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Understanding the influence of running-induced acute fatigue on the homeostasis of
the body is essential to mitigate the adverse effects and optimize positive adaptations
to training. Fatigue is a multifactorial phenomenon, which influences biomechanical,
physiological, and psychological facets. This work aimed to assess the evolution of
these three facets with acute fatigue during a half-marathon. 13 recreational runners
were equipped with one inertial measurement unit (IMU) on each foot, one combined
global navigation satellite system-IMU-electrocardiogram sensor on the chest, and an
Android smartphone equipped with an audio recording application. Spatio-temporal
parameters for the running gait, along with the heart rate, its variability and complexity
were computed using validated algorithms. Perceived fatigability was assessed using
the rating-of-fatigue (ROF) scale at every 10 min of the race. The data was split into
eight equal segments, corresponding to at least one ROF value per segment, and
only level running parts were retained for analysis. During the race, contact time, duty
factor, and trunk anteroposterior acceleration increased, and the foot strike angle and
vertical stiffness decreased significantly. Heart rate showed a progressive increase, while
the metrics for heart rate variability and complexity decreased during the race. The
biomechanical parameters showed a significant alteration even with a small change
in perceived fatigue, whereas the heart rate dynamics altered at higher changes. When
divided into two groups, the slower runners presented a higher change in heart rate
dynamics throughout the race than the faster runners; they both showed similar trends
for the gait parameters. When tested for linear and non-linear correlations, heart rate had
the highest association with biomechanical parameters, while the trunk anteroposterior
acceleration had the lowest association with heart rate dynamics. These results indicate
the ability of faster runners to better judge their physiological limits and hint toward a
higher sensitivity of perceived fatigue to neuromuscular changes in the running gait.
This study highlights measurable influences of acute fatigue, which can be studied only
through concurrent measurement of biomechanical, physiological, and psychological
facets of running in real-world conditions.
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INTRODUCTION

The tremendous increase in the popularity of running
(Rothschild, 2012) as a sport has hastened the need to understand
the risk factors for running related injuries (RRI) arising out
of maladaptation to training. While the direct relation of
biomechanical risk factors and training load to the instances of
lower extremity RRIs is debated (Ceyssens et al., 2019; Fredette
et al., 2021), these factors are understood to be influenced by
acute fatigue, especially resulting from endurance running
(Verschueren et al., 2020). In this context, acute fatigue can be
understood as the decline in performance caused by physical
exertion during sports (Knicker et al., 2011), measured during
or immediately after the sporting activity. Fatigue can be
characterized as the inability to maintain the intensity of a
sub-maximal exercise, caused by the change in the underlying
interdependence between the central drive from the motor
cortex and the contractile function of the muscles (Vargas
and Marino, 2014; Enoka and Duchateau, 2016). Since fatigue
depends on the interactions between performance and perceived
fatigability, direct measurement of fatigue is difficult (Enoka
and Duchateau, 2016). It is often investigated by measuring
its concomitant effects on cardiovascular, neuromuscular,
and psychological states via sensor-based approaches and
self-reported scores on questionnaires (Thorpe et al., 2017).
Other approaches include blood tests for lactate, cortisol,
etc. and performance monitoring on functional tests like
countermovement jump and maximum voluntary contraction
(Bourdon et al., 2017). However, these two modalities are
constrained to endpoint measurements and thus only useful for
testing pre-to-post responses.

The influence of fatigue on autonomic cardiac control can
be estimated through the dynamics of heart rate (Schmitt
et al., 2015), such as heart rate variability (HRV) and heart
rate complexity (HRC). These dynamics are computed from
the electrocardiogram (ECG) signal obtained from wearable
belts with single-lead electrodes or multi-lead stationary heart
rate monitors (Billman et al., 2015); breathing rate can be
measured using gas exchange systems in lab, or in-field with
wearable strain sensors (Jayasekera et al., 2021). Acute fatigue
can lead to a drop in the HRV metrics such as root mean
square of successive differences between normal heartbeats
(RMSSD) and the standard deviation of the heartbeat intervals
(SDNN) when measured during exercise (Casties et al., 2006;
Gronwald et al., 2020a). HRC variables such as the detrended
fluctuation analysis (DFA-α1) coefficient, quantifying the degree
of correlation of time series, respond to organismic demands
during high intensity exercises (Hautala et al., 2003; Gronwald
et al., 2021). Since running biomechanical parameters such as
contact time, flight time, trunk flexion angle, vertical stiffness,
ground reaction forces (GRF), etc. change in response to acute
fatigue (Apte et al., 2021), continuous monitoring of these
parameters can assist in understanding the effect of fatigue
on neuromuscular function (Paquette et al., 2020). While gait
spatiotemporal parameters, body segment kinematics, and GRF
can be measured directly, vertical stiffness is typically estimated
by modeling the running gait as a spring-mass model (Blickhan,

1989; Morin et al., 2005). The runner is considered as a
point mass and the supporting leg as a linear spring, with
the vertical stiffness characterizing the motion of the center
of mass (COM) in response to the vertical GRF. Running
biomechanics can be measured through stationary systems such
as motion capture systems, force plates, and video camera
and/or via wearable sensors such inertial measurement units
(IMU), insoles with embedded pressure sensors, and global
navigation satellite system (GNSS) receivers (Novacheck, 1998;
Benson et al., 2018).

The number of studies on continuous and field monitoring
of running-induced acute fatigue remains scarce, despite the
recent proliferation of wearable measurement systems and
movement analysis algorithms in sports science (Camomilla
et al., 2018; Apte et al., 2021). Within these, some studies
focused on the classification of fatigued and non-fatigued
states using machine learning techniques based on statistical
features or composite indices (Eskofier et al., 2012; Buckley
et al., 2017; Op De Beéck et al., 2018; Clermont et al., 2019),
which preclude the investigation of interpretable biomechanical
or cardiovascular parameters. Studies examining the response
of individual biomechanical parameters during long-distance
running (≥10 km) have predominantly analyzed the parameter
values at different distances (Alfuth and Rosenbaum, 2011;
Strohrmann et al., 2012; Ruder et al., 2019; Meyer et al.,
2021). This approach has an implicit assumption that different
participants develop similar levels of fatigue at similar distances
during the run, which may not be true for a heterogeneous
participant group employing a variety of pacing strategies.
Similarly, existing research on the continuous monitoring of
heart rate dynamics and cardiac drift (Billat et al., 2019; Gronwald
and Hoos, 2020; Gronwald et al., 2021) has generally considered
their evolution over the distance of the run. Combined together,
these studies investigate the neuromuscular and cardiovascular
response to acute fatigue, but not their concurrent evolution
and association. Neither do they assess the perceived fatigability
and thus the psychological states during the run. Due to
the complex nature of fatigue, perceived fatigability and the
association between neuromuscular and cardiovascular response
can provide a better global overview from a complex system
perspective rather than a single biomechanical or physiological
parameter (Venhorst et al., 2018; Balagué et al., 2020). Thus,
rating of perceived exertion (RPE) (Borg, 1982) or rating
of fatigue (ROF) (Micklewright et al., 2017) can provide
a more holistic idea of central regulation, especially during
the context of an actual running race that involves pacing
strategies, making their investigation pertinent (Millet, 2011;
Pageaux and Lepers, 2016).

In this work, we aimed to investigate the concurrent
evolution of running biomechanics and heart rate dynamics
in response to perceived fatigability for recreational runners,
using body-worn smartphone, IMU, GNSS and ECG sensors.
Furthermore, we computed the association between the two
set of parameters and studied its evolution with perceived
fatigability. Hereafter, perceived fatigability is alternately
referred to as ROF and/or fatigue, since it is a reference
for acute fatigue.
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MATERIALS AND EQUIPMENT

We conducted measurements with 13 healthy participants, six
(4 males, 2 females, age: 35.5 ± 9.3 y.o.) during the Lausanne
half-marathon (Switzerland, 27th Oct. 2019) and seven (7 males
age: 35.6 ± 5.8 y.o.) during a 21.5 km race-simulation run
in Rif (Salzburg, Austria, 25–29th November 2020). The race-
simulation in Rif was organized because of race cancelations
in 2020 due to the pandemic situation. The half-marathon was
chosen in order to avoid the walking periods that inexperienced

participants can have during a full marathon, as we observed
during pilot studies. EPFL human research ethics committee
(HREC 039-2018) approved the study and all participants
provided written consent before the data collection. As shown in
Figure 1A, participants were equipped with a GNSS-IMU-ECG
sensor (Fieldwiz, ASI, Switzerland) on the chest using a belt with
electrodes (Polar Pro Strap, Polar Electro Oy, Finland), an IMU
sensor (Physilog 5, Gaitup SA, Switzerland) on each feet, and an
Android smartphone on the upper arm. Apart from the sensor
setup, the participants dressed as they would for an endurance

FIGURE 1 | Sensor setup and data analysis process, (A) sensor configuration used for the measurement, where AP, SI, and ML denote the anterior-posterior, the
superior-inferior, and the medio-lateral axis (B) flowchart for the overall procedure, showing three blocks for the pre-processing, feature extraction, and statistical
analysis (C) statistical analysis procedure where the biomechanical and physiological parameters generated in (B) and the recorded ROF values are used as inputs.
ROF, Rating-of fatigue; ECG, electrocardiogram; IMU, inertial measurement unit; GNSS, global navigation satellite system; IQR, interquartile range; RQ, research
question.
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running race. Following their personal warm-up, the participants
were equipped with the sensor setup and were instructed to give
their best during the run.

The Fieldwiz and Physilog 5 wearable sensors were chosen
because they have already been used successfully for continuous
analysis of running in the field (Apte et al., 2020; Meyer et al.,
2021). Fieldwiz was used with a sampling frequency of 200 Hz for
the IMU, 250 Hz for the ECG, and 10 Hz for the GNSS receiver.
The Physilog 5 IMU was sampled at 512 Hz, with a range of± 16
g m/s2 for the accelerometer and± 2,000 deg/s for the gyroscope.
We installed a custom-built application on the smartphone,
which reminded the wearer to speak out their rating of fatigue
(ROF) on a scale of 1–10 (Micklewright et al., 2017) and recorded
this audio with a timestamp. We configured the application to
create a reminder every 10 min and subsequently record for a
period of 30 s. The audio files were manually transcribed to store
the recorded ROF value.

METHODS

The flowchart of the overall procedure for the pre-processing,
feature extraction, and statistical analysis is presented in
Figure 1B, and detailed explanations are provided in the
sections “Preprocessing,” “Feature Extraction,” and “Statistical
Analysis” respectively. In addition, Figure 1C provides detailed
information about the statistical analysis.

Preprocessing
The pre-processing steps include database organization,
synchronization of the sensors, segmentation of the different
activities (static pre/post, resting pre/post, walking pre/post,
and race periods), and slope detection (Figure 1B). A shock
movement, which consists of a fast up and down movement
on the vertical axis while holding all sensors together, was
performed before and after the race for synchronizing the
Fieldwiz and Physilog 5 wearable sensors (Caruso et al., 2019).
As the same motion was recorded on the accelerometer of both
sensors, we could compute the lag between the acceleration
signal of both sensors using cross-correlation; this lag was then
used to adjust their timestamps. We decided to restrain the
analysis to the bouts of level running to avoid any biomechanical
and physiological changes biased by inclined running. We
used the official mapping platform of the Swiss Confederation
(map.geo.admin.ch) to detect slopes on the Lausanne marathon
route and computed the distance using the Haversine formula
(Robusto, 1957) with the latitude and longitude information from
the GNSS sensor. Slopes were defined as race segments having a
gradient greater than 5% over 100 meters and corresponding race
sections were excluded from the data. To avoid this procedure,
we selected a relatively flat course for the run in Rif, with all
gradients below the 5% level.

Feature Extraction
Biomechanical Parameters
The accelerometer, gyroscope, and speed signals from the
Fieldwiz sensor were processed to remove outliers that were more

than two standard deviations away from the mean value over
a race segment window and replaced with linearly interpolated
values. To investigate the orientation of the trunk and its
evolution throughout the race, we computed two additional
metrics –aAP: the ratio of the acceleration along the anterior-
posterior direction and the running speed (v) and aML: the ratio
of the acceleration along the medio-lateral direction and the
running speed. Normalization with speed was carried out to
investigate the response to fatigue and not the secondary effects
of the change in speed. Using validated algorithms (Falbriard
et al., 2018, 2020), the raw signals from the foot IMUs were
initially used to divide the race into gait cycles based on mid-
swings. Following this, we estimated the temporal parameters
such as contact time (tc), flight time (tf ), swing time (ts), and cycle
time (tg), and kinematics parameters like peak swing velocity of
the foot (ωs), foot strike angle in sagittal plane (FSA), and foot
eversion angle (FEA) at initial contact. We obtained one value
of each spatiotemporal parameter per gait cycle for the right and
the left foot, but we used only the information from the right
foot for all participants for the subsequent analysis and removed
the first and last 10 steps of the race to avoid any transient
effects. To understand the storage and return of elastic energy,
we computed the vertical stiffness (kvert), using the spring mass
model to characterize running (Morin et al., 2005). To consider
the positive and negative work during running, we investigated
the duty factor of the gait (Alexander, 1991) defined as the ratio
between contact and stride time. The computation of the above-
mentioned parameters are explained in the publication from
Meyer et al. (2021).

Physiological Parameters
The physiological parameters were extracted from the raw ECG
signal in four main steps: (i) data segmentation, (ii) QRS-
complexes detection, (iii) R-peak correction, and (iv) feature
extraction. Following the recommendation of Task Force of the
European Society of Cardiology the North American Society
of Pacing Electrophysiology (1996), the raw ECG signal was
segmented into 120 s rolling windows with a 110 s overlap,
thus allowing an adequate time resolution with a parameter
computation every 10 s. On each window, the signal was
resampled from 250 to 1,000 Hz using linear interpolation
(“interp1” MATLAB function) to improve the robustness of
R-wave detection. Then, a non-linear filtering method was used
for QRS-complexes detection, which creates a coefficient vector
based on short- and long-term energies in the signal and
multiplies it with the signal itself to heighten peaks and suppress
perturbations (Yazdani et al., 2018). Further, an R-peak correction
procedure was applied to address the artifacts caused by electrode
movements and poor skin-electrode contact. RR interval values
greater than three times the standard deviation around the
median of the 60 neighboring RR intervals were considered
as outliers (Giles and Draper, 2018; Rincon Soler et al., 2018)
and replaced using spline interpolation (Tarvainen et al., 2014).
Finally, segments with artifact rates < 5% were considered valid
for further heart rate variability (HRV) analyses (Rogers et al.,
2021). Time-domain HRV metrics included beats per minute
(BPM), SDNN, and RMSSD. Following this, the cardiac cost (CC)
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i.e., the ratio between BPM and running speed, was computed
(Billat et al., 2020). Frequency domain analysis covered the low
(0.04−0.15 Hz—LF) and high (0.04−1.5 Hz—HF) frequency
components, as well as the ratio between the two bands (LF/HF
ratio). The HF band was extended to 1.5 Hz to cover respiratory
frequency during running (Casties et al., 2006; Cottin et al.,
2007), making this metric specific to exercise assessment and not
comparable to reference values at rest. HF and LF powers were
normalized to the total variance in order to reveal contributions
from the different spectral components. For the non-linear
methods, we extracted the quantitative indices of the Poincare
plot, represented by the transverse (SD1) and longitudinal (SD2)
axes of the ellipsis (Kumar et al., 2017). To characterize the
fractal correlation properties of HR time, we investigated the
short-term (DFA-α1; window width: 4 < n < 16 beats) and
long-term (DFA-α2; window width: 16 < n < 64 beats) scaling
exponents of detrended fluctuation analysis (DFA) (Peng et al.,
1998; de Godoy, 2016; Gronwald and Hoos, 2020). To understand
the cardiac output in relation to the pacing strategy, we also
computed the cardiac cost (CC) (Billat et al., 2012), which is the
ratio of the BPM and the running velocity.

Feature Computation
Following the extraction of parameters, we segmented the entire
race into eight periods, each period corresponding to 12.5%
of the race. The eight segments were selected to ensure the
presence of (at least) one ROF value per segment. For every
segment, we computed the median and interquartile range
(IQR) for each biomechanical and physiological parameter. As
the biomechanical and physiological metrics are highly subject-
dependent, we normalized the values by dividing the median
value of each segment by the median value of a reference
segment. The race segment with the highest running speed was
used as reference to normalize running biomechanics and the
physiological parameters were normalized by considering the
first segment as the ”non-fatigued” state.

Computation of Association Measures
The goal of this analysis was assessing the association between the
running gait parameters and the heart rate dynamics throughout
the race. Based on existing results on the influence of acute
fatigue on biomechanics, we selected five gait parameters—
tc, FSA, kvert , v, and aAP (Apte et al., 2021). We decided
to include three physiological parameters—BPM as a classical
metric, SDNN as the HRV metric, and the commonly used DFA-
α1 for HRC (Gronwald and Hoos, 2020; Gronwald et al., 2020b).
We computed the Pearson correlation (Benesty et al., 2009)
to characterize linear dependence and the distance correlation
coefficient (Székely et al., 2007) to investigate the non-linear
association. To obtain meaningful results from both the methods,
the relevant time series must be synchronized, have the same
sampling rate, and length. As a first step, each time series
representing the entire race was segmented into 8 equal parts
and outliers within moving windows of 10 samples (zero overlap)
were replaced by the median of the window. Following this,
within each segment, the mean values of the selected gait
parameters ( tc, FSA, kvert , v, and aAP) were computed on each

120 s rolling windows with an overlap of 10 s, ensuring the
same pre-processing method as the physiological parameters.
After ensuring similar sampling rate and length of time series,
we then computed the linear and non-linear correlations for
104 segments, 8 for each of the 13 participants. This procedure
was repeated for all 20 (=5×4) pairs of biomechanical and
physiological parameters.

Statistical Analysis
We conducted four statistical analyses (Figure 1C) to address the
following research questions:

RQ1: How do biomechanical and physiological parameters
evolve over the race progression?
RQ2: How do biomechanical and physiological parameters
evolve over progression of perceived fatigue based on ROF
values?
RQ3: At which level of perceived fatigue (1ROF), are the
biomechanical and physiological parameters significantly
affected?
RQ4: What is the association between the gait and heart
rate-derived parameters during endurance running and
how does it change due to perceived fatigue?
RQ5: Are there noticeable differences between fast and
slow runners in terms of fatigue progression and the
evolution of different parameters?

Details of each analysis are provided below, with the statistical
significance set at p ≤ 0.05. All analyses were performed with
MATLAB R2020a (The MathWorks, United States).

RQ1 and RQ2: Influence of Fatigue
In order to investigate the effects of race progression on
dependent variables (gait and ECG parameters), we applied
the Friedman test, a non-parametric test to compare three
or more repeated measurements, on segments S1 (begin), S5
(middle), and S8 (end) (Eisinga et al., 2017). The effect size was
computed as:

esF =
χ2

n
(
k−1

) (1)

Where esF is the Kendall’s W test value, χ2 is the Friedman
test statistic value, n is the sample size, and k is the number
of measurements per subject (Tomczak and Tomczak, 2014).
Kendall uses Cohen’s interpretation guidelines of 0.1 (small
effect), 0.3 (moderate effect), and above 0.5 as a strong effect
(Abdi, 2007). In addition, we computed pairwise comparisons
(S1 vs. S5; S5 vs. S8 and S1 vs. S8) using the non-parametric
Wilcoxon signed-rank test for paired observations. The effect size
was defined as:

esw =
Z
√

N
(2)

where Z is the standardized Z-score and N is the total number
of observations on which Z is based. To estimate the effects
of fatigue based on the perceived fatigability, we compared
segments with the lowest (L), medium (M), and highest (H)
recorded ROF values. These fatigue levels were considered
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individually for each participant and pooled into three different
groups (L, M, H) to overcome inter-subject variability in fatigue
perception. When the same ROF value was observed on several
segments, we computed the median parameter value for those
segments. Further, we applied the Friedman and the Wilcoxon
signed-rank test (L vs. M; M vs. H, and L vs. H) as previously
explained. For both the pairwise comparisons, we did not
use Bonferroni correction, since a small number of tests were
performed (Armstrong, 2014).

RQ3: Onset of Change Based on Rating of Fatigue
Values
The goal of this analysis was to investigate the onset of
the biomechanical and physiological changes in response to
perceived fatigability. To overcome inter-subject variability in
ROF baseline values, we analyzed the ROF differences between
segments (1ROF), by subtracting each ROF value by that at
the first segment (baseline). Since participants did not typically
report a linear increase of fatigue, a resolution of 1ROF = 1
is inappropriate and would lead to multiple missing values.
Consequently, we decided to create three states, by combining
1ROF 1 and 2, 3 and 4, and all values ≥ 5. When the same
1ROF values were obtained for several segments, we computed
the median parameter value over those segments. Then, we
applied the Friedman and Wilcoxon signed-rank tests, where
each1ROF> 0 was compared with1ROF = 0 (i.e., 0 vs. [1–2]; 0
vs. [3–4]; and 0 vs. ≥ 5).

RQ4: Linear Mixed-Effects Models
A linear mixed-effects (LME) model was applied to investigate
the influence of performances (i.e., fast vs. slow runners)
on biomechanical and physiological metrics. We considered
two groups of runners based on their performance, “fast” for
five fastest runners (race time < 90 min) and “slow” for
the five slowest runners (race time > 105 min). A 3-levels
LME model was designed with the 1ROF, the performance,
and the interaction between 1ROF and performance as the
fixed effects (“1ROF ∗ performance” in Eq. 3). Then, a
random effect (intercept and slope) on the subjects was defined
[“(1ROF| subject)” in Eq. 3]. As the LME model is robust
to missing values, we did not group the 1ROF in three
categories as explained in the previous section. The three
levels correspond to the following models: level 1: within-
subject model; level 2: within-group model (fast vs. slow);
and level 3: between-group model. We provided the equation
below as input to the “fitlme” Matlab function, with the
“responder” corresponding to a biomechanical or physiological
metric, and the “performance” corresponding to the fast and
slow groups:

responder ∼ 1ROF ∗ performance+ (1ROF|subject) (3)

Estimates of the model, p-value, and 95% confidence interval
(CI) values of the fixed effects (intercept and slope) for both
fast and slow groups were used to understand significant effects.
Statistical significance was accepted for p ≤ 0.05 and if the range
of the 95% CI did not include 0. In addition, the coefficient of

determination (conditional R2
c ), was computed to assess the total

variance explained by both fixed and random effects.

RQ5: Association Measures
For every pair of parameters, we computed 104 instances (8
segments × 13 subjects) of the linear Pearson correlation
coefficient (r), the associated p-value (Cohen et al., 2009), and
the nonlinear distance correlation coefficient (dCor) using the
distance correlation (Székely et al., 2007). To explore the linear
association within the 20 parameter pairs, we calculated the
total number of segments with a significant linear correlation
(p< 0.05). Further, to understand the strength of the correlations
when all segments and subjects are pooled together, we computed
the median (IQR) over the significant values of r and all
dcor values.

RESULTS

All the thirteen participants (11 males, 2 females) were able to
run until the end of the race (race time: 98.4± 12.3 min) without
substantial walking bouts, and provided information about their
ROF before race/after warm-up (3± 2) and after race (9± 1).

RQ1 and RQ2: Influence of Fatigue
The influence of fatigue on biomechanical and physiological
parameters, based on both race progression (RQ1) and ROF
values (RQ2), is summarized in Table 1 and Figure 2. Actual
values (median and IQR) of the parameters are reported in
Supplementary Material. The increase in ROF and 1ROF
scores throughout the race for all participants is presented in
Figure 3 and shows an important inter-subject variability for the
median ± IQR values at baseline [ROF(S1) = 4 ± 2]. Running
a half-marathon affected spatiotemporal and heart rate metrics
early in the race, mainly between segments 1 and 5. The tc,
Df , and the aAP values significantly increase during the race
(p< 0.001, esF > 0.5). The FSA (p< 0.001, esF > 0.5) and the kvert
[p< 0.05, esF ∈ (0.1, 0.3)] significantly decrease with high and low
effect sizes respectively. Though the statistical tests reveal that the
swing time and the peak swing vel. did not change significantly
when comparing all three segments, significant differences are
visible on the pairwise tests. The tc, ωs, the kvert , the Df , and
the aAP were altered at the beginning of the race as indicated by
the S1| 5 significant results [p ∈ (0.001, 0.01)]. Only the FSA was
altered during the second half of the race [p ∈ (0.001, 0.01)].

Regarding the heart rate metrics, the BPM significantly
increased (p < 0.05), while the SDNN significantly
decreased (p < 0.05). Despite a decreasing trend, non-
significant changes were observed for RMSSD during
the race. The pLF, LH/HF ratio, and SD2 significantly
decreased during running (p < 0.05). On the contrary,
HF, pHF, and SD1/SD2 increased with race progression
(p < 0.05) (Table 1 and Figure 2). Surprisingly, the DFA-
α1 did not significantly change during the race (p > 0.05),
while the DFA-α2 decreased significantly (p < 0.05). The
significant alterations of the above-mentioned physiological
parameters were observed during the first half of the race
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TABLE 1 | Effect size results for the statistical analysis A1, A2, and A3 using Friedman (F) test and pairwise Wilcoxon signed-rank (WSR) test.

RQ1 comparison across race segments RQ2 comparison across ROF RQ3 comparison across 1ROF

F-test
(esF)

WSR test (esW) F-test
(esF)

WSR test (esW) F-test
(esF)

WSR test (esW)

Parameter S1| 5 S5| 8 S1| 8 L| M M| H L| H 0| [1,2] 0| [3,4] 0|≥ 5

tc 0.55*** 0.62** 0.02 0.58** 0.41** 0.56** 0.34 0.57** 0.61*** 0.58** 0.61** 0.61**

tf 0.17 0.34 0.16 0.28 0.06 0.20 0.17 0.28 0.10 0.31 0.32 0.32

ts 0.18 0.31 0.45* 0.39* 0.17 0.10 0.45* 0.43* 0.10 0.31 0.28 0.43*

tg 0.11 0.20 0.36 0.01 0.08 0.21 0.34 0.02 0.06 0.24 0.15 0.03

Cad. 0.11 0.20 0.36 0.02 0.08 0.21 0.34 0.02 0.04 0.22 0.14 0.03

FSA 0.57*** 0.27 0.62** 0.43* 0.42** 0.20 0.53** 0.49* 0.39** 0.29 0.51 0.47*

FEA 0.02 0.28 0.12 0.21 0.00 0.06 0.17 0.20 0.03 0.17 0.25 0.19

ωs 0.17 0.43* 0.27 0.40* 0.25* 0.31 0.29 0.36 0.35** 0.35 0.57** 0.40*

kvert 0.26* 0.57** 0.08 0.43* 0.19 0.54* 0.09 0.43* 0.29* 0.58** 0.56** 0.47*

Df 0.54*** 0.62** 0.13 0.58** 0.37** 0.55** 0.38 0.58** 0.69*** 0.60** 0.61** 0.60**

v 0.08 0.25 0.32 0.21 0.03 0.08 0.05 0.10 0.06 0.10 0.16 0.10

aML 0.09 0.32 0.23 0.24 0.01 0.20 0.06 0.13 0.05 0.15 0.19 0.24

aAP 0.79*** 0.62** 0.09 0.62** 0.50** 0.58** 0.01 0.61** 0.44*** 0.58** 0.61** 0.61**

BPM 0.38** 0.47* 0.47* 0.53** 0.32* 0.45* 0.39* 0.47* 0.24* 0.40* 0.45* 0.47*

SDNN 0.50** 0.47* 0.23 0.49* 0.35* 0.49* 0.13 0.46* 0.16 0.24 0.43* 0.43*

RMSSD 0.04 0.16 0.06 0.19 0.02 0.03 0.34 0.17 0.05 0.02 0.08 0.12

DFA-α1 0.01 0.14 0.13 0.05 0.00 0.02 0.09 0.03 0.02 0.13 0.05 0.03

DFA-α2 0.31* 0.43* 0.14 0.56** 0.35* 0.45* 0.16 0.54** 0.29* 0.39* 0.46* 0.51**

SD1 0.04 0.16 0.06 0.19 0.02 0.03 0.34 0.17 0.05 0.02 0.08 0.12

SD2 0.47** 0.47* 0.20 0.56** 0.33* 0.55** 0.10 0.54** 0.15 0.31 0.50* 0.53**

SD1/SD2 0.47** 0.49* 0.09 0.58** 0.41** 0.54** 0.14 0.54** 0.28* 0.43* 0.54** 0.53**

pLF 0.34* 0.40* 0.31 0.36 0.29* 0.42* 0.24 0.35 0.33** 0.29 0.45* 0.42*

pHF 0.34* 0.42* 0.34 0.43* 0.29* 0.43* 0.27 0.42* 0.33** 0.36 0.49* 0.45*

LF 0.12 0.17 0.25 0.21 0.09 0.08 0.23 0.16 0.09 0.10 0.19 0.12

HF 0.34* 0.43* 0.21 0.57** 0.58*** 0.52** 0.24 0.62** 0.43*** 0.40* 0.58** 0.57**

LF/HF 0.34* 0.39* 0.34 0.36 0.29* 0.40* 0.24 0.36 0.33** 0.29 0.45* 0.40*

CC 0.12 0.38 0.32 0.48* 0.03 0.30 0.02 0.40* 0.10 0.31 0.34 0.41*

S1, S5, and S8 indicate race segments 1, 5, and 8, whereas L, M, and H denote the low, median, and high ROF values. For significant results, effect size of (0.1, 0.3) was
considered low, (0.3, 0.5) as medium, and > 0.5 as high for both WSR and F tests. The significance was set at p < 0.05, with * for p ∈ (0.01, 0.05), ** for p ∈ (0.001,
0.01), and *** for p < 0.001. Bold values correspond to significant results.

and remain until the end, as indicated by significant pairwise
comparison between segments 1 and 5, and segments 1 and
8 (Table 1).

Comparisons across ROF values showed similar trends for
the spatiotemporal and physiological parameters as those based
on race progression (Table 1 and Figure 2). Remarkably, we
observed slightly higher effect sizes across race segments than
across ROF values for all the parameters with significant changes,
with HF showing an inverse tendency.

RQ3: Onset of Change
Table 1 also provides the evolution of the biomechanical and
physiological parameters across fatigue scores, where 1ROF
values are pooled in four states (i.e., 0, [1,2], [3,4], and ≥ 5).
Unsurprisingly, parameters showing significant alterations in
RQ1 and RQ2 analysis, also present significant changes in
RQ3. However, these results provide a deeper understanding
of the onset of change based on the perceived fatigability. The
spatiotemporal biomechanical parameters, tc (p < 0.001), Df
(p< 0.001),

kvert (p < 0.05) and aAP (p < 0.001) show significant changes
at all fatigue states including 1ROF 1 and 2 [p ∈ (0.001, 0.01),
esW > 0.5]. Then, a significant decrease of peak swing vel. appears
at moderate fatigue states [1ROF = [3–4], p ∈ (0.001, 0.01)].
Finally, FSA and ts values became significantly lower only at high
fatigue scores (1ROF> 5).

Concerning the HRV metrics, the time-domain BPM, the
frequency-domain HF, and the non-linear metrics DFA-α2 and
SD1/SD2 ratio changed significantly at all fatigue states; first with
medium effect sizes [p < 0.05, esW ∈ (0.3, 0.5)] for low 1ROF,
then high effect sizes at higher fatigue states (1ROF > 5). The
SDNN, SD2, pLF, pHF, and LF/HF ratio were affected at medium
and high fatigue scores. Finally, the cardiac cost significantly
increased at high perceived exertion, when 1ROF ≥ 5 [p < 0.05,
esW ∈ (0.3, 0.5)].

RQ4: Investigation According to
Performance
The results of the influence of performances (i.e., fast vs. slow
runners) on biomechanical and physiological metrics, based on
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FIGURE 2 | Parameters with a significant change with the race segments (in blue) and/or rating of fatigue (in yellow), with *p ∈ (0.01, 0.05) and **p ∈ (0.001, 0.01).
S1, S5, and S8 represent the race segments 1, 5, and 8, and L, M, and H the low, medium, and high ROF values. Except aAP, all biomechanical parameters show
substantially lower variability in trends than the physiological parameters.
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FIGURE 3 | Change in the perceived fatigability with race progression and the results of the LME models for the response of the parameters, based on the “fast” and
“slow” groups.

the‘ LME model, are presented in Figure 3. Only a subset
of metrics showing significant differences between groups on
fixed-effects, intercept or slope, are presented. Interestingly,
the spatiotemporal biomechanical parameters showed significant
differences in the intercept values between fast and slow runners,
while the slopes were similar (Figure 3). Compared to fast
runners, the slower group presented a higher tc, Df , and FSA, and
lower kvert (Figure 3) throughout the race.

For physiological parameters, the frequency-domain (pLF,
pHF, LF, HF, and LF/HF ratio) and the non-linear (SD1/SD2
ratio, DFA-α1) metrics showed significant fixed-effects (intercepts
and slopes) between groups. Figure 3 indicates that DFA-α1

was higher for slow runners at baseline and proceeded to
decrease for both groups. It is worth mentioning that two
runners in the fast group were considered outliers in the LME
model as having high DFA-α1 values (∼ 1) at the end of
the race, leading to high residuals. Interestingly, SD1/SD2 and
LF/HF ratios demonstrated converging trends (Figure 3), as
slow runners started with lower SD1/SD2 ratio values compared
to fast runners and vice-versa for LF/HF ratio. Whereas those
ratios seem relatively stable for the fast group throughout the
race, a significant increase and decrease are visible for SD1/SD2
and LF/HF ratios, respectively. The estimate, p-values, 95%
confidence interval (CI), and conditional R2

c of the fixed effects
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(intercept and slope) for both fast and slow groups are reported
in Supplementary Material.

RQ5: Association Measures
Based on the literature on the influence of acute fatigue (Apte
et al., 2021), we selected five gait parameters—tc, FSA, kvert , v, and
aAP, and three physiological parameters—BPM, SDNN, DFA-α1
for association analysis. In addition, we decided to include SD2
a posteriori, because our current findings demonstrated strong
trends for the long-range HRC variables (DFA-α2, and SD2).
FSA and BPM typically showed the highest number of significant
linear correlations (Figure 4A) with other physiological and
biomechanical parameters, respectively; aAP showed the lowest.
Consistent with this, the magnitude of the r and the dcor was
relatively higher for tc| BPM, kvert| BPM, v| BPM, FSA| BPM, FSA|
DFA-α1, and FSA| SD2 pairs. aAP showed the lowest strength of

association with any of the physiological parameters. Figure 4D
presents the evolution of the r value for the four 1ROF states,
with FSA| BPM, kvert| BPM, FSA| DFA-α1, and FSA| SDNN
showing different trends for slow and fast groups. kvert| DFA-
α1, FSA| SDNN, FSA| BPM, and FSA| SD2 show a change of the
correlation pattern with the increase in perceived fatigability.

DISCUSSION

The goal of the present study was to measure concurrently and
continuously the response of the biomechanical, physiological,
and psychological parameters to acute fatigue during a half-
marathon run. The influence of fatigue on biomechanical
and physiological parameters, based on race progression and
ROF values, is discussed in section “Influence of Fatigue”

FIGURE 4 | Analysis of the linear and non-linear similarity metrics for the selected gait and physiological parameters. (A) Number of parameter pairs with significant
linear correlations out of a total of 104 pairs, (B) median and interquartile range (IQR) of the significant linear Pearson correlation coefficient (r) across subjects and
segments, and (C) median (IQR) of the non-linear distance correlation coefficient (dcor). (D) Investigation of linear similarity metric (r) for parameter pairs with at least
60 significant correlations, based on the performance of the participants (slow and fast runners).
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(RQ1 and RQ2, respectively). The onset of changes based
on 1ROF values is considered in section “Onset of Fatigue”
(RQ3). Finally, the comparison of fast with slow runners
(RQ4) and the linear and non-linear association metrics for the
selected gait and physiological parameters (RQ5) are explained
in section “Differences Between Slow and Fast Runners”
and “Association Between Biomechanical and Physiological
Parameters,” respectively.

Influence of Fatigue
Concerning the biomechanical parameters, our analysis confirms
previous results (Apte et al., 2021; Meyer et al., 2021), showing a
stable gait cycle time, an increase in contact time and duty factor,
as well as decreases in pitch angle, swing time and vertical stiffness
(Figure 2). The alteration in running biomechanics observed
in the present study results from strategies to compensate for
neuromuscular fatigue (Apte et al., 2021). Vertical stiffness
represents the global response of spring-mass model to acute
fatigue, thus rendering it crucial to the understanding of
biomechanical changes (Morin et al., 2005). Decreased vertical
stiffness indicates an increase in the vertical motion of the
COM and/or a decrease in the peak vertical GRF. The decrease
in vertical stiffness is consistent with the observations in
shorter time trials (800 m) but not for a longer mountainous
ultramarathon race (330 km) distance (Degache et al., 2016;
Girard et al., 2017). However, these comparisons must remain
anecdotal due to the difference in running conditions, intensities
and in methods for stiffness estimation. In addition to lower
body biomechanical changes, we observed a significant increase
in the trunk anteroposterior acceleration, most likely linked
with a fatigue of the lower back postural muscles. Except the
FSA, the above-mentioned biomechanical alterations appeared
during the first half of the race, and maintained throughout
the race (Table 1). These findings are consistent with previous
studies demonstrating that a large amount of muscle activation
impairments is obtained early on a self-paced exercise (Azevedo
et al., 2019). The widely recognized critical point associated
to fatigue in marathon race, known as “hitting the wall,” and
characterized by a late-race slowdown (Buman et al., 2008),
was not observed when performing group statistics in our
study. The fact that a majority of our participants were not
“hitting the wall,” shown by a reasonably stable running speed,
might explain why we do not observe additional significant
alterations of the biomechanical parameters during the second
part (between S5 and S8).

Interestingly, the heart rate metrics are also affected early in
the race, mainly between segments 1 and 5. As expected, some
time-domain HRV metrics, expressed via SDNN, decreases from
the beginning of the exercise (Gronwald et al., 2020a). Regarding
the frequency-domain metrics, in agreement with Casties et al.
(2006), our results demonstrate a decrease in LF/HF ratio during
running. As LF does not change significantly, the LF/HF ratio
decrease is mainly resulting from an increase in HF power. The
frequency band of HF corresponds to heart rate variations related
to the respiratory cycle, and a shift in respiration rate and volume
can critically change HF power (Blain et al., 2005; Shaffer and
Ginsberg, 2017). Thus, the observed increase in HF (decrease in

LF/HF ratio) during the race is most likely linked to an increase
in breathing rate.

Gronwald et al. (2020b) suggests using DFA-α1 as a proxy
for the complex regulation of the central and autonomous
nervous system in response to different exercise intensities.
However, those DFA-α1 changes were mainly analyzed in-
laboratory setting during incremental tests. Only one study
reported a significant decrease of HR fractal properties during
a marathon race (Gronwald et al., 2021). In our results, short-
term scaling exponents DFA-α1 was not significantly lower
at the end of the race compared to the baseline when all
participants are combined (Table 1). However, a significant
difference between fast and slow runners is observed (Figure 3)
as well as a significant decrease of DFA-α1 in both groups. Despite
lack of investigation with DFA-α2 in literature, we considered
relevant to report its results as it showed significant decrease
throughout the race. Regarding the Poincare plot, the non-
significant change in SD1 during the race, accompanied with a
significant decrease in SD2, suggests that sympathetic activation
results in progressive reduction in the long-term oscillation
of HR (Tulppo et al., 1996). The nonlinear measures of HR
dynamics provide useful information during exercise, especially
the metrics reflecting long-term fluctuations of HR (SD2 and
DFA-α2), that are not easily detected by linear measures of
HRV. These changes of HR dynamics from strongly correlated
to uncorrelated or anti-correlated indicates a behavior dependent
on exercise intensity, likely induced by a vagal withdrawal and/or
sympathetic activation (Platisa and Gal, 2008).

Neuromuscular fatigue, which in part explains the running
pattern alterations, accompanied by changes in metabolic and
physiological demands, contributes to the increase of perceived
fatigue. We notice only few differences for physiological and
biomechanical parameter trends based on ROF (low, medium,
high), compared to race progression. The main difference resides
in smaller effect sizes for A2 statistical analysis, which might be
explained by high inter-subject variability in perceived fatigue.
This was caused by the pooling in A2 statistics, which led
to the parameters at highest ROF of highly fatigued runners
being pooled with the parameters at highest ROF of moderately
fatigued runners. Thus, it seems relevant to compute 1ROF
as a fatigue score for assessing acute fatigue. Furthermore,
we did not necessarily find a linear increase of ROF, in
contrast to earlier findings during in-laboratory incremental
tests (Gronwald et al., 2018). This underlines the importance of
measuring perceived fatigue during a running event that involves
pacing strategies.

Onset of Fatigue
We observed biomechanical and physiological alterations at
different fatigue states compared to the baseline value. The
contact time, duty factor, stiffness, and aSG show significant
alterations at all fatigue states. Then, peak swing vel., FSA,
and swing time significantly change at higher fatigue scores.
These early changes in running pattern are most likely linked
with a drop in muscle contractile function at the beginning
of the race, as previously demonstrated (Azevedo et al., 2019).
Moreover, once the biomechanical parameters start changing,
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the participants find it difficult to recover the deteriorating
running technique.

Concurrent physiological adaptations are observed with a
significant increase in BPM, HF, and SD1/SD2 ratio, and a
significant decrease in DFA-α2 at all fatigue states (from 1ROF
[1–2] to 1ROF ≥ 5). Later, SDNN, SD2, pHF, pLF, LF/HF ratio,
and CC are affected as well by acute fatigue. The decrease in HRV
and HRC, accompanied with an increase in HF and pHF, support
previous findings demonstrating the persistence of respiration
sinus arrythmia (RSA) at high workloads (Blain et al., 2005;
Prigent et al., 2021), as it is the main source of HRV at high
exercise intensities.

Furthermore, our results demonstrate that the gait parameters
are affected by a lower increase in fatigue compare to the
physiological parameters, which are affected at higher fatigue
levels (Table 1). Interestingly, some biomechanical parameters
are affected from the first sensation of fatigue (1ROF
[1,2]), suggesting a correlation between perceived fatigue and
neuromuscular impairments; these impairments are known as
the underlying mechanism responsible for running technique
alteration. This observation is in line with other studies
suggesting that peripheral muscle fatigue would be the constantly
regulated variable (Calbet, 2006), with a continuous sensory
feedback coming from working muscles to the central nervous
system (Esteve-Lanao et al., 2008). Neuromuscular fatigue seems
to be the dominant mechanism influencing perceived fatigue
during the initial portion of the run. Later, the feedback
from the fatiguing cardiorespiratory system might also increase
the perception of effort (Bergstrom et al., 2015). Finally, as
demonstrated by an increase in cardiac cost at high fatigue
perception, we can argue that additional motor units are needed
to produce the same overall muscle efficiency, which results in
higher physiological/metabolic costs (Kounalakis et al., 2008;
Marcora et al., 2008). These neuromuscular and cardiorespiratory
afferent sensory feedbacks, among others, are subconsciously
processed in the brain, resulting in an unpleasant sensation
of fatigue, which directly influences the pacing strategy. This
difference in pacing strategy was clearly visible in both the fast
and slow runner groups.

Differences Between Slow and Fast
Runners
The sample size in our study is too low to conclude any
statistical results for between-group comparison of fast and slow
runners. However, the clear trends for each group could be
relevant for a future between-group study design. Concerning
the biomechanical parameters, the rate of alterations throughout
the race are comparable between these two groups, the main
differences reside in the intercept values (Figure 3). Interestingly,
the athletes considered as well-trained in our study (fast group)
present more stable physiological parameters (DFA-α1, SD1/SD2
ratio, HF, and LF/HF ratio) during the race than less-trained
participants (Figure 3). As all participants, fast and slow
included, reported an increase in ROF scores during the race,
the evidence from the previous section indicating a correlation
between perceived fatigue and neuromuscular impairments
seems to be confirmed.

Moreover, our results suggest that less trained subjects might
feel additional fatigue signs due to lower cardiorespiratory
capacities and thus adopt a cautious pacing compared to fast
runners, making sure they can finish the race (Noakes et al.,
2005). In contrast, the fast runners seem to push harder from
the beginning as seen by a slight decrease in speed in the second
part of the race, whereas the slow group adopt a stable and
lower running speed.

This leads to a progressive alteration of HRV parameters for
the slow group, indicated by progressive changes of the heart
rate metrics during the race (i.e., DFA-α1, SD1/SD2 ratio, HF,
and LF/HF ratio), converging toward the values obtained for
fast runners. Well-trained runners might sustain high metabolic
cost for a prolonged period, explaining the quick and sustained
drop in the HRV and HRC metrics. Low DFA-α1 values (∼0.6)
are already measured for fast runners in the 10 first minutes of
the race; and maintained throughout the race, whereas the slow
group showed a progressive reduction in HRC.

Association Between Biomechanical and
Physiological Parameters
Our results demonstrated a substantially higher number of
correlations with biomechanical parameters for heart rate,
compared to HRV and HRC. Due to the increase in muscle
fatigue, a higher number of motor units should be recruited
to maintain the same muscle force, leading to a need for an
increased neural drive (Girard et al., 2012). The circulatory strain
is further increased due to dehydration and rise in the core
body temperature (Kenefick et al., 2012), leading to a progressive
increase in the heart rate throughout the race. Indeed, heart rate
(BPM) is the only parameter that shows a significant difference
between segments 1, 5, and 8, and for low, medium, and high ROF
values. The measured relative change in R-R intervals decreases
with an increase in heart rate, even if the variability of heart rate
is the same (Sacha, 2014). This can explain the relatively lower
number of correlations for HRV and HRC with biomechanical
parameters, owing to a reduction in their measured change.

Another interesting result is the high number of correlations
for the FSA. This could be linked to the increase in FSA, which
is directly related to the leg muscle fatigue and the adaptation
of running kinematics to acute fatigue (Apte et al., 2021; Meyer
et al., 2021). Medio-lateral trunk acceleration (aAP) showed the
lowest number of significant linear correlations and lowest value
of distance correlation for all physiological parameters. Thus,
aAP could be considered as an independent response variable for
acute fatigue, as it shows a significant increase but is not related to
physiological parameters. Trunk muscles are slow twitch muscles,
thus engendering lower cost for maintaining posture (Bramble
and Lieberman, 2004), as compared to the cost for maintaining
similar speed with the leg muscles. Concurrent recording of
biomechanical and physiological parameters enabled an analysis
of their association and its evolution with perceived fatigability.
Within the framework of the new emerging field of Network
Physiology and Complex Systems Science, investigating how
physiological systems and subsystems coordinate and interact,
has shown promise in understanding diverse exercise-related
phenomena such as sports performance, fatigue, or sport injuries
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(Balagué et al., 2020). Using wearable sensors, our study
demonstrates the feasibility of following this approach during
an in-field prolonged running event. Our investigation can be
extended further by the analysis of raw ECG and IMU signals
from the trunk sensor using the causality, stability, modularity,
frequency-domain approaches, etc. However, care must be taken
to ensure that the ECG signal is free of movement artifacts
and the different sources of signals are correctly synchronized.
Based on our results, we recommend further controlled analysis
and hypothesis testing to understand the reasons behind the
higher correlations for the eight pairs of parameters presented
in Figure 4.

Limitations and Recommendations
The estimation of FSA can be rendered less accurate for
participants with a forefoot strike (Falbriard et al., 2020), which
was the case with one participant in the fast group. Concerning
the heart rate metrics, the presence of artifacts might influence
the frequency and non-linear indexes. Despite correction
methods and 5% artifact threshold for data exclusion, substantial
bias in the extracted metrics could happen (Giles and Draper,
2018). Giles and Draper (2018), recommended using near
artifact free method when analyzing heart rate variability during
high intensity exercise. An additional limitation is the unclear
physiological interpretation of non-linear metrics (DFA-α1, DFA-
α2, SD1/SD2 ratio). Gronwald et al., suggested using DFA-α1 as
a “global parameter” for the whole system and as a proxy for
the complex regulation of the central and autonomous nervous
system (Gronwald et al., 2020b). However, the exact factors
influencing DFA-α1 are still unclear, such as the possible influence
of breathing and cardiorespiratory coupling. Assessment of
respiration can also provide information about cardiorespiratory
coordination, which has been shown to be sensitive to the short-
term and long-term effects of exercise (Garcia-Retortillo et al.,
2017). Consequently, we suggest measuring breathing patterns in
future studies aiming to assess fatigue.

The number of subjects in the fast/slow groups is low and
the overall sample is limited to 13 subjects. Background data
about the participants, such their VO2max values, sleep quality,
stress, and emotional health can improve the interpretation of the
results. In addition, improving the resolution of the collection
of ROF samples can enable a finer analysis of the evolution of
perceived fatigability and its influence on the biomechanical and
physiological parameters. Finally, the perceived fatigability can
be assessed more holistically by also including the measurement
of the valence, arousal, flow state, and action crisis (Venhorst
et al., 2018). While this additional measurement was not feasible
for us during the race, a pre/post assessment could provide
a more complete understanding of the affective, sensory, and
cognitive processes.

CONCLUSION

This work is one of the first to concurrently and continuously
measure the response of biomechanical, physiological, and
psychological parameters to acute fatigue during a half-marathon

run. The biomechanical parameters presented a significant
alteration even with a small change in perceived fatigue, whereas
the heart rate dynamics alter at higher fatigue levels. When
analyzed as two groups using a LMEs model, the slower runners
showed a higher change in heart rate dynamics throughout the
race than the faster runners; whereas both groups developed
similar trends for the gait parameters. When tested for linear
and non-linear correlations, heart rate presented the highest
association with biomechanical parameters, while the aSG showed
the lowest association with heart rate dynamics. These results
indicate the ability of faster runners to better perceive their
physiological limits and hint toward a higher sensitivity of
perceived fatigue to changes in the running gait. This study
highlights measurable influences of acute fatigue, which can be
studied only through concurrent measurement of biomechanical,
physiological, and psychological facets of running in real-world
conditions. It may serve as a springboard for the design of
studies that measure the association of biomechanical and
physiological parameters and its evolution with acute fatigue.
Utilization of such wearable sensor setups can further allow
a more personalized approach to fatigue analysis and thereby
enable an improved customization of training programs.
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