on
a spectrophotometer (SpectraMax i3, Molecular Devices; San
José, CA, United States) at 505 nm, according to the kit’s
instructions.

2.7.4 Histology and Immunofluorescence
Immediately after euthanasia, the soleus muscle was dusted in
talc, frozen in liquid nitrogen, and stored frozen at −80°C.
Afterwards, glass slides (26 × 76 mm) were prepared by
sectioning the muscles (6 μm) using a cryostat (Leica CM 1850
UV) at −25°C. The sections were stained by Hematoxilin-Eosin
(H&E, MERCK, Darmstadt, Germany) to identify any
morphological alterations in tissue through a light microscope.

Immunofluorescence was applied to quantify NRF-1 and
PGC-1α. The slides with frozen sections were incubated in a
mix of primary anti-mouse monoclonal antibodies for NRF-1
(dilution 1:500; Santa Cruz Biotechnology, INC.; Dallas, Texas,
United States) or PGC-1α (dilution 1:50; Santa Cruz
Biotechnology, INC.; Dallas, Texas, United States), conjugated
with anti-rabbit laminin (dilution 1:200; Abcam; Ab11575;
Cambridge, United kingdom) diluted in 1% BSA (Bovine
Serum Albumin—Sigma Aldrich Chemical Corporation, St
Louis, MO, United States) for 45 min at 37°C. Then, the slides
were washed (3 cycles of 5 min) in PBS solution and incubated in

FIGURE 1 | Timeline of events of animals aged from 90 to 92 days old. After adaptation to aquatic environment procedures, at 90 days old all animals were
subjected to graded exercise test (GXT) to determine the intensity of exercise corresponding to the individual anaerobic lactacidemic threshold (iLAn). During the GXT, the
stages were separated by 30-second intervals in which blood samples (25 µL) were collected. Afterwards, the animals were submitted to the swimming exercise with
increments of 0.5% of bodymass (%BM) until exhaustion. Forty-eight hours later (rest period), the animals receivedmelatonin (MG andMEXG: 10 mg/kg) or vehicle
(CG and EXG: NaCl 0.09%), and after 30 min the rats from EXG andMEXGwere submitted to the time to exhaustion test (tlim) at 100% of iLAn. After 3 h the animals were
euthanized. h, hours; min, minutes; i.p., intraperitoneal.
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a mix of secondary antibodies: Alexa 488 IgG1 to mark NRF-1 in
green color (dilution 1:1000; Jackson ImmunoResearch,
Laboratories, INC.; West Grove, PA, United States) or Alexa
Fluor 647 IgG2a to mark PGC-1α in red color (dilution 1:1000;
Santa Cruz Biotechnology, INC.; Dallas, Texas, United States), in
combination with Alexa Fluor 647 IgG (dilution 1:200;
Invitrogen; Carlsbad, California, United States) to mark
laminin with a red color or Alexa Fluor 488 IgG to mark
laminin with a green color (dilution 1:200; Invitrogen;
Carlsbad, California, United States) for 35 min at 37°C. The
sections were washed (3 cycles of 5 min) in PBS solution and
mounted with FluoroQuestTM Mounting Medium (AAT
Bioquest®, INC., Sunnyvale, CA, United States).

The slides were analyzed with ImageXpress®Micro (Molecular
Devices; San José, CA, United States) using an objective lens with
magnification of 20× and specific filters for NRF-1
(FITC—1,200 ms exposure), PGC-1α (Cy5—2000 ms
exposure), and laminin (FITC and Cy5—100 ms exposure).
The integrated density of the fluorescence intensity of NRF-1
and PGC-1α was quantified in five distinct and random fields
(height: 220 and width: 220) by ImageJ 1.52a software (National
Institutes of Health, United States), followed by an individual
analysis of the images. The mean value of the proteins in each
sample was calculated and plotted in a graph.

2.8 Statistical Analysis
A priori power analysis was determined by G*Power 3.1.9.4
software, and it was calculated that a sample size of 40 (10
rats per group) would be required using a two-way ANOVA
test at the 5% level of significance with power around 0.77,
assuming an effect size of 0.5. The data were presented as a
mean ± standard error of the mean. Normality and homogeneity
were verified with the Shapiro-Wilk and Levene tests,
respectively. When appropriate, outliers were excluded. Time
to exhaustion was analyzed through the t-test for independent
samples comparing exercised animals treated with melatonin
(MEXG) versus exercised animals treated with vehicle (EXG).
One-way analysis of variance (ANOVA) was used to compare the
four groups with regard to the variables obtained from the graded
exercise test (iLAn and lactacidemia at this intensity). Two-way
ANOVA was applied to analyze other parameters regarding the
effects of melatonin (melatonin vs. vehicle) and exercise
(exercised vs. non-exercised). When appropriate, the Newman-
Keuls post hoc test was used. A significance level of 5% and
Statistica 7.0 (StatSoft, Inc.; Tulsa, OK, United States) were used
for all analyses. Effect size analysis (ES) and confidence interval
(CI) were used as complementary tests. The thresholds for small,
moderate, and large effects were 0.20, 0.50, and 0.80, respectively.
ES was determined according to Cohen (1988).

3 RESULTS

With regard to the variables obtained from the graded exercise
test (GXT), no considerable differences were found among the
groups in relation to iLAn (CG: 5.41 ± 0.29 (CI = 4.71–6.11),
EXG: 5.32 ± 0.17 (CI = 4.92–5.73), MG: 5.51 ± 0.23 (CI =

4.90–6.13), and MEXG: 5.46 ± 0.17 (CI = 5.06–5.85) %BM; F =
0.13, p = 0.94) and lactacidemia at iLAn (CG: 4.08 ± 0.29 (CI =
3.26–4.89), EXG: 3.93 ± 0.41 (CI = 2.99–4.88), MG: 3.56 ± 0.41
(CI = 2.59–4.52), and MEXG: 4.02 ± 0.22 (CI = 3.52–4.53)
mM; F = 0.41, p = 0.74). Regarding tlim, the animals treated
with melatonin (MEXG: 105.31 ± 22.89 min; CI =
60.44–150.19) swam 120.3% more than animals treated
with vehicle (EXG: 47.81 ± 10.38 min; CI = 27.46–68.15;
p < 0.01, ES: 1.17).

Exercise and melatonin increased PGC-1α (F = 64.64, p < 0.01
and F = 12.00, p < 0.01) and NRF-1 (F = 39.81, p < 0.01 and F =
4.20, p < 0.05) (Figure 2). Large effects on PGC-1α were obtained
when comparing CG vs. EXG (p < 0.01, ES: 2.84; EXG > CG),
EXG vs. MG (p < 0.01, ES: 1.64; EXG >MG), CG vs. MEXG (p <
0.01, ES: 3.69; MEXG > CT), EXG vs. MEXG (p < 0.01, ES: 2.00;
MEXG > EXG), and MG vs. MEXG (p < 0.01, ES: 2.64; MEXG >
MG). Mean ± SEM and confidence interval values on PGC-1α for
CG (8,811.76 ± 444.63; CI = 7,805.92–9,917.60), EXG
(11,824.22 ± 238.15; CI = 11,275.03–12,373.42), MG
(9,809.93 ± 582.68; CI = 8,466.26–11,153.60), and MEXG
(13,877.66 ± 423.28; CI = 12,920.12–14,835.20). Likewise, large
effects on NRF-1 were found when comparing CG vs. EXG (p <
0.01, ES: 2.84; EXG > CG), CG vs. MEXG (p < 0.01, ES: 3.69;
MEXG > CG), and MG vs. MEXG (p < 0.01, ES: 1.87; MEXG >
MG). Mean ± SEM and confidence interval on NRF-1 for CG
(9,341.66 ± 389.76; CI = 8,459.94–10,223.38), EXG (13,130.80 ±
694.19; CI = 11,529.98–14,731.62), MG (10,711.16 ± 669.48; CI =
9,167.32–12,254.99), and MEXG (14,089.66 ± 508.42; CI =
12,939.53–15,239.79).

As to glycogen, exercise increased its content in red
gastrocnemius (F = 13.32, p < 0.01) but decreased in liver
(F = 37.70, p < 0.01), while no difference was observed in
gluteus maximus and white gastrocnemius (F = 0.35, p = 0.55
and F = 0.56, p = 0.45). Furthermore, melatonin increased the
glycogen content in gluteus maximus (F = 5.71, p = 0.02), but did
not promote any difference in liver (F = 3.59, p = 0.06), red and
white gastrocnemius (F = 0.55, p = 0.46 and F < 0.01, p = 0.92,
respectively) (Figures 3A–D). Large effects were observed on
glycogen content in liver (CG vs. EXG (p = 0.01, ES: 1.36; CG >
EXG), CG vs. MG (p = 0.01, ES: 1.10; MG > CG), EXG vs. MG
(p < 0.01, ES: 2.61; MG > EXG), CG vs. MEXG (p < 0.01, ES: 1.41;
CG > MEXG), and MG vs. MEXG (p < 0.01, ES: 2.73; MG >
MEXG)), gluteus maximus (CG vs. MG (p = 0.04, ES: 2.13; MG >
CG)) and red gastrocnemius (CG vs. MEXG (p = 0.01, ES: 1.71;
MEXG > CG) and MG vs. MEXG (p < 0.01, ES: 1.83; MEXG >
MG)). Mean ± SEM and confidence interval on glycogen content
for liver: CG (1.85 ± 0.23; CI = 1.31–2.39), EXG (0.92 ± 0.19; CI =
0.48–1.36), MG (2.65 ± 0.23; CI = 2.11–3.20), and MEXG (0.94 ±
0.18; CI = 0.52–1.36); gluteus maximus: CG (0.49 ± 0.01; CI =
0.45–0.54), EXG (0.54 ± 0.06; CI = 0.39–0.69), MG (0.68 ± 0.03;
CI = 0.59–0.77), and MEXG (0.58 ± 0.01; CI = 0.53–0.62); red
gastrocnemius: CG (0.54 ± 0.03; CI = 0.46–0.63), EXG (0.63 ±
0.04; CI = 0.52–0.74), MG (0.51 ± 0.04; CI = 0.39–0.62), and
MEXG (0.73 ± 0.03; CI = 0.65–0.81); and white gastrocnemius:
CG (0.61 ± 0.02; CI = 0.55–0.68), EXG (0.65 ± 0.05; CI =
0.52–0.78), MG (0.62 ± 0.02; CI = 0.56–0.69), and MEXG
(0.65 ± 0.05; CI = 0.53–0.77).

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 8031265

Faria et al. Melatonin Potentiates Exercise-Induced PGC-1α

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


In relation to triglyceride content, exercise did not cause any
change in skeletal muscles, such as gluteus maximus (F = 2.51, p =
0.12), red and white gastrocnemius (F = 2.23, p = 0.14 and F =
0.18, p = 0.66, respectively). On the other hand, melatonin
decreased the triglyceride content in gluteus maximus (F =
6.66, p = 0.01) red and white gastrocnemius (F = 4.51, p =
0.04 and F = 6.02, p = 0.02) (Figures 3E–G). Large effects on the
triglyceride content in gluteus maximus were noted when
comparing CG vs. EXG (p < 0.01, ES: 1.63; EXG > CG), EXG
vs. MG (p < 0.01, ES: 2.22; EXG >MG), and EXG vs. MEXG (p <
0.01, ES: 1.84; EXG > MEXG). Mean ± SEM and confidence
interval on triglyceride content for gluteus maximus: CG (1.16 ±
0.04; CI = 1.07–1.25), EXG (1.36 ± 0.03; CI = 1.27–1.45), MG

(1.19 ± 0.01; CI = 1.14–1.23), and MEXG (1.12 ± 0.04; CI =
1.01–1.23); red gastrocnemius: CG (1.42 ± 0.05; CI = 1.29–1.56),
EXG (1.35 ± 0.07; CI = 1.18–1.53), MG (1.32 ± 0.04; CI =
1.21–1.43), and MEXG (1.22 ± 0.02; CI = 1.15–1.28); and
white gastrocnemius: CG (1.19 ± 0.07; CI = 1.03–1.35), EXG
(1.25 ± 0.02; CI = 1.20–1.29), MG (1.10 ± 0.03; CI = 1.03–1.18),
and MEXG (1.09 ± 0.04; CI = 0.98–1.20).

4 DISCUSSION

Among the main findings of this study, we can highlight the
ability of melatonin to potentiate exercise-mediated increases in

FIGURE 2 | NRF-1 and PGC-1α in skeletal muscles. Representative samples of laminin (green) with PGC-1α (red) in the soleus skeletal muscle with
immunofluorescence (height: 350 and width: 350) (A). Representative samples of laminin (red) with NRF-1 (green) in the soleus skeletal muscle (A) with
immunofluorescence in the control (CG), rats treated with melatonin (MG), rats submitted to exercise (EXG), and rats treated with melatonin and submitted to exercise
(MEXG). The white arrows indicate NRF-1 and PGC-1α in the soleus skeletal muscle. The graphs represent the means and standard errors of NRF-1 (B) and PGC-
1α (C). a p < 0.05 with respect to CG; b p < 0.05 with respect to EXG; c p < 0.05 with respect to MG for the same parameter. For illustration, an objective lens = 20x was
used; bars = 20 µm.
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FIGURE 3 |Glycogen content in skeletal muscles and liver, and triglyceride content in skeletal muscles. The graphs represent the means and standard errors of the
glycogen content in the gluteus maximus (A), red (B) and white (C) gastrocnemius and liver (D), and triglyceride content in gluteus maximus (E), red (F) and white (G)
gastrocnemius in control rats (CG), rats treated with melatonin (MG), rats submitted to exercise (EXG), and rats treated with melatonin and submitted to exercise (MEXG).
a p < 0.05 with respect to CG; b p < 0.05 with respect to EXG; c p < 0.05 with respect to MG for the same parameter. mg, milligrams; g, grams; min, minutes.
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PGC-1α, to reduce muscle triglyceride content and to increase
glycogen content 3 h after exhaustive exercise session, possibly
favoring cellular environment for future efforts, thus confirming
our initial hypothesis. This is the first study to analyze the acute
effect of melatonin administration on PGC-α and NRF-1 and its
influence on the replenishment of glycogen in rats submitted to
an individualized exhaustive exercise session with intensity
corresponding to the anaerobic lactacidemic threshold.

To evaluate the beneficial effect of melatonin and exercise on the
mitochondrial biogenesis, we quantified PGC-1α, a transcriptional
coactivator that functions as a master regulator of the mitochondrial
biogenesis (Booth et al., 2015).With regard to the effect of melatonin,
PGC-1α andNRF-1 of the animals treatedwithmelatonin showed an
increase compared to those treated with vehicle (F = 12.00, p < 0.01
and F = 4.20, p < 0.05, respectively). These effects possibly occurred
via melatonin receptors that were found to be present in the skeletal
muscle membrane [Ha et al., 2006; (BioGPS, 2021) (http://ds.biogps.
org/?dataset=GSE952&gene=114211)]. The literature postulates that
melatonin acts through the activation of CAMKII, inducing CREB
phosphorylation, and consequently increasing the expression of
PGC-1α in the skeletal muscle (Teodoro et al., 2014). Such
increase leads to the activation of key genes involved in the
mitochondrial biogenesis, such as NRF-1 (Jung and Kim, 2014;
Islam et al., 2020). Additionally, it seems that the activation
pathway of PGC-1α is tissue-dependent. In heart tissue, melatonin
can act via AMPK-PGC-1α to improve the mitochondrial biogenesis
(Yu et al., 2017; Qi and Wang, 2020). Therefore, even though a
positive effect of melatonin was observed a few hours after acute
administration, further studies are still necessary to better understand
the pathways involved in the activation of PGC-1α in the skeletal
muscle of animals treated with melatonin.

Regarding the effect of exercise, the PGC-1α and NRF-1 of
exercised animals showed higher expression in relation to non-
exercised animals (F = 64.64, p < 0.01 and F = 39.81, p < 0.01,
respectively). It is well known that exercise is one of the main stimuli
for PGC-1α activation. Thus, according to the literature a single bout
of exercise can activate calcium/calmodulin-dependent protein
kinase (CaMK), p38 mitogen-activated protein kinase (p38
MAPK), cyclic adenosine monophosphate (cAMP), and
phosphorylate AMP activated protein kinase (AMPK), which are
the molecular signals responsible for the increase in PGC-1α
expression (Bonen, 2009; Lira et al., 2010; Perry and Hawley,
2018; Memme et al., 2021). Our results are in accordance with
the literature and demonstrate that a single bout of exercise increases
the expression and/or content of PGC-1α (Wright et al., 2007; Ikeda
et al., 2008; Seebacher and Glanville, 2010; Fujimoto et al., 2011;
Shute et al., 2018) and NRF-1 (Murakami et al., 1998; Seebacher and
Glanville, 2010; Daussin et al., 2012). More importantly, our main
finding is that melatonin potentiates the up-regulation of PGC-1α
expression. Curiously, the PGC-1α up-regulation mediated by
melatonin was found only in exercised rats (but not in non-
exercised animals). These observations suggest that melatonin
effects are pronounced during challenging situations. This is in
congruence with the findings from previous studies conducted by
our group, who reported the effect of melatonin only in the presence
of a stressful stimulus, such exhaustive exercise (Beck et al., 2015A).
Furthermore, other authors demonstrated interesting effects of

melatonin on in vitro palmitic acid-induced insulin resistance
model or in vivo pinealectomized rats, evidencing the increase in
the PGC-1α expression in both situations (Teodoro et al., 2014). In
line with this rationale, melatonin (in the absence of a stressful
stimulus of exercise) did not cause any change in PGC-1α and NRF-
1 when compared to non-exercised animals treated with vehicle
(MG vs. CG; p > 0.05).

Concerning exercise performance, compelling evidence has
shown a significant lower performance in isometric and dynamic
muscle endurance, assessed by muscle grip strength test and graded
exhaustive running treadmill exercise test in skeletal muscle-specific
PGC-1α knockout (PGC-1α MKO) (Handschin et al., 2007) or
whole-body PGC-1α knockout mice (PGC-1α KO) (Leone et al.,
2005) when compared to control animals. According to Leone et al.
(2005), the exercise capacity was partly reduced due to abnormalities
in themitochondrial structure of the skeletal muscle and the function
of PGC-1α KO in animals with lower maximal oxygen consumption
(VO2max) and fatigue resistance index than control mice (p < 0.05).

In an opposite scenario of low PGC-1α, there is evidence showing
that animals with overexpressed skeletal muscle-specific PGC-1α
(PGC-1αMKC) reached a longer distance, obtained a higher oxygen
uptake (VO2) (Wong et al., 2015), and peak oxygen consumption
(VO2peak) (Tadaishi et al., 2011) than control animals during graded
maximal exercise test (p < 0.05). Therefore, when analyzing our
results, we believe that the increase in exhaustion time presented by
animals treated with melatonin (MEXG) in comparison with
animals treated with vehicle (EXG: p < 0.01, ES: 1.17) may have
occurred due to two factors: 1) the ability of melatonin to potentiate
the effect of muscle contraction on PGC-1α (as seen by MEXG with
respect to EXG; p = 0.002, ES: 2.00), thus allowing greater exercise
tolerance. In line with this, Wong et al. (2015) and Tadaishi et al.
(2011) demonstrated a significantly positive relationship between
exercise tolerance and PGC-1α. 2) According to Sanchez-Campos
et al. (2001) and Mazepa et al. (2000), the animals treated with
melatonin and euthanized approximately 2 h (30 min + time to
exhaustion) after melatonin administration obtained a higher liver
and/or muscle glycogen content than control animals (p < 0.05). A
similar behavior was observed in our results, which confirmed the
ability of melatonin to increase the glycogen content in animals
euthanized approximately 4 h (30min + time to exhaustion + 3 h)
after melatonin administration (as seen by MG compared to CG
for gluteus maximus and liver (p < 0.05; ES: 2.13 and ES: 1.10,
respectively)). Thus, considering that this exercise model (tlim)
considerably depleted the muscle glycogen content (Beck et al.,
2014) and that its absence is a limiting factor for performance
(Krssak et al., 2000), we believe that the increase in time to
exhaustion (tlim) presented by MEXG in comparison with EXG
(p < 0.01, ES: 1.17) may also have been a result of the increase in
the pre-exercise glycogen content. However, there are no studies
involving the acute effect of melatonin on the pre-exercise
glycogen content (30 min after administration) and its
subsequent use during exhaustive exercise (tlim). Hence,
more studies must be conducted to deepen the
understanding of such issue.

Concerning metabolic recovery, the mitochondrial capacity for
substrate oxidation in skeletal muscle is the major determinant of
performance (Halling et al., 2019), as well as the metabolic recovery
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after physical exercise, through the replenishment of glycogen. Besides
the role in the biogenesis and mitochondrial function, PGC-1α and
NRF-1 are directly linked to the regulation of energy substrates for the
skeletal muscle (Bonen, 2009), resulting in a profound increase in its
capacity to use lipid substrate (Wong et al., 2015).We then believe that
the increase in PGC-1α and NRF-1 led to a lower triglyceride content,
as demonstrated by the animals treated with melatonin in relation to
those treated with vehicle for all skeletal muscles, such as gluteus
maximus (F = 6.66, p = 0.01), red and white gastrocnemius (F = 4.51,
p = 0.04 and F = 6.02, p = 0.02). These results are in accordance with
the literature, which demonstrated a better lipid profile for animals
treated with melatonin, decreasing intramuscular fat deposition by
promoting lipolysis and increasing mitochondrial function in porcine
intramuscular preadipocytes (Liu et al., 2019), as well as reduced blood
triglyceride concentration (Agil et al., 2011; Mendes et al., 2013; Lolei
et al., 2019). Considering the reduction in the muscle triglyceride
content, a higher glycogen content was expected in gluteus maximus,
as demonstrated by the animals treated with melatonin compared
with those treated with vehicle (F = 5.71, p = 0.02).

In relation to glycogen replenishment, it is important to note
that the animals treated with melatonin (MEXG) swam 120.3%
more than those treated with vehicle (EXG; p < 0.05, ES: 1.17),
which made us expect a lower content of glycogen, as suggested
by the literature (Matsui et al., 2011; Beck et al., 2014). However,
when analyzing our results, the animals treated with melatonin
and submitted to exercise (MEXG) were statistically equal to
those treated with vehicle and submitted to exercised (EXG) in
terms of glycogen content in the liver (p > 0.05) and the skeletal
muscles (gluteus maximus, red and white gastrocnemius (p >
0.05)), even though a difference in tlim appeared between the
groups (MEXG > EXG; p < 0.05). Moreover, in the presence of
melatonin, there was an overcompensation of the glycogen
content in the red gastrocnemius of exercised animals (MEXG;
p = 0.01, ES: 1.71). However, this did not occur in the absence of
melatonin (EXG; p > 0.05) in comparison with the control
animals (CG). Therefore, we can consider that melatonin
accelerates the replenishment of energy substrates, which may
have facilitated the increase in glycogen stores.

In this scenario, a rapid glycogen repletion following a bout of
exhausting intense exercise is an important response to prepare
the muscle for subsequent bouts of activity (Wende et al., 2007),
specially for sports with repeated bouts of exercise at the same day
or in the following day. Thereby, melatonin seems to optimize the
response to exercise since training adaptations reflect the
accumulation of beneficial physiological functions produced
from single bouts of exercise (Park et al., 2021). Despite the
positive results of this study, there are still some limitations that
must be addressed: 1) We only focused on the master regulator of
the mitochondrial biogenesis and its relationship with NRF-1;
however, evaluating other proteins involved in the mitochondrial
biogenesis process as well as the PGC-1α downstream signals
could provide additional information on the mechanism of action
of melatonin; 2) we chose the dosage of 10 mg/kg due to the
effects of melatonin on time to exhaustion (tlim), as previously
reported by our research group (Beck et al., 2015A; Beck et al.,
2016; Faria et al., 2021); nonetheless, another concentration of
melatonin should be tested to achieve a similar effect with lower

dosage. Therefore, our findings make it clear that future studies
must be conducted in order to deepen the understanding of the
importance of melatonin from a physiological point of view.

In summary, the current study highlighted the role of melatonin
in the increase of exercise tolerance, exercise-mediated PGC-1α and
muscle glycogen after exhaustive prolonged exercise, as well as in the
decrease of muscle triglyceride content, thus providing a better
cellular metabolism environment for future efforts and virtually
improving adaptive responses to training.

5 FUTURE PERSPECTIVES

If confirmed in humans, the outcomes of this study could be
useful for athletes who must quickly return to their training or
competitive activities; For sure, further studies are needed to
elucidate whether such effects occur similarly in humans. In
addition, the administration of melatonin in the context of
training recovery should be more explored and expanded to
other health areas. In this line, melatonin could be useful in
treating/avoiding overtraining, a condition in which energy stores
as glycogen are chronically low (Fry et al., 1991; Smith, 2000).
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