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Neonatal respiratory distress syndrome (RDS) is a condition of pulmonary surfactant
insufficiency in the premature newborn. As such, artificial pulmonary surfactant
administration is a key treatment. Despite continued improvement in the clinical
outcomes of RDS, there are currently no established bedside tools to monitor
whether pulmonary surfactant is effectively instilled throughout the lungs. Electrical
impedance tomography (EIT) is an emerging technique in which physiological
functions are monitored on the basis of temporal changes in conductivity of
different tissues in the body. In this preliminary study, we aimed to assess how EIT
tidal volumes correlate with ventilator tidal volumes in an RDS animal model, namely
untreated, surfactant-treated, and normal control rabbit pups. Tidal volumes were
measured simultaneously on an EIT system and a mechanical ventilator and compared
at different peak inspiratory pressures. The linear correlation between tidal volumes
measured by EIT and by ventilator had an R2 of 0.71, 0.76 and 0.86 in the untreated,
surfactant-treated, and normal control groups, respectively. Bland–Altman analysis
showed a good correlation between the measurements obtained with these two
modalities. The intraclass correlation coefficients (ICC) between ventilator tidal volume
and EIT tidal volume were 0.83, 0.87, and 0.93 (all p < 0.001) in the untreated,
surfactant-treated, and normal control groups, respectively, indicating that the higher
ICC value, the better inflated status of the lung. In conclusion, we demonstrated that
EIT tidal volume correlated with ventilator tidal volume. ICC was higher in the
surfactant treated group.

Keywords: electronic impedance tomography, respiratory distress syndrome, premature infant, neonatal intensive
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INTRODUCTION

Neonatal respiratory distress syndrome (RDS) is a condition of pulmonary surfactant
insufficiency in the premature newborn; without treatment, morbidity and mortality
increase during the first 2 days of life. Administration of artificial pulmonary surfactant
reduces surface tension of the alveoli and improves functional residual capacity by
expanding the collapsed alveoli (Knudsen and Ochs, 2018).
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Despite continued improvement of the clinical outcomes in
RDS, there is a scarcity of bedside tools that can be used to
monitor the state of the instilled surfactant throughout the
lungs, excepting chest x-ray and blood gas analysis. Electrical

impedance tomography (EIT) is an emerging technique in
which ventilation is monitored on the basis of temporal
changes in conductivity of different tissues in the body.
With small currents, conducting electrodes attached to the
skin can analyze body composition during ventilation without
radiation exposure (Metherall et al., 1996; Adler and Boyle,
2017; Kallio et al., 2019). However, its application to neonatal
RDS is not yet established.

We analyzed the calculated tidal volumes using the EIT
technique. The aim of this study was to determine how
pulmonary surfactant administration affects tidal volume
parameters measured by mechanical ventilator and EIT in a
preterm rabbit model of RDS.

MATERIALS AND METHODS

Animals
According to the ARRIVE guidelines, we obtained approval
from the Institutional Animal Review Board of Kyung Hee
University Hospital (KHMC-IACUC-2017-026). Zoletil®
(15 mg/kg) was used to induce sedative anesthesia of the
mother rabbit (intravascular injection, marginal ear vein)
and each pup (intramuscular injection, unilateral thigh
muscle) before procedures. We harvested preterm rabbit
pups on day 27 (D27) of gestation and term pups on day 31
(D31) via caesarean section of pregnant New Zealand white

FIGURE 1 | An example of tidal volume measurement and EIT images in
a subject from preterm treated group (A) Pressure-volume curves of ventilator
tidal volume and EIT tidal volume. (B) The reconstructed chest cross-section
EIT according to PIP change. PIP, peak inspiratory pressure.

TABLE 1 | Measured tidal volumes according to stepwise inflation and deflation.

Ventilatora Untreated preterm (n = 9) Treated preterm (n = 6) Term (n = 3)

Median Range Median Range Median Range

Inflation peak inspiratory pressure (cmH2O) 10 186 (32–709) 161 107–397 194 110–266
15 316 (110–997) 288.5 (232–553) 342 (188–396)
20 419 (160–1,252) 419 (338–681) 477 (266–552)
25 496 (214–1,467) 523 (444–788) 631 (370–812)
30 599 (370–1754) 655 (545–913) 865 (600–1,097)
35 781 (604–1929) 776 (705–1,026) 1,261 (916–1,435)

Deflation peak inspiratory pressure (cmH2O) 30 607 (499–1726) 628 (547–890) 1,076 (788–1,253)
25 471 (318–1,519) 539 (444–766) 896 (682–1,071)
20 393 (214–1,334) 408 (340–626) 717 (552–864)
15 289 (134–1,157) 292.5 (237–496) 506 (396–604)
10 210 (31–944) 189 (154–368) 291 (214–344)

EITb Untreated preterm Treated preterm Term

Median Range Median Range Median Range

Inflation peak inspiratory pressure (cmH2O) 10 81.8 (10.5–735.7) 222.2 (154.4–293.0) 277.2 (208.3–316.2)
15 65.2c (17.9–541.0) 316.2c (257.3–386.8) 397.3 (247.6–562.0)
20 299.8 (29.8–833.1) 443.4 (317.9–587.5) 564.0 (308.7–825.7)
25 391.9 (51.1–1,114.0) 536.45 (470.4–804.4) 819.9 (375.5–1,028.0)
30 515.9 (190.3–1,632.5) 650.12 (591.2–925.9) 1,102.9 (654.9–1,109.9)
35 781.0 (632.0–1,632.5) 776.0 (705.0–1,026.0) 1,261.0 (825.6–1,444.0)

Deflation peak inspiratory pressure (cmH2O) 30 637.1 (542.0–1,594.7) 709.8 (540.4–914.1) 848.8 (721.0–1,257.9)
25 468.9 (325.5–1929.0) 579.9 (439.3–729.9) 723.3 (625.8–1,079.6)
20 354.9 (56.4–1926.1) 454.5 (319.6–517.9) 519.6 (485.2–870.3)
15 212.3c (17.9–1754.6) 375.0c (226.2–454.5) 541.5 (371.8–618.3)
10 88.89 (4.9–1812.7) 253.7 (149.6–332.1) 282.9 (223.1–350.8)

aTidal volumes were recorded as shown by the small animal ventilator panel, according to peak inspiratory pressure changes.
bTidal volumes were calculated through the EIT, signals analysis.
cMeans statistical significance between untreated preterm group and surfactant treated preterm group (p = 0.018, 0.026, Mann-Whitney U test).
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rabbits. The study groups were as follows: 1) Untreated
(preterm pups), 2) surfactant-treated (preterm pups), and 3)
normal controls (term pups). Soon after delivery, we
performed a tracheostomy procedure on the pups using a
24G intravenous catheter and applied a small animal
ventilator (VentElite, Harvard Apparatus, Holliston, MA,
United States) set to the pressure-controlled mandatory
ventilation mode (Supplementary Figure S1). The treated
group were given 100 mg/kg of Curosuf ® (Chiesi
Farmaceutici, Parma, Italy) by the intratracheal route,
immediately after application of the ventilator.

Electrical Impedance Measurement
We used the KHU Mark2.5 EIT system, a non-commercial
prototype designed by the Impedance Imaging Research
Center of Kyung Hee University. Since the rabbit pups

were small and had an average weight of 43.06 ± 14.75 g
and a chest circumference of 7.64 ± 0.61 mm, we prepared a
specialized bed that had an electrode interface
(Supplementary Figure S1). The pups were placed in the
interface with sixteen spring-loaded pin electrodes that
surrounded the chest, just below the level of the forelimbs.
The zigzag electrode attachment and a measurement protocol
robust against noise and electrode attachment position error
were selected because of the small chest circumference of the
preterm pups (Graham and Adler, 2007). To collect time
series of EIT images at 50 frames/s, 16 electrode leads were
connected in two layers at the perimeter of the thorax of each
rabbit pup.

The EIT measurement was undertaken during the
following ventilator maneuver: An initial respiratory rate
set at 120 breaths/min and positive end-expiratory pressure

FIGURE 2 | Pressure-volume curves. The graphs were based on the median values of the untreated preterm group (n = 9), surfactant treated group (n = 6), and
term group (n = 3). Maximum and minimum values are shown in Table 1. * means statistical significance between the untreated preterm group and surfactant treated
preterm group (p = 0.018, 0.026, Mann-Whitney U test). PIP, peak inspiratory pressure; Inf, inflation; Def, deflation.

FIGURE 3 | Linear regression analysis and intraclass correlation coefficient (ICC) of tidal volumes determined by the ventilator and EIT VT in each group.
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of 5 cm H2O (Basoalto, et al., 2021; Ferrini, et al., 2021;
Joelsson et al., 2021). Over 120 s, PIP was increased from
10 to 35 cm H2O in 5 cm H2O increments (stepwise inflation)
and thereafter returned in 5 cm H2O steps back to the baseline
(stepwise deflation). EIT images were reconstructed from the
difference in voltage data measured between adjacent
electrode pairs using the 3D GREIT algorithm (Figures
1A,B) (Adler and Lionheart, 2006). At each PIP level, the
tidal volumes (VT) measured by the ventilator were recorded,
and the EIT signals were transformed into aeration area and
calculated tidal volumes. The calculation was done by
subtracting the individual pixel values of relative
impedance changes in EIT during each PIP step. Finally,
the local impedance change was plotted in the selected
regions of interest.

Statistical Analysis
The volume of air in the lungs and the tidal volume, was the
major determinant of thoracic impedance change. Within each
group, we calculated the differences in tidal volume (Diff VT)
measured by the ventilator and EIT during PIP changes as
follows:

Diff VT (µL) � Vent VT − EIT VT

The relationship between ventilator tidal volume (Vent VT)
and EIT tidal volume (EIT VT) was assessed by Spearman’s
correlation and linear regression. Agreement between Diff VT

in the same PIP was analyzed by Wilcoxon signed rank test
with paired test and equivalence test. In addition, the
agreement was confirmed through the Bland–Altman plot.
The intraclass correlation coefficient (ICC) was calculated
for each group, and the ICCs were compared between
different groups using Kruskal-Wallis test. Mann-Whitney
U test was used in between-group comparisons. Statistical
significance was set at p < 0.05 and SAS version 9.4 (SAS
Institute Inc., Cary, NC, United States) as well as the R4.0.4
program was used for analyses.

RESULTS

Twenty three newborn pups were harvested from 6 mother
rabbits. Five pups were excluded as a result of early death (n =
2) or measurement failure due to pneumothorax, which was
recognizable by sight (n = 3). Among 18 pups, 3 were term, 9
were untreated preterm and 6 were surfactant treated preterm
pups. We obtained 198 tidal volume sets in total (99 in treated,
66 in untreated and 33 in term group). One tidal volume set
was made from 120 s of the specific PIP level.

Assessment of Changes in Tidal Volume
and Electrical Impedance Tomography
We obtained pressure-volume curves according to inflation and
deflation pressures. Table 1 and Figure 2 show the median values
in the curves of Vent VT and EIT VT. There was a significant
difference between the untreated and surfactant-treated preterm
pups in both inflation and deflation curves at PIP of 15 cm H2O
(p = 0.018, 0.026).

Correlation Analysis of Tidal Volume
Measured by the Ventilator and Electrical
Impedance Tomography
An increase in PIP increased the tidal volume and lung
impedance. A highly positive correlation between ventilator
tidal volume and EIT tidal volume was found in all 18 pups;
linear regression equations for each group are shown in
Figure 3. The determination coefficients (R2) of all groups
were greater than 0.7, showing good correlation between
ventilator and EIT. Moreover, the ICC between Vent VT

and EIT VT was 0.85 (p < 0.001) in all groups, indicating
very good agreement. The ICC values of each group were 0.83
(p < 0.001), 0.87 (p < 0.001), and 0.93 (p < 0.001) in the
untreated, surfactant-treated, and normal control groups,
respectively. ICCs of inflation PIP 10, 20, 25 cm H2O (p <

FIGURE 4 | A Bland–Altman plot (A) and violin plot (B) showing differences between the ventilator and EIT with the 95% limits of agreement. PIP, peak inspiratory
pressure; Vent VT, ventilator tidal volume; EIT VT, EIT tidal volume.
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0.001) and deflation PIP 20, 15 and 10 cm H2O (p < 0.001)
were significantly different between untreated and surfactant
treated groups. The Diff VT values at different PIP were
analyzed by the Bland–Altman plot and the violin plot
chart (Figure 4). The mean Diff VT was 72.50 μL (range,
14.61 to 109.88 μL) in the untreated preterm group, −21.76 μL
(−31.87 to 24.51 μL) in the surfactant-treated preterm group,
and −7.88 μL (−71.46 to 21.96 μL) in the normal
control group.

DISCUSSION

In our study, New Zealand white rabbit pups were used as a
model of both premature lung physiology as well as RDS
pathology. Rabbit pups harvested on D27 correspond to
preterm births with RDS and those harvested on D31
correspond to normal term births (Kikkawa et al., 1968; Choi
et al., 2017). Human infant RDS is a disease of prematurity. Its
incidence is 92% at 24–25 weeks’ gestation, 88% at 26–27 weeks,
76% at 28–29 weeks, and 57% at 30–31 weeks of gestation (Sweet
et al., 2013). As pulmonary surfactant is not ready to function in
RDS infants, the mainstay of treatment is artificial surfactant
instillation through the trachea. It recruits alveolar volume and
hence increases lung residual functional capacity by reducing
surface tension in the alveoli and equilibrating the uneven
pressures of different parts of the lungs, present in RDS.

The purpose of this study was to determine whether EIT can
generate some sort of practical benefit in the bedside treatment of
artificial surfactant in the rabbit pup model of RDS. Overall, our
findings show good correlations and agreement analysis between
the measurements of tidal volumes that were obtained from the
two modalities, small animal ventilator and EIT. The most
interesting finding was of higher ICC values in the surfactant
treated group (0.87) compared to the untreated group (0.83), not
to mention the highest ICC values in the term group (0.93,
Figure 3) and its narrow distribution in the treated group
(Figure 4). Although our study design precludes before and
after intervention comparisons, it is feasible to assume that
surfactant instillation could increase the ICC from a lower
pretreatment state, in mechanically ventilated pups. We
attempted for pre- and post-intervention comparisons,
however, the preterm pups could not survive long enough for
the measurements. As such, we simplified our model into 3
groups instead of performing longitudinal analyses.

In terms of the ICC differences, a possible explanation
could be that unlike untreated pups, unevenly inflated or
collapsed alveoli were minimized in the surfactant treated
preterm pup lungs, as opposed to the untreated pups,
eventually empowering the agreement analysis. Accordingly,
the higher ICC values and R2 may indicate more recruited
alveoli.

EIT technology is already an emerging option in various
ICU environments such as adult type acute respiratory distress
syndrome, pneumothorax, atelectasis, and pleural effusion
(Bodenstein et al., 2009; Burkhardt et al.,. 2013; Davies
et al., 2019; Jang et al., 2019; Tomicic and Cornejo, 2019).

In neonatal settings, there are several publications regarding
infants with RDS (Frerichs et al., 2001; Chatziioannidis et al.,
2011; Miedema et al., 2011; Chatziioannidis et al., 2013).
Unlike these studies, however, we analyzed tidal volumes
from two different modalities and observed higher ICC in
the surfactant treated group. We suggest that EIT technology
may be a promising option as a real-time bedside monitoring
tool in mechanically ventilated RDS infants, but further study
is needed.

The most challenging problem of the rabbit pup model in our
study, especially the preterm model, is that they are very small
(42.1 ± 14 g in this study). They cannot be cannulated, blood gas
analyses are not available, and imaging studies are limited.
However, the premature lung physiology that encompasses
RDS pathology is a great strength that allows for testing of
artificial surfactant efficacy (Almlén et al., 2010; Otsubo and
Takei, 2002).

This study has several limitations. First, our study lacks
assessment of pre and post effects of surfactant administration.
The pups were small and premature, and they could not survive
long enough to endure another set of procedures. Second, this was
a preliminary study using animal subjects, conducted with a small
sample size. In addition, we regarded all measured tidal volumes
to be a result of intact ventilation without any leakage. Finally, we
compared only the tidal volume sets without the regional
ventilation data of EIT.

CONCLUSION

In conclusion, in this preliminary animal study, we observed
good correlation of tidal volumes between Vent VT and EIT
VT. Furthermore, there were better ICC and Diff VT in
surfactant treated RDS group than in the untreated group.
EIT can detect an improvement in lung ventilation in
surfactant treated and term pups, compared to untreated
rabbit pups.
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