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In a healthy physiological context, astrocytes are multitasking cells contributing to central 
nervous system (CNS) homeostasis, defense, and immunity. In cell culture or rodent 
models of age-related neurodegenerative diseases (NDDs), such as Alzheimer’s disease 
(AD) and Parkinson’s disease (PD), numerous studies have shown that astrocytes can 
adopt neurotoxic phenotypes that could enhance disease progression. Chronic 
inflammatory responses, oxidative stress, unbalanced phagocytosis, or alteration of their 
core physiological roles are the main manifestations of their detrimental states. However, 
if astrocytes are directly involved in brain deterioration by exerting neurotoxic functions in 
patients with NDDs is still controversial. The large spectrum of NDDs, with often overlapping 
pathologies, and the technical challenges associated with the study of human brain 
samples complexify the analysis of astrocyte involvement in specific neurodegenerative 
cascades. With this review, we aim to provide a translational overview about the multi-
facets of astrocyte neurotoxicity ranging from in vitro findings over mouse and human 
cell-based studies to rodent NDDs research and finally evidence from patient-related 
research. We also discuss the role of ageing in astrocytes encompassing changes in 
physiology and response to pathologic stimuli and how this may prime detrimental 
responses in NDDs. To conclude, we discuss how potentially therapeutic strategies could 
be  adopted to alleviate or reverse astrocytic toxicity and their potential to impact 
neurodegeneration and dementia progression in patients.
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INTRODUCTION

Designed to Protect, Maintain, Support, 
and Regulate Brain Function
The paradigm on glial cells has considerably shifted over the 
last 20 years. Glial cells are now recognized to be  at the center 
of many primordial processes for brain homeostasis maintenance 
but also involved in protective as well as, paradoxically, 
detrimental responses. Astrocytes represent the most abundant 
glial cell type of the CNS. They form a heterogeneous group 
of cells, comprising distinct subtypes characterized by a specific 
morphology, physiology, or spatial distribution (Pestana et  al., 
2020). The general classification distinguishes mainly white 
matter fibrous astrocytes from grey matter protoplasmic 
astrocytes. However, numerous specialized subtypes have been 
described in distinct brain areas such as the Bergman glia in 
the cerebellum (De Zeeuw and Hoogland, 2015), the Müller 
glia in the retina, or the interlaminar astrocytes in the neo-cortex 
(Colombo, 2018) or in specific localization such as the 
perivascular astrocytes or the subpial astrocytes. The morphology, 
density, overlap, and diversity of astrocytes can vary depending 
on brain areas and species (Oberheim et  al., 2009; Batiuk 
et  al., 2020; Muñoz et  al., 2021). The classic description of 
the astrocyte, representing mainly protoplasmic ones, is 
the following:

 - A complex morphology made by long processes and 
protrusions (Bushong et al., 2004), sculpted around a “star-
shaped” cytoskeleton frequently highlighted by the staining 
of the intermediate filament, the glial fibrillar acidic protein 
(GFAP).

 - An exclusive parenchyma territory with peripheral overlapping 
cellular contacts to neighboring astrocytes by gap-junctions 
such as connexins 30 and 43 (Bushong et al., 2002; Huang 
et al., 2021).

 - Specialized compartments, the endfeet, which enwrap blood 
vessels and take-up nutrients from the circulation.

 - Microcompartments enveloping pre- and post-synapses, 
forming together a tripartite synapse, with an estimation of 
105–106 synapses contacted/enwrapped per astrocyte (Volterra 
et al., 2014; Allen and Eroglu, 2017).

Many of these features considerably differ between the 
astrocyte subtypes. The interlaminar astrocytes, located in the 
first layer of some of the neocortical areas, project long processes 
with varicosities in deeper layers. Twin astrocytes are joined 
by their soma, and perivascular astrocytes have their cell bodies 
sitting on blood vessels (Verkhratsky and Nedergaard, 2018). 
Still, astrocytes are multitasking cells being responsible for the 
metabolic support of neurons by taking up glucose by their 
privileged connection to the blood flow, delivering it to the 
surrounding cells and storing glycogen in the CNS. They also 
serve as extracellular milieu buffering cells (K+, Cl−, Ca2+, and 
water). Many reviews have extensively discussed the key roles 
of astrocytes in brain metabolism (Deitmer et  al., 2019; Rose 
et  al., 2020). At the synapse, astrocytes act as sensors and 
modulators of synaptic activity. They express the glutamate 

transporters EAAT1 (GLAST) and EAAT2 (GLT1) enriched 
in perisynaptic processes. It allows them to pump the excess 
of neurotransmitters at the synaptic cleft and recycle them. 
However, astrocytes can also directly release neurotransmitters, 
such as glutamate, D-serine, and/or ATP and modulate synaptic 
activity (Araque et al., 2014; Volterra et al., 2014). The neuron-
astrocyte communication is bilateral and fundamental for brain 
function. Astrocytes are intimately associated with the 
establishment and maintenance of neuronal circuits. During 
development, they remodel the extracellular matrix by secreting 
some matricellular proteins, such as secreted protein acidic 
and rich in cysteine (SPARC), Tenascin C, or/and 
Thrombospondins (Jones and Bouvier, 2014). Astrocytes also 
eliminate unnecessary excitatory synapses through MEGF10 
and MERKT phagocytosis receptors (Chung et al., 2013). Their 
multiple functions at the cellular level are commonly accepted, 
however, there are still pending questions about their role as 
a collective entity in higher brain functions. Indeed, they form 
a widespread and dynamic network of non-excitable cells, 
communicate via calcium transient waves, and provide an active 
cell layer for information and modulation of CNS homeostasis 
(Guerra-Gomes et  al., 2018).

Being Reactive Is Not Being Toxic?
Astrocytes are also directly involved in CNS protection from 
pathogens and pathologies. They are highly adaptive to their 
micro-environment, and in adverse conditions, they can change 
their molecular program and morphology to counteract insults 
and protect surrounding tissue. This phenomenon is called 
reactive astrogliosis (see consensus statement in Escartin et  al., 
2021). Reactive astrocytes are commonly observed in virtually 
all brain disorders. The shift of morphology toward large and 
dysmorphic processes, and the increase of the expression of 
proteins forming the intermediate filaments, GFAP and vimentin, 
are often considered as the main characteristics to characterize 
reactive astrogliosis. But the reactivity of astrocytes is neither 
an “all or none” nor a unidirectional mechanism. It is now 
described as a gradient of severity from mild to severe with 
a contextual time course (Sofroniew and Vinters, 2010). Their 
reactivity is also heterogeneous, conditioned by their intrinsic 
nature (species, localization, age, gender, genetics background, 
and epigenetics), their macro-environment (stage of a disease, 
brain region vulnerability) and the immediate pathological 
micro-environment. By becoming reactive, an astrocyte can 
gain or lose some functions, alter its physiology in the short- 
or long-term, modify its interplay with surrounding cells, or 
even engage detrimental responses. Reactive astrocytes can 
produce growth factors and neurotrophins, thereby promoting 
neuronal survival and synaptic function (Sofroniew and Vinters, 
2010; Escartin et al., 2021). They can mimic immune responses 
and secrete a large variety of anti- and pro-inflammatory 
molecules, such as interferon gamma (IFN-γ), tumor necrosis 
factor alpha (TNF-α), interleukin (IL)-6 and IL-1β or act as 
antigen-presenting cells. Although many of those inflammation-
related factors are mainly expressed by cells of the myeloid 
lineage, we here focused on the potential capacity of astrocytes 
to also secrete those molecules under pathological conditions. 
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Depending on the context, they work in synergy or interfere 
with microglia or with infiltrating immune cells. However, in 
numerous models, they can also alter the surrounding cells 
by secreting toxic factors and drive the progression of 
neurodegeneration. The questions about where and when 
astrocytes lose their protective functions and become toxic for 
surrounding cells are fundamental to solve the complex puzzle 
of brain disorders and age-related neurodegenerative diseases 
(NDDs), such as Alzheimer’s disease (AD), Parkinson’s disease 
(PD), Lewy body dementias (LBDs), primary tauopathies, 
primary synucleinopathies, fronto-temporal dementia (FTD), 
and amyotrophic lateral sclerosis (ALS).

This review is composed of two main parts. The first 
chapter is about how, when and why astrocytes turn neurotoxic: 
from the attempts to define a prototypical neurotoxic molecular 
signature across various disease models, to the characterization 
of stressors associated with NDDs that have been shown to 
induce astrocyte neurotoxicity and subsequent damages or 
death of neurons in culture and rodent models. We  then 
compile reports about the identification of neurotoxic astrocytic 
markers in autopsy brain samples from NDDs patients. In 
the second chapter, we  discuss the impact of ageing on 
astrocytes, on their senescence and epigenetics and if the 
ageing process could prime them to execute maladaptive/
toxic responses in NDDs. Finally, we  discuss the challenges 
targeting reactive/neurotoxic/aged/senescent astrocytes to alleviate 
NDDs progression.

BREAKING BAD: WHEN DO 
ASTROCYTES BECOME TOXIC TO 
SURROUNDING CELLS IN NDDs?

The Neurotoxic Astrocyte Signatures: 
Identity and Context of Harmful Astrocytes
Because astrocytes are at the core of brain homeostasis and 
function, their turnover into neurotoxic cells could trigger or 
exacerbate NDDs. Thus, it is essential to precisely characterize 
their changes in NDDs. Astrocytes are often found to be atrophic 
or dysmorphic in AD and associated dementias (see the chapter 
“Pieces of Evidence of Astrocyte Neurotoxicity in NDD Patient 
Samples”). However, to ponder on the dual faces of astrocytes, 
it is important to distinguish between reactivity and toxicity, 
between chronic changes and acute responses. The reactivity 
state engages various molecular and morphological changes 
(Viejo et  al., 2021), and is a direct consequence of alterations 
of their macro- and/or microenvironment (Sofroniew and 
Vinters, 2010; Haim et  al., 2015; Escartin et  al., 2021). Chun 
et  al. (2020) designed a new mouse model to modulate stages 
of astrocyte reactivity, from mild to severe, by crossing inducible 
diphtheria toxin receptor (iDTR) mice with GFAP-CreERT2 
mice (GiD). The severity of the reactivity in GiD mice has 
been scaled by the level of GFAP expression, the dystrophy 
and branching of processes, by some proliferation and astrocytic 
production of monoamine oxidase B (MAO-B), GABA, and 
inducible nitric oxide synthase (iNOS). The activation of severe 

reactive profiles led to pronounced atrophy, particularly in the 
CA1 subregion of the hippocampus, but also in the cortex, 
striatum, and amygdala, and an increase in cleaved caspase-3 
expression as well as tauopathy in neurons. Behavioral tests 
on severe GiD mice also showed memory impairments. Thus, 
severe astrocyte reactivity is neurotoxic and can trigger, if 
induced systematically, some NDDs features and symptoms. 
The authors also observed a gradient of severity across the brain.

Using single-cell RNA sequencing (scRNAseq) and spatial 
transcriptomics, Hasel and colleagues characterized ten astrocytic 
clusters with specific molecular signatures across the mouse 
brain in responses to systemic lipopolysaccharide (LPS) treatment 
(Hasel et  al., 2021). Among these clusters, that also changed 
over time post-injection, none of them was characterized as 
fully neurotoxic. Inflammatory genes increased in some clusters 
and were found along with potentially neuroprotective genes 
in others, highlighting the complexity of astrocyte responses. 
Numerous studies have attempted to define a prototypical 
molecular signature for neurotoxic astrocytes. In vitro, with 
isolated astrocytes from young adult (P30-P35) transgenic 
Aldh1l1-eGFP mice, Zamanian et  al. (2012) observed various 
astrocytic reactive responses dependent on the type of 
perturbation. The authors described that reactive astrocytes 
isolated from the cortex, corpus callosum, hippocampus, and 
striatum of mice with ischemic stroke showed a particular 
“protective” profile with induced neurotrophic cytokines LIF 
and CLCF1, IL-6, and some other genes related to metabolic 
activity, cell-cycle genes, and transcription factors. On the other 
hand, the reactive astrocytes isolated from the cortex and 
corpus callosum from mice that underwent systemic LPS 
treatment presented what was described as a “detrimental” 
profile with an increased expression of genes related to the 
induced antigen presentation pathway, complement pathway, 
interferon response, class I major histocompatibility complex 
(MHC) molecules (H2-D1, H2-K1, and H2-T10), and 
complement cascade (initiating: C1r, C1s, C3, and C4B; inhibiting: 
Serping 1). Both types of astrocytes share a set of upregulated 
genes, including proteins involved in extracellular matrix 
modification and cytokine signaling. Liddelow and colleagues 
gave a more detailed description of the reactive signatures 
obtained in these models (Liddelow et  al., 2017). They defined 
two signature groups of reactive astrocytes. The neurotoxic 
one is now named A1, the neuroprotective A2, both sharing 
a pan-reactive astrocyte set of increased genes. In their co-culture 
model, A1 astrocytes decreased synaptogenesis and even induced 
neuronal death at high concentrations. Furthermore, the authors 
demonstrated that the A1 neurotoxic signature was dependent 
on the microglia-released pro-inflammatory cytokines (see the 
section “Interplay Between Astrocytes and Immune Cells: the 
Control of Neurotoxicity?”). The authors choose C3 as a marker 
for A1 astrocytes and identified C3-positive astrocytes in human 
post-mortem brain tissue from AD, PD, ALS, multiple sclerosis 
(MS), and Huntington disease (HD). Since then, many studies 
using NDDs models have reported at least a partial A1 neurotoxic 
signature in their results (see the section “Maladaptive Responses 
to Stressors in Cell Culture and Transgenic Rodents Modeling 
NDDs”), but there is no consensus that this signature is generally 
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found in NDDs. Other reports have added some insights in 
distinct astrocytic neurotoxic molecular signatures in NDDs.

Smith et  al. (2020) have investigated the role of the unfolded 
protein response (UPR), a pathway dysregulated in NDDs, in 
the response of astrocytes. Using the endoplasmic reticulum 
(ER) stressors thapsigargin or tunicamycin, they have chronically 
activated the UPR through protein kinase R-like ER kinase 
(PERK) pathways in cortical primary astrocytes (Smith et  al., 
2020). The authors observed an upregulation of the pan-reactive 
markers Cxcl10, Lipocalin 2 (Lcn2), and Vimentin (Vim) upon 
thapsigargin treatment. C3 was the only gene increased of the 
A1 signature, but Ggta1 and Serping1 were significantly reduced. 
The A2 markers Cd109, Emp1 were also significantly decreased. 
Blocking PERK activation through a knockdown let to deceased 
expression of C3, Cxcl10, Lcn2, and Vim. The authors reproduced 
these data in a prion-diseased mouse and demonstrated in vitro 
that the UPR-reactive astrocytes presented an altered secretome, 
were unable to support synapses and harmful to neurons.

Wheeler et  al. (2020) performed scRNAseq on brain and 
spinal cord from experimental autoimmune encephalomyelitis 
(EAE) mice and fresh autopsy brain samples from MS patients. 
In EAE mice, the largest subgroup of astrocytes was enriched 
for UPR, showing high level of NF-κB and iNOS pathways 
activation, as well as granulocyte-macrophage colony-stimulating 
factor (GM-CSF) signaling. In the same cluster, the authors also 
identified transcriptional regulators including Kdm5a, Hif1a, Fos, 
and Jun and to a lower extent Nfe2l2. Nfe2l2 encodes the 
transcription factor NRF2 (nuclear factor erythroid 2-related 
factor 2), a limiter for oxidative stress and inflammation. The 
authors further confirmed with in vitro experiments that NRF2 
is a negative regulator of pro-inflammatory and neurotoxic 
pathways. Some markers of the A1 signature were found throughout 
the different clusters isolated (Cluster 0: H2-T23, cluster 1: 
H2-D1, Psmb8, cluster 2: Srgn, and cluster 4: C3ar1). To identify 
astrocyte regulators, the authors have isolated astrocytes from 
RibotagGfap mice during EAE. They have observed increased 
levels of the small MAF protein musculoaponeurotic fibrosarcoma 
homolog G (MAFG), concomitant with a decreased expression 
of NRF2. After analysis of their scRNAseq data from fresh 
autopsy MS brain tissue and previous published MS data (Lake 
et  al., 2018; Jäkel et  al., 2019; Schirmer et  al., 2019), they have 
recovered an astrocyte population with the same molecular 
signature. At the tissue level, the authors observed MAFG-positive 
astrocytes in active lesions of white matter from MS patients. 
They have concluded that MAFG-positive astrocytes are harmful 
and promote CNS inflammation in EAE and MS.

Habib et  al. (2020) performed single-nucleus RNAseq 
(snRNAseq) analysis on hippocampi from 5xFAD mice. 
Compared to WT, the AD mice displayed an enriched astrocytic 
cluster expressing high levels of Gfap, Serpina3n, Ctsb, Apoe, 
and Clu17, which they termed disease-associated astrocytes 
(DAAs). The authors found an overlap of some A1 genes in 
the DAAs. A2 signature was not seen. Interestingly, an increase 
of A1/DAAs astrocytes was associated with ageing in WT mice. 
The authors were also able to retrace DAA-like cells in another 
snRNAseq database from the post-mortem human AD prefrontal 
cortex (Mathys et al., 2019). Zhou et al. (2020b) also performed 

snRNAseq on 5xFAD mice and dorsolateral pre-frontal cortex 
from AD patients with R62H variant of TREM2. In 5XFAD 
mice, astrocytes displayed an upregulation of Gfap and C4b. 
Interestingly they observed an upregulation of Serpina3n, 
previously linked to DAAs, mainly in oligodendrocytes. They 
also detected little colocalization of Serpina3n with astrocytes 
and amyloid-β plaques. In human AD samples, they observed 
a downregulation of a cluster that was highly enriched in 
genes controlling free-fatty acid transport (FABP5), storage in 
lipid droplets (HILPDA), as well as oxidation and detoxification 
of the resulting reactive oxygen species (ROS; SOD2). On the 
other hand, AD astrocytes presented an increase in the expression 
of genes encoding the proteoglycan NCAN and collagen COL5A3. 
The authors speculated that these extracellular matrix molecules 
may contribute to glial scarring and could prevent axonal 
regeneration. The authors could not identify A1 signatures.

The neurotoxic astrocytic signatures collected across models 
share few markers, but all play a role in the disease progression 
in their respective models. Some of these signatures were at 
least partially found in the brain tissue of patients (see the 
section “Pieces of Evidence of Astrocyte Neurotoxicity in NDD 
Patient Samples” for additional insights). However, these studies 
accentuate the idea of subgroups of astrocytes that become 
harmful, with a specific distribution or linked to a condition 
(resumed in Figure  1). In the following chapters, we  will 
navigate between in vitro and mouse models to identify stressors 
that could alter astrocyte responses toward a detrimental role 
and thus recapitulate if astrocyte neurotoxicity has been detected 
and measured in brains from NDDs patients.

Maladaptive Responses to Stressors in 
Cell Culture and Transgenic Rodents 
Modeling NDDs
In age-related NDDs, astrocytes, among other brain cells, are 
exposed to a variety of stressors. AD, PD, LBD, primary 
tauopathies, primary synucleinopathies, FTD, and ALS are often 
grouped under the umbrella appellation “proteinopathies” because 
they are characterized by abnormal accumulations of peptides 
or proteins in the extracellular milieu or inside brain cells. 
These accumulations are often thought to be  the cause of 
NDDs and responsible for a complex chain of degenerative 
events. Proteinopathies are defined by one type or overlap of 
pathological misfolded protein inclusions (Golde et  al., 2013). 
Overproduction and release in the extracellular space of the 
amyloid-β (Aβ) peptide 1–42 results in the formation of senile 
plaques in the parenchyma. The hyperphosphorylated form of 
tau, a microtubule-associated protein, is prone to cluster into 
paired helical filaments (PHF) and neurofibrillary tangles (NFTs), 
which are most often found inside neurons. Intracellular 
inclusions of phosphorylated α-synuclein (α-Syn) form Lewy 
neurites and Lewy bodies (LBs) in the soma of neurons. The 
accumulation of TAR DNA-binding protein 43 (TDP-43), a 
protein involved in DNA transcription and RNA modulation, 
is found in numerous cell types but primarily in neurons. The 
concomitance of these misfolded protein accumulations is 
common across NDDs. However, Aβ and tau pathologies in 
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vitro and mouse models are usually considered to recapitulate 
AD, alpha-synuclein pathology, PD and TDP-43, and ALS.

The effect of the monomers, oligomers, or filaments of these 
proteins/peptides can be mimicked in vitro, and the parenchymal 
protein inclusions found in patients in vivo with transgenic 
mouse models expressing mutated forms of human genes. 
Astrocytes responses to such exposures have been well 
documented. Astrocytes have been involved in clearance, 
spreading, and propagation of Aβ, tau, and α-Syn pathologies 
(Batarseh et  al., 2016; De Strooper and Karran, 2016; Frost 
and Li, 2017; Sorrentino et  al., 2019). This literature is quite 
extended; therefore, we  emphasize studies that found a direct 
association between pathological protein exposure and astrocytic 
neurotoxicity. We  further highlight the “context” of the 

experimental procedures in vitro, characteristics of the model, 
age, brain regions, and nature of the transgene. All these aspects 
must be carefully examined before extrapolating it to the human 
situation, even more, when contradictive results have been 
published across these models.

Amyloid Pathology
Amyloid-ß pathology is central to AD progression. Many reports 
have shown a direct effect of Aβ exposure on the phenotype 
of astrocytes toward neurotoxic profiles in culture. Exposure 
to aggregated Aβ-42 peptides or oligomers induced, in a dose-
dependent manner, the production of reactive oxygen species 
(ROS) and iNOS by cortical rat astrocytes through the activation 
of NF-κB pathways (Akama et al., 1998) and by human primary 

FIGURE 1 | Neurotoxic astrocytic signatures and interaction with neighboring cells. Many studies have identified neurotoxic astrocytic molecular signatures (italic) 
and markers (bold) across specific experimental conditions: A1 in systemic LPS treated mice (Zamanian et al., 2012; Liddelow et al., 2017), unfolded protein 
response (UPR)-reactive astrocytes in UPR-activated mice and prion-diseased mice (Smith et al., 2020), musculoaponeurotic fibrosarcoma homolog G (MAFG)-
driven astrocytes in experimental autoimmune encephalomyelitis (EAE) mice (Wheeler et al., 2020), Disease associated astrocytes (DAAs) in 5xFAD mice (Habib 
et al., 2020), Alzheimer’s disease (AD)-upregulated astrocytes in AD patients (Lau et al., 2020), Aged mouse astrocytes (Clarke et al., 2018), senescent mouse 
astrocytes (Bussian et al., 2018; Gaikwad et al., 2021), and severe reactive mouse astrocytes (Chun et al., 2020). Other studies have compared neurotoxic astrocyte 
signatures in distinct disease mouse models such as TauP301S mice and PS2APP mice (Wu et al., 2019) and 5xFAD mice (Zhou et al., 2020b). Some signatures 
overlapped between models. In NDDs patient samples, neurotoxic astrocyte markers have been identified by transcriptomics or IHC (highlighted in orange). The 
neurotoxic astrocytes are in close bilateral communication with surrounding cells. Activated microglia can induce astrocytes to adapt a neurotoxic profile (Liddelow 
et al., 2017; Joshi et al., 2019; Park et al., 2021), vice versa neurotoxic astrocytes secrete microglia-activating factors (McAlpine et al., 2021; Rueda-Carrasco et al., 
2021). Finally, the induced neurotoxicity can decrease neuron viability, exacerbate synaptic loss, neurotransmission impairment, and tau pathology. Reciprocally, 
harmed or dying neurons can stimulate activation of microglia and reactivity of astrocytes (not detailed here).
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astrocytes (Singh et al., 2020). It was shown that even picomolar 
concentrations of Aβ-40 and Aβ-42 oligomers destabilized 
calcium activity in rat hippocampal astrocytes in co-culture 
with neurons, increase their ROS production and caspase-3 
activation in both astrocytes and neurons (Narayan et al., 2014). 
In vitro, astrocytes seem to mediate Aβ-induced toxicity on 
neurons. Indeed, Garwood et  al. (2011) have shown that the 
viability of cortical neurons was not perturbed by oligomeric 
Aβ at their working concentration but was impacted by altered 
astrocytes in mixed cultures. In this model, Aβ-exposed astrocytes 
increased cleaved-caspase 3 induction, tau truncation, and 
phosphorylation in neurons. This deleterious effect was rescued 
by minocycline, which dampens the secretion of inflammatory 
factors, such as IL-6, IL-1β, and IFN-γ of Aβ-exposed astrocytes. 
Numerous markers of astrocytic toxicity have also been found 
in transgenic rodent modeling the amyloid pathology, where 
the intensity of astrocytic reactivity usually correlates with 
pathology (Spanos and Liddelow, 2020). Amyloid transgenic 
rodents express a mutated form of the human amyloid precursor 
protein (APP) or/and presenilin, thus mimicking the early 
onset familial form of AD, and the formation of Aβ plaques 
in the parenchyma. These models recapitulate numerous features 
of AD such as synaptic loss or cognitive defect but no to 
only poor neuronal loss. Thus, the active role of neurotoxic 
astrocytes in the atrophy processes cannot be  considered in 
this context. However, the astrocytes surrounding the plaques, 
that form the reactive glial net (RGN) together with microglia, 
have been particularly studied (Bouvier et  al., 2016; Walker, 
2020). RGN astrocytes can express inflammatory factors, such 
as IL-6 or IL-1β in CRND8Tg (Bouvier et  al., 2016), iNOS 
in APP (V717I; Heneka et  al., 2005), and C3  in 3xTg, Tg2576, 
and PS2APP mice (Fonseca et  al., 2011; Wu et  al., 2019) and 
TgF344-AD rats (Balu et  al., 2019).

Interestingly, the control or ablation of astrocyte reactivity 
in amyloid models had different outcomes depending on the 
experimental strategy and the model used. Kraft et  al. (2013) 
designed an APP/PS1 Gfap−/-Vim−/− model to dampen astrocyte 
hypertrophy and reactivity in amyloidosis conditions. It resulted 
in a large increase in plaque load, of the number of microglia 
associated with plaques and of the neurites dystrophia at 8 
and 12 months of age, arguing for a beneficial impact of astrocyte 
reactivity in AD. The inducible ablation of proliferative reactive 
astrocytes in APP/GFAP-TK mice, treated with ganciclovir at 
9 months of age, significantly increased the levels of monomeric 
Aβ-42 and exacerbated synaptic loss, neuroinflammation, and 
memory deficits (Katsouri et  al., 2020). The selective 
pharmacological ablation of astrocytes with the toxin L-alpha-
aminoadipate in organotypic brain culture slices (OBCSs) from 
7 days old 5xFAD animals, grown over 2 weeks, led to an 
increase of Aβ levels in medium, of IL-6 production, and 
decrease in spine size (Davis et  al., 2020). All these results 
favor a protective role of reactive astrocytes in disease progression, 
however, other studies have reported opposite conclusions. 
Furman and collaborators used a different methodological 
approach that consists of injecting a viral construct into APP/
PS1 mice hippocampi to selectively express a synthetic peptide 
named VIVIT in astrocytes, which will inhibit their inflammatory 

response (Furman et  al., 2012). The authors found that treated 
7–8-month-old mice had significantly lower soluble and insoluble 
amyloid levels, reduced microglia activation, and improved 
cognitive performance at 16–17 months of age, compared to 
the non-treated transgenic mice. Other studies highlighted the 
pathological and detrimental roles of astrocytes in amyloid 
models of AD. Two different strategies to inhibit the Janus 
kinases (JAK)/signal transducer and activator of transcription 
3 (STAT3) pathway, which is deeply involved in the induction 
of the reactivity of astrocytes, led to similar conclusions. 
Ceyzériat et  al. (2018) used viral construction to overexpress 
an inhibitor of JAK, the suppressor of cytokine signaling 3 
(SOCS3) in the CA1 hippocampal astrocytes of 3–4-month-old 
APP/PS1dE9 mice. Six months after injection, they reported 
a downregulation of the pro-inflammatory responses in 
transfected astrocytes, a reduction of plaque loads, and improved 
spatial learning compared to non-transfected transgenic. After 
SOCS3 transfection in astrocytes of 3xTg, the authors described 
a complete restoration of long-term potentiation (LTP) deficits. 
Reichenbach et  al. (2019) have further investigated the impact 
of astrocytic Stat3 induced pathway in an inducible Stat3 
deficient APP/PS1 mouse model. When the Stat3 knock-out 
in astrocytes was initiated at 6 weeks of age, effects were 
beneficial showing a decrease of amyloid loads, neuronal 
dystrophy, cytokines levels, and rescue of memory decline at 
8–10 months of age. The A1 transcripts Amigo2 and C3 were 
significantly decreased compared to age-matched APP/PS1.

In conclusion, in most models in vitro and in vivo, astrocytes 
engage neurotoxic responses that could exacerbate disease 
progression. However, there is no consensus and neither a 
prototypical neurotoxic signature.

Tau Pathology
The tau pathology is often described in neurons, which are 
mainly bearing PHF and NFT in the AD patient brain. However, 
tau positive astrocytes are also found in primary tauopathies 
and less often in AD (see the section “Pieces of Evidence of 
Astrocyte Neurotoxicity in NDD Patient Samples”). The 
relationship between tau and the neurotoxicity of astrocytes 
is still not clearly defined. However, the exposure of monomeric 
tau or tau fibrils on primary astrocytes led to their internalization 
and subsequent integrin- and NF-κB-dependent production of 
neurotoxic factors, among them typical cytokines, such as IL-6, 
IL-1β, TNF-α, and CCL10, and a consecutive decrease of 
neuronal viability in culture (Wang and Ye, 2021). In this 
study, the molecular profiling of phosphorylated-tau-exposed 
astrocytes revealed many similarities with the A1 signature, 
Gibp2, and Ligp1 being the most abundant mRNAs, and with 
the pan-reactive signature, with an increase of Lcn2 transcripts 
also involved in neurotoxicity. Wu et al. (2019) obtained similar 
results with astrocytes sorted from the hippocampus of TauP301S 
mice at 6-month-old of age. TauP301S astrocytes shared an 
induction of A1 and pan-reactive astrocyte genes, such as C3, 
Serping 1, H2-D1, Ggta1, and Ligp1. This induction was stronger 
than in forebrain astrocytes from PS2APP mice (7–13 months 
of age). The authors described a strong increase of C3-positive 
astrocytes in both models but with a more robust one in the 
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TauP301S hippocampus. Sidoryk and colleagues have shown 
that primary astrocytes extracted from 7 day-old newborn 
TauP301S pups already exhibit defects in neuroprotective features, 
such as a reduction of thrombospondin-1 (TSP-1) expression 
(Sidoryk-Wegrzynowicz et  al., 2017; Wu et  al., 2019), that 
negatively impact synapses formation and cell survival 
(Christopherson et  al., 2005).

The specific expression of T34 human tau isoform selectively 
in astrocytes in a transgenic mouse model led to astrocytic 
morphological alterations resembling those found in corticobasal 
degeneration (CBD) or other primary tauopathies (see the 
section “Pieces of Evidence of Astrocyte Neurotoxicity in NDD 
Patient Samples”) called tufted astrocytes, astrocytic plaques, 
or threads (Forman et  al., 2005). However, no neuronal loss 
was observed in this model but focal neuronal injury and 
mild blood–brain barrier disruption. Richetin et  al. (2020) 
showed that the overexpression of 3RTau in the hilus of mice 
via viral transduction led 4 months later to an impaired inhibitory 
circuitry and synchronous activity with a decrease of 
parvalbumin-positive neurons and vesicular GABA transporter 
(VGAT) positive synapses. The stimulation of parvalbumin-
positive interneurons with neuregulin-1 peptide rescued the 
spatial memory impairments. In this model, the general neuritic 
density was not affected. However, the number of immature 
doublecortin-newborn neurons was reduced indicating a selective 
detrimental impact of tau-expressing astrocytes on neurogenesis.

To conclude, astrocytes are found detrimental in most models 
in vitro and in vivo when they react to oligomers, fibrils, and 
inclusions or carry Tau aggregates or Tau isoforms.

Synuclein Pathology
Exposure to monomers and preformed fibrils (PFFs) of 
α-Synuclein can also change astrocyte molecular profiles towards 
neurotoxic states. Chou et  al. (2021) found that the treatment 
of human midbrain primary astrocytes by synuclein PFFs 
induced an nuclear factor kappa B (NF-κB)- and RIPK1-
dependent inflammatory factor release; an A1 partial signature 
(SERPING1, HLA-E, SRGN, and PSMB8) impacted MEGF10 
and MERTK activity. Chavarría et al. (2018) described concordant 
results after incubation of primary rat cortical astrocytes with 
monomers, oligomers, and PFF of α-Syn. Pre-treated astrocytes 
were found to engage neurotoxic features by drastically decreasing 
the survival of primary hippocampal neurons after 72 h, with 
a gradual effect from monomers to PFFs. The astrocyte-induced 
neurotoxicity was defined by a mitochondrial dysfunction, 
subsequent oxidative stress, and by an overproduction of typical 
pro-inflammatory cytokines TNF-α and IL-1β. However, Russ 
et al. (2021) showed that human iPSC-derived healthy astrocytes 
treated with α-Syn monomers and fibrillar polymorphs react 
differently than the ones treated with TNF-α and do not engage 
a pro-inflammatory response. In their experimental procedure, 
α-Syn fibrils-treated astrocytes showed dysfunctional 
mitochondria respiration and adopt an antigen-presenting 
phenotype, with an increase of expression of the human leukocyte 
antigen (HLA) genes encoding MHC I  and II. Characterizing 
the response of astrocytes to α-Syn in rodent models is not 
straightforward as only a few models overexpressing α-Syn 

have been reported to mimic some PD pathological features. 
We  think that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP), 6-hydroxydopamine (6-OHDA), paraquat, and rotenone 
are irrelevant for this discussion because neurotoxin-induced 
models can alter directly the glial cells and neurons bypassing 
a sequential pathological cascade linked to α-Syn. The selective 
expression of A53T α-Syn in astrocytes has surprisingly led 
to a more severe phenotype than the expression of A53T α-Syn 
by a neuronal promoter in transgenic mice (Gu et  al., 2010). 
These animals showed general astrocyte reactivity with a 
dysmorphic appearance, even in the pre-symptomatic phase, 
concomitant with a high neuronal loss in the midbrain and 
spinal cord, where microglia were also found activated and 
agglomerated. Mice became paralytic after 7 weeks and quickly 
died afterwards. In conclusion, based on models in vitro and 
mouse models experiments in vivo, α-Syn could trigger either 
neurotoxic phenotypes or antigen-presenting phenotypes. An 
aggregation of α-Syn in astrocytes could severely negatively 
impact the pathological progression of the disease.

TDP-43 Pathology and ALS Models
Similar experimental approaches were undertaken to expose 
astrocytes to TDP-43 pathology. In Smethurst et  al. (2020) 
insoluble material from the spinal cord of ALS patients was 
used to seed TDP-43 aggregation in transfected human IPSC-
derived astrocytes. Phosphorylated TDP-43 inclusions were 
found but in lesser quantity than in human motor neurons 
after the same treatment. In co-culture experiments, healthy 
astrocytes exerted a protective function alleviating TPD-43 
spreading and pathology. Transfecting rat primary astrocytes 
with a vector expressing the C-terminal fragment of TDP-43 
led to the formation of TDP-43 typical inclusions. TDP-43 
positives astrocytes showed increased lipid droplets and a 
differential response to noradrenaline (NA) revealing calcium 
and metabolic dysfunction (Velebit et  al., 2020). When Lee 
et  al. have transfected primary cortical mouse astrocytes with 
the human form of TDP-43, they found an increase of 
inflammatory factors (IL-6, IL-1β, LCN2, iNOS, or NF-κB) 
dependent on the Protein tyrosine phosphatase 1B (PTP1B; 
Lee et  al., 2020). The neurons in culture treated with TDP-43 
transfected astrocyte culture medium had lower survival rates 
partially corrected by PTP1B inhibition.

The selective expression of the mutated form of TDP-43 
(M337V substitution) in astrocytes in transgenic rat led to a 
severe degenerative phenotype with a progressive loss of motor 
neurons and concomitant atrophy of skeletal muscles leading 
to paralysis (Tong et al., 2013). Along with the disease progression, 
authors reported a decline of GLAST and GLT1, and the 
upregulation of Lipocalin 2 (Lcn2) and Chi3L1, two neurotoxic 
factors in a dose-dependent manner on cortical neuronal culture 
cells (Bi et  al., 2013; Huang et  al., 2014). When the same 
mutated form of TDP-43 (M337V) was expressed in neurons, 
LCN2 was progressively up-regulated in astrocytes and 
found in CSF.

Several studies using hiPSC-derived astrocytes from ALS 
patients have reported cell-autonomous astrocytic dysfunction 
and proposed a consecutive loss of the astrocytic protective/

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Bouvier et al. Neurotoxic Astrocytes: A Translational Perspective

Frontiers in Physiology | www.frontiersin.org 8 March 2022 | Volume 13 | Article 814889

homeostatic function and/or increased toxicity. The release of 
TNF-α, the reduction of astrocytic glutamate uptake or the 
decrease of antioxidants may then result in non-cell-autonomous 
damage and consecutive death of motor neurons (MNs; Haidet-
Phillips et  al., 2011; Madill et  al., 2017; Kia et  al., 2018; Birger 
et  al., 2019). Intranuclear RNA foci have been observed not 
only in neurons but also in a small proportion of astrocytes 
in postmortem CNS tissue from C9-ALS patients (Lagier-
Tourenne et  al., 2013) as well as in iPSC-derived C9-mut 
astrocytes (Zhao et  al., 2020). Mutations in C9orf72 are the 
most common cause of ALS. Subsequent transcriptomic analysis 
revealed almost 700 dysregulated genes in C9-mut astrocytes 
with increased expression of genes involved in ionotropic 
glutamate receptor signaling (GRIA1, GRIA4), complement 
activation, ribosomal subunit assembly (large and small), and 
nuclear RNA export. Reduced gene expression was observed 
in genes involved in cell adhesion (L1CAM, TSP1, and NTN1), 
synapse assembly (BDNF, NRG1, and THBS2), cell-to-cell 
signaling (GPC6), regulation of sodium ion transport (SLC8A1, 
ATP1B2, and NKAIN4), and potassium ion import (DLG1, 
ATP1B2; Zhao et  al., 2020). Another transcriptome analysis 
of C9-mut astrocytes further revealed a senescent phenotype 
with 899 differently expressed genes compared to controls, 
including upregulation of TNFRSF10D, SERPINE1, SA β-gal, 
p21, CDKN1A, and PTDGS, as well as downregulation of 
CDKN2C, STMN1, and E2F1.

Thus, there are many mechanistic roads to impact astrocyte 
phenotypes and induce molecular and structural changes that 
will affect surrounding cells. There is a huge variability between 
models but clear proof of principle that astrocytes could lead 
to disease progression and turn toxic to neurons. This turn 
to detrimental features is also hypothesized to be  directly 
associated with the activation of the microglia.

Interplay Between Astrocytes and Immune Cells: 
The Control of Neurotoxicity?
Astrocytes have an intimate relationship with immune cells, 
especially with microglia with who they collaborate to respond 
and clean the insult of the CNS (Bouvier and Murai, 2015; 
Matejuk and Ransohoff, 2020). Microglia appear central to 
disease progression in AD and other NDDs (Heneka, 2019). 
When microglia get activated in pathological contexts, they 
engage phagocytic functions, activate anti-inflammatory or 
pro-inflammatory responses to fulfil their immune function, 
and protect the tissue (Salter and Stevens, 2017). Microglia 
influence astrocytes directly. Indeed, astrocytes express key 
cytokine/chemokine receptors at their surface (IFN-R, TNF-R, 
IL-R, and TLR) that sense inflammatory factors released by 
immune cells. They also respond to such stimuli by adapting 
their molecular profile and turning reactive. Interestingly, the 
A1 signature is fully dependent on microglia activation and 
on their release of pro-inflammatory cytokines, such as IL-1α, 
TNF-α, and C1Q as seen after LPS stimulation. In microglia 
depleted mice (Csf1r−/−) astrocytes did not adopt the A1 
signature after LPS injection. To further investigate microglia-
astrocyte crosstalk in vitro, Guttikonda and colleagues developed 
human pluripotent stem cells (hPSC)-derived tri-culture system 

containing pure populations of hPSC-derived microglia, 
astrocytes, and neurons (harboring the APPSWE+/+ mutation 
or isogenic controls; Guttikonda et  al., 2021). They found that 
C3 is increased in control tri-culture compared to astrocyte/
neuron or neuron only cultures. In the APPSWE+/+ tri-cultures, 
C3 was further increased, but only in the presence of microglia. 
They identified microglial TNF-α as the main inducer of C3 
expression in astrocytes but found that microglia were also 
releasing C3. Joshi et  al. (2019) focused on the role of 
mitochondria damage in the induction of astrocytes neurotoxicity. 
They found a simultaneous reduction of microglia and astrocyte 
activation in mouse models of AD (5xFAD), HD (R6/2), and 
ALS (SOD1-G93A) by decreasing mitochondria fragmentation 
through the inhibition of the binding of the dynamin-related 
protein 1 (Drp1) to the mitochondria receptor Fis1 with the 
compound P110. They further reported that applying conditioned 
media of Q73 or mutant G93A SOD1 microglia (ALS model) 
showing excessive mitochondria damage, induced a similar 
mitochondria fragmentation in astrocytes and a concomitant 
A1 signature. Park et  al. (2021) found that the astrocytic 
reactivity dependent of the microglia was associated with 
microglial Glucagon-like peptide-1 (GLP-1) receptor signaling. 
They showed that the GLP-1R was upregulated in 5xFAD mice. 
They have injected these mice with NLY01, an engineered 
agonist of GLP-1R, and observed suppression of Aβ-induced 
microglial activation and astrocytic reactivity as well as neuronal 
cell death, and partial rescue of cognitive decline. But microglia-
astrocyte interplay is dynamic and astrocytes do influence 
microglia states as well. Rueda-Carrasco et  al. (2021) showed 
that the astrocyte secreted frizzled-related protein 1 (SFRP1) 
is necessary for inducing microglia activation after LPS injections. 
McAlpine and colleagues found that IL-3 release by astrocytes 
is a regulator of microglia activation favoring their protective 
role against amyloid pathology in 5xFAD mice (McAlpine et al., 
2021). They confirmed colocalization of IL-3 with astrocytes 
and IL-3R alpha with microglia in frontal cortex autopsy samples 
from AD patients. Neurotoxic astrocytes could also drastically 
alter microglia phenotypes. Indeed, C3 was found specifically 
expressed by astrocytes and C3aR by microglia in WT and 
APP/PS1 mice (Lian et  al., 2016). The inhibition of the C3aR 
with an antagonist was sufficient to reduce amyloid pathology 
in APP/PS1 mice.

The relationship of astrocytes with the infiltration of peripheral 
immune cells, such as CD8 cells, in AD, and other NDDs, is 
still under scrutiny and would need to be  further explored.

Gate and colleagues discovered that the presence of a subgroup 
of peripheral immune cells called the CD8+ T effector memory 
CD45RA+ or TEMRA in individuals, after an analysis of AD 
patients, MCI individuals, and healthy controls, is predictive 
for cognitive decline (Gate et  al., 2019). The TEMRA were often 
found in the vicinity of Aβ blood vessels and astrocytes are 
good candidates to serve as chemoattractants for peripheral 
immune cells infiltration. Some cytokines and chemokines 
associated with neurotoxic signatures, such as IL-6, IL-1β, or 
CXCL10 have been involved in the blood brain barrier (BBB) 
disruption and the attraction of B and T cells (Rothhammer 
and Quintana, 2015).
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The states of the astrocytes, beneficial or detrimental, are 
intermingled in a more global reaction of brain cells (Figure 1) 
and their bilateral interaction with the brain and peripheral 
immune cells is at the center of numerous short-term and 
long-term responses that could shape the progression of NDDs.

Depletion of Noradrenaline and Dopamine, 
Vectors for Neurotoxic Astrocytes?
In the most common NDDs, astrocytes, among other brain 
cells, are confronted with numerous global brain alterations. 
Apart from pathological protein inclusions, the brain is affected 
by a progressive alteration of its neurochemistry as well as 
an imbalance of numerous neurotransmitters that disturb the 
activity of neurons and glial cells. The progressive depletion 
of NA and dopamine (DA) is associated with ageing (Manaye 
et  al., 1995; Volkow et  al., 1998; Beardmore et  al., 2021) and 
the onset of NDDs such as AD and PD (Weinshenker, 2018; 
Biondetti et  al., 2021). A local change of availability of NA 
or DA could strongly alter the responses of astrocytes in NDDs 
and favor their neurotoxicity.

The degeneration of the locus coeruleus (LC), the primary 
source of NA, is a hallmark shared by multiple 
neurodegenerative disorders (Holland et  al., 2021). The LC 
is a small brainstem nucleus mainly composed of NA producing 
neurons (Hansen, 2017) innervating multiple brain regions, 
such as the hippocampus, the amygdala, and the prefrontal 
cortex. NA is essential for hippocampus-based declarative 
memory formation, and for the regulation of cellular responses 
such as neuroinflammation and neuronal survival (Matchett 
et  al., 2021). Its unbalance or progressive depletion in NDDs 
could impact the responses and fate of astrocytes. Indeed, 
astrocytes express numerous noradrenergic receptors at their 
surface (α and β), and NA modulates their metabolic activity, 
glutamate uptake, glycogen production, and glucose metabolism 
(O’Donnell et  al., 2012), but also their calcium activity (Ding 
et  al., 2013; Oe et  al., 2020). NA has been also directly 
involved in astrocyte mediated memory consolidation (Gao 
et  al., 2016; Wahis and Holt, 2021). NA can downregulate 
transcription of pro-inflammatory genes (such as TNF-α, 
IL-1β, and iNOS), and upregulate anti-inflammatory molecules 
(such as HSP-70 and MCP-1) in astrocytes and microglia 
(Heneka et  al., 2010; Chalermpalanupap et  al., 2013). The 
DSP4 (N-(2-chloroethyl)-N-ethyl-bromo-benzylamine) model 
is based on a systemic administration of the selective neurotoxin 
DSP4 that causes a huge NA depletion through a terminal 
retrograde degeneration of the majority of LC-noradrenergic 
neurons (Carnevale et  al., 2007). In this model, astrocytes 
increased their IL-1β expression in response to NA depletion 
(Heneka et  al., 2002). Heneka and colleagues showed with 
a DSP4-APP23 transgenic mouse model that astrocytes develop 
a reactive phenotype and express a plethora of pro-inflammatory 
molecules (Heneka et  al., 2006). In this study, NA deficiency 
increased neuronal loss in CA1 hippocampus and frontal 
cortex, plaque loads, CD11+ microglia, GFAP, and iNOS 
expressions, and induced the formation of NO-mediated 
peroxynitrite, a free radical with high cell toxicity (Vodovotz 
et  al., 1996; Smith et  al., 1997). High-GFAP astrocytes were 

also shown highly abundant in the hippocampus after DSP4 
treatment of an APP mouse model (9-month-old male mice) 
in concomitance with higher plaque loads (Kalinin et al., 2007).

Dopamine (DA) is an essential catecholamine and 
neurotransmitter (Meiser et  al., 2013). Dopaminergic neurons 
are distributed in nine cell groups from the midbrain to the 
olfactory bulb. In adult brain, dopaminergic pathways project 
from the substantia nigra pars compacta (SNpc) to the striatum, 
and from the ventral tegmental (VTA) area to the cortex 
(Björklund and Dunnett, 2007). It forms three mains 
dopaminergic pathways: the nigrostriatal pathway, the mesolimbic 
pathway, and the corticolimbic pathway. In PD patients, the 
nigrostriatal pathway is severely affected because of the specific 
degeneration of dopaminergic neurons located in SNpc (Arias-
Carrián et  al., 2010). A decrease in the DA levels was also 
shown to be significant in dementia of Alzheimer type (Adolfsson 
et  al., 1979). DA deprivation in PD and other NDDs could 
also impact the phenotypes of astrocytes in DA targeted areas. 
Indeed, astrocytes from various brain regions can express DA 
receptors at their surface, D1–D5 (Khan et  al., 2001; Miyazaki 
et  al., 2004; Xin et  al., 2019). DA can directly affect their 
Ca2+ signaling. Nucleus accumbens astrocytes respond to DA 
through D1 receptors and seem to mediate DA-evoked depression 
at the synaptic level (Corkrum et  al., 2020). Galloway et  al. 
(2018) demonstrated an interesting role of DA in the epigenetic 
remodeling of primary astrocytes in culture. Both NA and 
DA deprivation could have a profound effect on astrocytes 
and prime them to maladaptive responses.

Pieces of Evidence of Astrocyte 
Neurotoxicity in NDD Patient Samples
Neurotoxic states of astrocytes can be triggered by numerous 
stressors in vitro, in mouse and human cells as well as in 
rodent models. Direct exposure or internalization of NDD 
typical pathological protein inclusions, and/or unbalance of 
neurotransmitters/neuromodulators, activation of microglia 
are all factors involved in the triggering of astrocyte 
neurotoxicity. There is no consensus around a prototypical 
signature. However, some overlap was found in different 
models. Some studies also gave contradictory conclusions 
on the role of astrocytes in disease progression. As the 
experimental set-ups impact the responses of astrocytes, 
translational research is mandatory to further understand 
their roles in the neurodegenerative cascades. The rise of 
new technologies such as snRNAseq allows for investigating 
frozen human post-mortem tissue with a precision never 
obtained before. The published data already reflect the 
heterogeneity of their states across brain regions, stage of 
the disease, and condition. It is now essential to associate 
the state of an astrocyte to its macro- (type and stage of 
the disease, brain region) and micro-environment (pathological 
protein inclusion proximity, inflammation associated to 
microglia and peripheral immune cells) to further understand 
its involvement in disease progression. Few points to consider 
before extrapolating in vitro and rodent model data to the 
human brain:
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 - For each NDD, the concomitance of typical pathological 
inclusions is more the rule than the exception (Golde et al., 
2013; Robinson et al., 2018).

 - The ageing process is poorly mimicked in cell culture and 
transgenic rodents.

 - Human astrocytes are distinct from rodent ones in many 
aspects and their heterogeneity is greater.

Indeed, human astrocytes are different from mouse ones in 
size, morphology, proportion per neuron, and responses (Oberheim 
et  al., 2006, 2009; Li et  al., 2021). The Li et  al. (2021) study 
confirmed the differential responses of immunoisolated mouse 
(P1-P3) and human astrocytes (gestational week 17–20) under 
oxidative stress, hypoxia, inflammatory conditions, and viral 
infections. Murine and human astrocytes showed already significant 
differences in gene expression in serum-free conditions. These 
differences persisted through development even when human 
astrocytes were grafted in a mouse brain, attesting to an intrinsic 
differential program. Facing stress and pathological conditions, 
human astrocytes differed in their mitochondria-energy 
metabolism and immune responses showing more vulnerability 
to oxidative stress and capacity to engage the antigen presentation 
pathway. The same authors have identified a core astrocyte 
signature in human NDDs by comparing transcriptomic analysis 
of AD and MS cases to poly I: C-, and TNF-α-induced changes 
of cultured human astrocytes. Some commonly upregulated genes 
were associated with inflammation such as C3, IFITM3, NFkBIA, 
CCL2, and CXCL10 and have been associated with 
neurotoxic signatures.

In this chapter, we attempt to map out molecular signatures, 
markers, and pieces of evidence of astrocyte neurotoxic responses 
in NDD patient brains.

Alzheimer’s Disease
A high level of GFAP is commonly detected by positron 
emission tomography (PET; Carter et  al., 2012, 2019; Verberk 
et  al., 2020; Calsolaro et  al., 2021; Chatterjee et  al., 2021), in 
the blood (Goetzl et  al., 2018; Cicognola et  al., 2021) or CSF 
(Sathe et  al., 2019) of MCI and AD patients. This GFAP level 
increase has been associated with the level of Aβ (Pereira 
et  al., 2021) and negatively correlated with Mini-Mental State 
Examination score (Oeckl et  al., 2019). The analysis of isolated 
astrocyte-derived exosomes (ADE) GLAST positive from plasma 
of AD patients and controls showed significantly higher levels 
of the cytokines IL-6, TNF-α, and IL-1β and of numerous 
complement proteins (Goetzl et  al., 2018). Surprisingly, GFAP 
is also described as a potential biomarker for early AD in the 
saliva of MCI and AD patients where its levels are correlated 
with Aβ42, IL-1β, and caspase-8 (Katsipis et  al., 2021). An 
increase of GFAP staining is commonly observed in the 
parenchyma of AD cases (Serrano-Pozo et al., 2013). Kobayashi 
and colleagues classified their cohort of samples into three 
groups, the control group, AD with and without dementia 
(Kobayashi et  al., 2018). They found an increase of GFAP in 
the entorhinal cortex of both AD groups, however; the 
non-demented AD group was characterized by an increase in 
the expression of GLT-1. A recent analysis of astrocytes markers 

across IHC and RNAseq data collections in human samples 
have highlighted the complexity of astrocyte responses in AD 
and delimited a core reactive signature of AD astrocyte (ADRA) 
that points towards dysfunctions and neurotoxicity (Viejo et al., 
2021). The authors build an online resource where each ADRA 
marker confirmation by IHC or RNAseq is mapped.

Numerous studies characterized astrocyte neurotoxic markers 
in post-mortem AD samples. C3-positive astrocytes were detected 
in numerous NDDs (Liddelow et  al., 2017), in the entorhinal 
cortex layers I-III and CA1 hippocampus with a co-expression 
of serine racemase, an enzyme that produces D-Serine (Balu 
et  al., 2019), and in the frontal upper cortex (King et  al., 
2020). Chun et  al. (2020) found an increase of Nos2  in the 
AD temporal cortex. Subpial and RGN astrocytes expressed 
Nos2, Nos3, and nitrotyrosine in AD hippocampus, frontal, 
temporal, and entorhinal cortices (Heneka et  al., 2001; Lüth 
et al., 2002). IL-6-positive astrocytes were detected in the lateral 
hypothalamus, cingulate cortex (Lyra e Silva et  al., 2021), and 
prefrontal and temporal cortices (Bouvier et  al., 2016). Recent 
snRNAseq data also gave new insights on astrocyte molecular 
status in AD. Grubman et  al. (2019) found two AD specific 
astrocyte clusters from the entorhinal cortex of AD patients. 
One was defined by an increase of genes related to ribosomal, 
mitochondrial, neuron differentiation, and heat shock responses 
and the other cluster by enrichment for transcripts related to 
transforming growth factor (TGF)-β signaling and immune 
responses. Neither of them overlapped significantly with the 
A1 or A2 profiles but the second cluster showed an upregulation 
of C3. Lau et al. (2020) performed snRNAseq on AD prefrontal 
cortex and control samples. They have identified two 
“AD-upregulated” astrocytic subpopulations expressing CRYAB, 
GFAP, LINGO1, and HMGB1 and one “AD-downregulated” 
subpopulation. The authors concluded for dysregulation of 
neurotransmitter recycling and an exaggerated alarming response 
of astrocytes. Gerrits et  al. (2021) proceeded to single-cell 
RNA-seq of the entorhinal cortex of AD patients, but they 
did not find any AD-associated changes in astrocytes.

Overall, there are no prototypical neurotoxic signatures such 
as the A1 or DAA ones found in AD yet. However, some 
subgroups of astrocytes showed some overlapping trends of 
transcripts or increase of markers associated with severe reactivity 
and/or neurotoxic responses.

Primary Tauopathies
Primary tauopathies are defined by a tau-driven pathology, 
the absence of Aβ plaques and are associated with presenile 
dementia. They are grouped according to their ratio in the 
predominant isoform, either the 3-repeat tau (3R) or the 4-repeat 
tau (4R) in 3R, 4R predominant, or mixed. They comprise 
3R Pick disease, and 4R CBD, progressive supranuclear palsy 
(PSP), globular glial tauopathy (GGT), and argyrophilic grain 
disease (AGD; Chung et  al., 2021). All these NDDs are 
characterized by the presence of tau-positive astrocytes reviewed 
in (Kovacs et  al., 2016). The expression of tau by astrocytes, 
mostly 4R, directly impacts their morphologies. They are called 
tufted astrocytes, astrocytic plaques, ramified astrocytes, globular 
astroglial inclusions (GAIs), Thorn-shaped astrocytes (TSA), 
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and granular/fuzzy astrocytes (GFA). The post-mortem 
stratification of patients in the “ageing-related tau astrogliopathy” 
(ARTAG) group is now based on the high frequency of TSA 
and GFA in specific anatomical regions (Kovacs et  al., 2016, 
2018; McCann et  al., 2021). However, the relationship of tau 
positive astrocytes with neurodegeneration in human post-
mortem NDD samples is still under scrutiny. Briel et al. (2021) 
analyzed the relationship between astrocyte plaques and tufted 
astrocytes and the peripheral synaptic density in cortical and 
striatal areas from PSP and CBD patient samples. General 
lower excitatory and inhibitory synapse densities were found 
significant in PSP Frontal Cortex. Local synaptic density was 
negatively correlated with astrocytic plaques only in CBD cases. 
Using image analysis, the authors also demonstrated a local 
loss of synapses in the territory of tau-positive astrocytes, 
especially exacerbated in astrocyte plaques. Interestingly tufted 
astrocytes were also found in Lewy body disease (Hishikawa 
et al., 2005) and were not associated with pathological inclusions 
but with age.

Parkinson’s Disease and Synucleinopathies
Synucleinopathies are characterized by the pathological 
accumulation of α-Syn mainly in neurons but also in glia, in 
the form of granular intra-cellular accumulations, Lewy neurites 
and Lewy bodies. The synucleinopathies are classified into three 
major entities: PD, LBDs which comprise Parkinson’s disease 
dementia (PDD) and dementia with Lewy bodies (DLB), and 
multiple system atrophy (MSA). DLB is the second most common 
cause of dementia and often share amyloid and tau pathologies 
with AD. In most of the synucleinopathies, astrocyte reactivity 
is considered as low or inexistent in the human brain, which 
rather contradicts previous conclusions made in vitro and mouse 
model studies. Mirza et  al. (1999) did not observe differences 
in GFAP density, distribution or morphology of astrocytes in 
the substantia nigra (SN), or putamen in post-mortem samples 
from PD patients compared to age-matched controls. Tong and 
colleagues confirmed these results at the protein level by reporting 
similar levels of GFAP, Vimentin, and heat shock protein-27 
(Hsp27) by quantitative immunoblotting in the SN from PD 
patients compared to controls (Tong et  al., 2015). However, all 
these markers were increased in SN and putamen of MSA 
patients. Looking across LBD cohort samples, Van Den Berge 
et  al. (2012) did not find any increase of astrocyte reactivity 
using GFAP and vimentin IHC or Western blot in the frontal 
cortex of PD, PDD, and DLB patients. Few reports found a 
change in the astrocyte signatures in PD and DLB. Rostami 
et al. (2020) reported the expression of MHC2 markers colocalized 
with GFAP staining nearby CD4+ cells in PD brains. Few 
“neurotoxic” markers were found in astrocytes in PD brains: 
C3  in SN and frontal cortex (Liddelow et  al., 2017) and an 
increase of LCN2  in the SN of PD patients by Western blot 
analyses. Some TNF-α and iNOS positive astrocytes were detected 
in the hippocampus of DLB patients (Katsuse et  al., 2003). 
Agarwal and collaborators performed snRNAseq on SN from 
PD and control subjects and found two PD astrocyte clusters, 
one with upregulated neuroinflammatory genes (Olr1), and one 
expressing gene associated with growth and reparative functions 

(Gins3; Agarwal et  al., 2020). The authors do not report any 
A1, A2, pan-reactive, or other previously described reactive 
astrocyte signatures. However, astrocytic reactivity is found in 
the proximity of alpha-synuclein inclusions in the white matter 
of visual and frontal cortices and the grey matter of the putamen 
in MSA brain samples (Radford et al., 2015). Inoue et al. (2021) 
described a positive correlation of GFAP with the expression 
of the stimulator of interferon genes (STING) in the putamen 
and SN of MSA cases. STING, a cytosolic DNA sensor can 
trigger type 1 interferons and is involved in defensive immune 
mechanisms against pathogens but also in autoimmunity. 
Astrocytic toxicity across synucleinopathies remains uncertain 
but could be  more prominent in MSA than in PD or 
LDB progression.

TDP-43 Associated Proteinopathies
Although ALS and FTD are clinically distinct NDDs they 
genetically and pathologically overlap and share central features 
(Gerovska et  al., 2020). Around 30% of ALS patients and up 
to 15% of FTD patients will develop an overlap of clinical 
features (for review, see Lomen-Hoerth, 2011). Intraneuronal 
accumulation of misfolded, ubiquitinated/phosphorylated 
proteins, such as TDP-43, C9orf72 (C9), superoxide dismutase 
1 (SOD1), and fused in sarcoma (FUS), is a major key factor 
in sporadic and familial ALS (sALS, fALS; for review, see 
Peters et  al., 2015; Volk et  al., 2018) but are not exclusive to 
ALS. Accumulation of TDP-43 can be  found in the majority 
of cases of frontotemporal lobar degeneration (FTLD), so-called 
FTLD-TDP (Arai et  al., 2006; Neumann et  al., 2006) as well 
as in limbic-predominant age-related TDP-43 encephalopathy 
(LATE; Nelson et  al., 2019). Astrocytes are hypothesized as 
significant actors in ALS and FTD progression mainly due to 
results from in vitro and in vivo rodent models (Izrael et  al., 
2020). Analyses of human post-mortem spinal cord tissue 
revealed enrichment of astrocyte-specific genes and enlarged 
perivascular spaces with separation of astrocyte and mural 
basement membranes in sALS (Månberg et al., 2021). RNA-seq 
datasets implicated enrichment of upregulated DEGs related 
to astrocyte functions in ALS compared to control spinal cord 
samples (Wang et  al., 2021). Blood-spinal cord-barrier (BSCB) 
disruption and leakage has been described in ALS patients 
and detachment of astrocytic end feet from vessels (Miyazaki 
et  al., 2011) or regional differences in astrogliosis or GFAP 
expression (Schiffer et al., 1996; Oberheim et al., 2009; Sofroniew, 
2015) are proposed to be  responsible for a reduction of GFAP 
in the perivascular space (Waters et al., 2021). Further research 
on post-mortem human brain and/or spinal cord tissue indicated 
astrocyte-related neurotoxicity and/or MN loss mediated. This 
is reflected by an increase of astrocytic cystine/glutamate 
antiporter (xCT) as a response to oxidative stress, a decrease 
of astrocytic glutamate transporter GLT-1 (Rothstein et  al., 
1995) further leading to increased extracellular glutamate 
accumulation (Kazama et  al., 2020), an increase of astrocytic 
connexin 43 (Cx43; Almad et  al., 2016), and an increase of 
astrocytic chitinase-3-like protein 1 (CHI3L1) and 2 (CHI3L2; 
Sanfilippo et  al., 2017; Vu et  al., 2020), the latter negatively 
correlated with the survival time of ALS patients. Gorter et  al. 
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(2019) reported the expression of small heat shock proteins 
(HSPBs) in reactive lateral column astrocytes in ALS patients 
with short disease duration (SDD; HSPB5, HSPB8) as well as 
with moderate disease duration (MDD: HSP16.2). HSPBs are 
required for protein quality control and are relevant for 
stabilization of intermediately folded proteins to prevent 
misfolding and/or aggregation and subsequent cytotoxicity 
(Sharma et  al., 1997; Van Montfort et  al., 2001; Jaya et  al., 
2009; Haslbeck et  al., 2015) and HSPB8 facilitates autophagy 
via BAG3 interaction (Fuchs et  al., 2010, 2015). Thus, the 
upregulation of HSPBs could be  a direct response to altered 
protein homeostasis. The pathogenic protein aggregates may 
subsequently trigger the glial inflammasome. Microglial NLR 
family pyrin domain containing 3 (NLRP3) inflammasome 
activation is an emerging key factor of neuroinflammation and 
contributor to disease progression in an ALS mouse model 
(Deora et  al., 2020) and may further contribute to disease 
progression during neurodegeneration. Inflammasome 
components, such as NLRP1, NLRP3, adaptor protein apoptosis-
associated speck-like protein containing a CARD (ASC), and 
interferon-inducible protein AIM2 (AIM2) colocalize with GFAP 
positive astrocytes in spinal cords of sALS patients (Johann 
et  al., 2015; Hummel et  al., 2021). Taken together, astrocyte-
associated toxicity and neuroinflammation could be  significant 
factors in the progression of ALS-related neurodegeneration.

THE IMPACT OF AGEING ON THE 
RESPONSES AND PHENOTYPES OF 
ASTROCYTES IN NDDs

It is interesting to note that in most of the experimental models, 
the highest risk factor for NDDs which is ageing is strongly 
neglected. However, enough studies have demonstrated the 
change of states of astrocytes across ageing and their tendency 
to mimic certain reactive and even neurotoxic features. The 
cellular senescence is also an important factor to consider as 
senescent astrocytes would be detrimental for their surroundings.

Ageing Signatures: Does the Progressive 
Loss of Homeostatic Astrocytic 
Phenotypes Prime Neurotoxicity?
In the ageing CNS, cells that are in mitosis or proliferating 
represent a small minority. Pools of new neurons, and sometimes 
astrocytes, are born from the neural stem cells of the subgranular 
zone (SGZ) in the dentate gyrus (DG) of the hippocampus 
and subventricular zone (SVG) but decrease in ageing mice 
(Baptista and Andrade, 2018). In humans, neurogenesis in the 
adult and ageing brain is still difficult to assess and results 
in the literature are often contradictory (Sorrells et  al., 2018). 
However, Boldrini et  al. (2018) showed that neurogenesis is 
relatively stable during ageing in DG and at least persists in 
humans until their 80s. Astrocytes seem to have a long lifespan 
with a low proliferation rate limited to severe astrogliosis in 
acute injuries or advanced stages of NDDs (Colodner et al., 2005; 
Sofroniew and Vinters, 2010). New astrocytes can be occasionally 

produced by the stem cells of SGZ (Bonzano et  al., 2018) but 
the absence of data collected from the human brain does not 
allow further discussion. The general agreement is that astrocytes 
also show stereotypical phenotypic changes in ageing.

Numerous analyses based on GFAP and vimentin staining 
quantification in brain sections showed their increase in ageing 
in frontal, temporal, and entorhinal cortices, in the hippocampus 
of rats (Nichols et  al., 1993; Amenta et  al., 1998; Bernal and 
Peterson, 2011) and humans (David et  al., 1997; Porchet 
et  al., 2003). No change was observed in the chimpanzee 
brain (Munger et  al., 2019). Cerbai et  al. (2012) reported 
smaller astrocytes with simplified arborization in CA1 Stratum 
radiatum of aged rats compared to adults. Bronzuoli et  al. 
(2019) showed by Western blot and immunofluorescence a 
reduction of GFAP, S100B, and connexin-43 expression but 
an increase of aquaporin-4  in hippocampal astrocytes from 
12-month compared to 6-month-old mice. Thus, the homeostatic 
functions of astrocytes could be  progressively altered during 
ageing. By using the Ribo-Tag technique, Boisvert et al. (2018) 
isolated specifically the ribosomal RNA of mouse astrocytes 
at specific ages from the visual (VC), the motor cortex (MC), 
hypothalamus (HTH), and cerebellum (CB). By comparing 
2-year-old mice transcriptomes to 4 months old, they found 
that seven genes are commonly upregulated in all regions 
isolated, which are the serine protease inhibitor A3N and M 
(Serpina3n and Serpina3m), Gfap, some proto-cadherins-b 6 
and 11, and C4b a component of the complement cascade. 
Some transcripts increased were specific to astrocytes of certain 
regions, such as Bmp6 and Sparc in VC astrocytes and 
pro-inflammatory factors such as Cxcl5, caspase-1 and 12 
along Tlr-2 and 4  in CB. Overall, astrocytes seem to engage 
an ageing functional decline that could disrupt their interplay 
with surrounding neurons and alter their response to stress 
and pathology in older individuals. In line with these 
observations, Clarke and colleagues described a prevalence 
of the A1 or neurotoxic signature in astrocytes of older mice 
(Clarke et  al., 2018). With a similar strategy to the Boisvert 
study, a translating ribosome affinity purification (TRAP) 
technique was used to isolate RNA astrocytes from the 
hippocampus, cortex, and striatum, later analyzed by RNAseq, 
across the lifespan of a mouse (Boisvert et  al., 2018). They 
showed that aged astrocytes upregulate a high number of 
the A1 genes, especially in the hippocampus and striatum. 
Serpina3n, complement (C3 and C4B), and cytokine pathway 
(Cxcl10), but also antigen presentation (H2-D1 and H2-K1) 
were some of the most prominent. In parallel, the 
downregulation of genes involved in metabolic functions, such 
as mitochondria energy production and antioxidant defense, 
pointed out a general decline of astrocyte homeostasis. 
Upregulation of genes involved in synaptic elimination and 
extracellular matrix degradation was confirmed in mouse aged 
isolated- astrocytes by another study (Pan et  al., 2020). 
Interestingly, Habib et  al. (2020) found a strong association 
between the DAA signature and aged astrocytes in mouse 
wild-type and healthy humans. Soreq et  al. (2017) have 
highlighted the severe impact of ageing on glial cells and 
more specifically on astrocytes and oligodendrocytes through 
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an extensive analysis of gene expression datasets of numerous 
brain regions coming from postmortem tissue of 480 individuals 
between 16 and 106 years old. They were able to report a 
shift of identity of hippocampal astrocytes, more related to 
cortical ones in young humans, toward intralobular white 
matter and putamen astrocytes in the aged brain. Natural 
and healthy ageing is then a significant factor in the ability 
of astrocytes to maintain their homeostatic functions and 
respond to insults. The overlap of signatures between human 
astrocytes of aged individuals and A1 or DAA neurotoxic 
ones is intriguing and could contribute to their maladaptive 
or detrimental responses in the early phases of NDDs.

Cellular Senescence in Astrocytes: The 
Ultimate Fate?
Cellular senescence is a hallmark of ageing. It is characterized 
by the irreversible loss of the ability of the cell to divide. It 
is a direct consequence of telomeres shortening and comes as 
a protective mechanism to avoid genome instability and cancer 
cell production (Di Micco et  al., 2021). Senescent cells are 
not restricted to aged CNS, but their proportion is likely to 
increase during the ageing course and could affect or trigger 
some pathological cascades associated with NDDs (Rueda-
Carrasco et al., 2021). Senescent cells can be  identified by 
measuring the increased expression of cell cycle inhibitory 
proteins such the cyclin-dependent kinase inhibitors p21 and 
p16INKA4, the tumor suppressor protein p53, and by the ectopic 
expression of the senescence-associated beta-galactosidase (SA-β-
Gal). Cellular senescence also induces a general change of the 
molecular state of the cell that provokes morphological alteration, 
metabolic stress, and chromatin remodeling. Cells under the 
senescent-associated secretory phenotype (SASP) secrete 
proinflammatory molecules, metalloproteinases, and growth-
stimulating factors (Swenson et  al., 2019). Senescent cells are 
resilient to cell death and are often called “zombie” cells. They 
can create local chronic inflammations in the CNS parenchyma 
and destabilize the micro-environment. Baker and collaborators 
demonstrated the impact of senescent cells in vivo, in healthy 
and aged cells (Baker et  al., 2016). The authors have shown 
the ablation of senescent cells promotes normal tissue function 
and delays the onset of age-related pathologies. The same effects 
have been observed in mice (Zhu et al., 2016). Cellular senescence 
features partially overlap with neurotoxic astrocytes ones, which 
challenges their identification in the astrocytic population. In 
vitro, multiple conditions and stressors can activate a senescence 
program in astrocytes. Ageing can be  mimicked in a dish by 
multiplying the number of passages of cells, by cultivating 
them over a longer period or by using primary cells extracted 
from aged animals. All these conditions trigger senescence in 
cultivated microglia and astrocytes (Bitto et  al., 2010; Caldeira 
et  al., 2014; Stojiljkovic et  al., 2019). Many chemicals or active 
molecules have been used in vitro as stressors to induce 
senescent-like states in mouse or human astrocytes (Bitto et al., 
2010; Stojiljkovic et  al., 2019). Hydrogen peroxide (Bitto et  al., 
2010) inflammatory challenges, such as repeated LPS exposure 
(Yu et  al., 2012), irradiation (Limbad et  al., 2020), transient 

oxidative stress (Crowe et  al., 2016), Aβ (Bhat et  al., 2012; 
Zhang et  al., 2019), or even the herbicide paraquat (Chinta 
et al., 2018) can trigger senescence in astrocytes. Transcriptome 
analysis of oxidative stress-induced senescence in human fetal 
astrocytes in culture (Crowe et al., 2016) revealed an upregulation 
of genes associated with inflammation and extracellular 
remodeling and a downregulation of genes involved in cell 
cycle and of GFAP and S100B. The senescence accelerated 
mouse (SAM) strain induces a shortened life span, loss of 
normal behavior, senile amyloidosis, and mitochondrial 
dysfunction, deficits in learning and memory, and brain atrophy 
(Takeda et  al., 1997). Interestingly, SAM isolated astrocytes 
are more sensitive to artificial oxidative stress mimicked by 
an H2O2 exposure (Lü et  al., 2008). Additionally, senescence 
has been shown to modify astrocytic ROS detoxification responses 
(Lü et  al., 2008) and to compromise glutamate and potassium 
transport by decreasing the expression of EAAT1, EAAT2, and 
Kir4.1 (Limbad et  al., 2020). Thus, in vitro experiments have 
demonstrated that numerous stressors, usually associated with 
ageing or disease context, can activate senescence in astrocytes. 
However, if glial senescence occurs in situ still needs to 
be  further investigated.

Astrocytes are stable cells with a low turnover and are 
theoretically more prone to senescence. However, the 
measurement of telomere shortening in astrocytes in vitro 
contradicts this idea (Flanary and Streit, 2004; Szebeni et  al., 
2014). In female mice, the proportion of hypothalamic senescent 
astrocytes increased with age and appeared to be  mainly 
modulated by the ovarian estradiol, which would associate 
astrocyte senescence with an early reproductive decline (Dai 
et  al., 2020). Bussian and colleagues measured an increase of 
the expression of SA-βGal in cells identified as microglia and 
astrocytes by transmission electron microscopy in 
MAPTP301SPS19 mice (Bussian et  al., 2018). In this model, 
senescence in glia was not linked to ageing (6-month-old 
animals) but mainly to the tau neuropathology. Interestingly, 
treating astrocyte senescence had major outcomes in mouse 
models. The clearance of glia senescent cells using INK-ATTAC 
transgenic mice had multiple beneficial effects. It prevented 
gliosis, decreased NFTs deposition and degeneration of neurons, 
and helped to preserve cognitive functions. Xu et  al. (2021) 
reported downregulation of the Yes-associated protein (YAP) 
paralleled with a decrease of lamin B1 in hippocampal astrocytes 
during normal ageing and in APP/PS1 mice. The downregulation 
of YAP was also shown in D-galactose and paraquat-induced 
senescent astrocytes. YAP is involved in cell proliferation, 
differentiation, and tissue regeneration. Its activation delays 
senescence in vitro and reduces cognitive defects in old AD-like 
mice. Gaikwad et  al. (2021) described a high proportion of 
p16INK4A astrocytes that were also positive for pathological tau 
oligomers (TauO) in the frontal cortex of AD and FTD patients. 
They found that TauO exposure induced the nuclear translocation 
and release of high mobility group box 1 (HMGB1) in primary 
astrocytes and consequent paracrine induction of senescent 
profile in culture. Preventing HMGB1 release using inhibitors 
over 8 weeks showed a significant decrease of p16INK4A astrocytes 
in 12-month-old hTau mice, a reduction of tau pathology and 
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neuronal loss, and partial rescue of cognitive defects. A high 
proportion of p16INK4A-positive astrocytes were found in FFPE 
post-mortem brain samples of 78–90-year-old healthy humans 
(Bhat et  al., 2012). Their number was even increased in AD 
patients, with a respective average of 35 and 50%. This staining 
was correlated with an increase of metalloproteinase MMP-1 
expression. If these numbers stand true across NDDs, senescent 
astrocytes may represent the main neurotoxic astrocyte 
population, drive the most transformative alterations in ageing, 
and exacerbate disease progression in NDD. Paradoxically, 
treating them may be more straightforward. However, senescent 
astrocytes will need to be  carefully quantified with multiple 
markers across NDD to define if senolytic targeted treatment 
may become a serious curative opportunity.

Epigenetic of Ageing and Ageing 
Astrocytes
Epigenetics is an emerging field in both diagnostics and research. 
It encompasses several distinct modifications of the DNA that 
impact transcriptional activity while leaving the nucleotide 
sequence unchanged (Gibney and Nolan, 2010). It includes 
methylation, histone modification, or non-coding RNAs (ncRNA). 
In general, a hypermethylated phenotype is associated with 
ageing processes in mammals. However, data about cell-type-
specific epigenetic alterations were lacking for a long time 
(Maegawa et al., 2010). For brain tissue, differentially methylated 
sites (DMS) significantly associated with ageing were mainly 
localized within CpG islands and displayed a frequent 
hypomethylated status. Furthermore, age-associated DMS in 
brain tissue were enriched in H3K27me3 and frequently found 
within laminar-associated domains (LADs). H3K27me3 
constitutes a repressive post-translational histone mark and 
LADs show general low transcription levels indicating a reduced 
gene activity in line with the ageing processes (Lochs et  al., 
2019). NDDs studies have shown significant differences in 
epigenetic marks, such as increased DNA methylation and 
hydroxymethylation in AD, features that correlated with 
pathological Aβ, tau, and ubiquitin load (Coppieters et  al., 
2014). A recent meta-analysis study about brain methylation 
revealed a very high correlation between age-related DNA 
methylation patterns in normal ageing and AD brain tissue, 
for both usually hypo- but with some hypermethylated CpGs 
(Pellegrini et  al., 2021). It might indicate that NDDs may also 
be the result of abnormal, accelerated ageing processes. However, 
those epigenetic marks were differentially regulated between 
neuronal and glial cells, thereby indicating a rather cell type-
specific epigenetic regulation in age-related CNS pathologies 
(Coppieters et al., 2014). Of note, mainly astrocytes and pyramidal 
neurons displayed an altered methylation profile while cell 
types that seem to be  less affected in AD such as calretinin-
positive interneurons remained relatively unaffected (Phipps 
et al., 2016). To better understand the implication of epigenetic 
regulation in the ageing process of astrocytes, it is important 
to understand the impact of epigenetics on the normal 
development of astrocytic cells. A pioneering study in the field 
showed that genes, that are generally considered as being 

astrocytic-specific, become rather de- or hypomethylated once 
neural precursor cells (NPC) start to differentiate into astrocytes 
(Hatada et al., 2008). This process allows key signal transducers 
in astrocytes such as SMAD or STAT3 to finally bind to their 
respective binding sites within astrocyte-specific genes such as 
GFAP, showing increased expression levels in both brain ageing 
and neurodegenerative disorders (Nichols et  al., 1993; 
Porchet et  al., 2003).

Epigenetic changes of the ageing astrocyte are still poorly 
understood. A murine stroke study revealed that aged astrocytes 
displayed less active chromatin, represented by weaker 
trimethylation of histone 3 lysine 4 (H3K4me3) acting as an 
enhancer while displaying stronger trimethylation of the 
repressive lysine residue at histone 3 lysine 9 (H3K9me3; 
Chisholm et al., 2015). This age-dependent impairment of active 
astrocytic gene transcription was associated with an increased 
stroke size. It indicates that aged astrocytes may be less capable 
of counteracting pathological conditions. Furthermore, it was 
demonstrated that inhibition of histone deacetylases (HDAC) 
increased the release of neurotrophic factors in astrocytes (Chen 
et  al., 2006). It was shown in cell culture models that the 
administration of HDAC inhibitors led to increased clusterin 
levels, a molecular chaperone that may prevent disease progression 
in AD (Nuutinen et  al., 2010). Although the first therapeutic 
strategies using HDAC inhibitors have been successful in AD-like 
mouse models (Francis et al., 2009) its translation into a clinical 
trial for NDDs seems to be  much more challenging, as HDAC 
inhibitors may also have neurotoxic side effects (see review 
Shukla and Tekwani, 2020). In summary, epigenetic modifications 
play a central role in ageing processes, but it becomes more 
and more evident that these age-dependent changes or 
neurodegenerative alterations considerably differ between cell 
types. However, to date, it is still unclear if an epigenetically 
regulated cellular “age clock” can be  selectively reverted to 
restore neuroprotective properties in a complex system such 
as the human brain, or if any interference with such fine-
tuned, age-dependent epigenetic processes rather aggravates 
neurotoxic features in general or more specifically in astrocytes. 
Understanding the epigenetic regulation of astrocytes will be an 
asset to control their phenotypes in ageing and NDDs and 
may be important for the future development of novel treatment.

CONCLUSION

Many roads are leading to astrocytic neurotoxicity (Figure  2). 
There is a consensus about the potential of such an astrocytic 
phenotype to alter its micro-environment and exacerbate NDD 
pathologies and in the last few years, many researchers attempted 
to define a prototypical signature of a neurotoxic astrocyte 
(Figure  1). But what emerged from this translational review is 
a complex patchwork of heterogeneous neurotoxic signatures that 
vary across experimental models and conditions and are still 
controversial in human NDDs. Because cell culture or mouse 
models fail to fully recapitulate human NDDs and microscopy 
as well as even scRNAseq experiments from human samples 
provide only snapshots on the states of astrocytes, there is a 
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need for more translational and multi-disciplinary approaches 
to solve the mystery of the roles of astrocytes in NDD progression. 
To advance in our understanding, astrocytic signatures in NDDs 
will have to be  carefully associated with neuropathological 
diagnostics, especially focusing on distinct brain regions and 
composition of their surrounding microenvironment. There is 
still a lot to investigate before defining astrocytes as a therapeutic 
target in patients. Translational AD research points toward a 
strong evidence of direct implications of neurotoxic or detrimental 
astrocytes in the disease progression. However, their roles in 
other NDDs such as PD and ALS are still speculative and mainly 
based on in vitro and rodent model studies.

Furthermore, if we  succeed in proving that neurotoxic 
astrocytes are leading neurodegenerative cascades, how could 
we  treat them? Who to treat first, microglia or astrocytes? 
Both together? Should we  target the ageing and senescence 
process or be  more specific to the condition?

Non-targeted anti-inflammatory treatments (e.g., 
dexamethasone, minocycline, ibuprofen, and IL-10) have been 
efficient in animal models and have the benefit to target both 
microglia and astrocytes. But the search for an effective 

anti-inflammatory molecule for AD and NDD patients is still 
ongoing (Kwon and Koh, 2020). Non-steroidal anti-inflammatory 
drugs, such as ibuprofen, celecoxib, rofecoxib, or tarenflurbil 
have all failed to reduce cognitive decline in clinical trials in 
AD patients (Zanetti et  al., 2009; Rivers-Auty et  al., 2020).

The Nrf2 signaling pathway represents a potential target 
for the treatment of NDDs. Indeed, Nrf2 is a key endogenous 
regulator of oxidative stress and neuroinflammation (Johnson 
et  al., 2008; Buendia et  al., 2016; Sivandzade et  al., 2019). Its 
overexpression prevented neurotoxicity in murine microglia 
and astrocytes (Sigfridsson et  al., 2018; Heurtaux et  al., 2021) 
but also protected neurons from potentially toxic insults (Shih 
et  al., 2003; Bell and Robinson, 2011; Cui et  al., 2016). 
Furthermore, pharmacological activators of Nrf2 are already 
in clinical development for treating traumatic brain injury, 
stroke, and cancer and could also be tested in NDDs (Robledinos-
Antón et  al., 2019; Zhou et  al., 2020a).

Targeting senescence is also a promising avenue. Senotherapies 
target senescent cells to kill them or block their detrimental 
effects, e.g., growth arrest and the onset of a SASP (von Kobbe, 2019; 
Birch and Gil, 2020). Some senolytic cocktails relieved age-related 

FIGURE 2 | Hypothetical roads to astrocyte neurotoxicity in the context of neurodegenerative diseases (NDDs) and ageing. The heterogeneity of astrocyte 
response and change depends on numerous factors, such as the species, gender, age, anatomic localization, genetics and epigenetics, their micro-environment, 
and the type and stage of the disease. In NDDs, one or several subgroups of astrocytes could lose their neuroprotective function and become neurotoxic. Many 
factors could impact their transformation into toxic cells. The effect of ageing could prime them to maladaptive responses, cellular senescence would turn them 
detrimental to their surroundings, pathological protein inclusions [Aβ, tau, α-synuclein (α-Syn), and TAR DNA-binding protein 43 (TDP-43)], neuroinflammation and 
neurotransmitter concentration, and activation of immune cells would condition their shift to toxic thereby enhancing their detrimental features. Neurotoxic astrocytes 
would then contribute disease progression.
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brain inflammation and improved brain function in mouse models 
of NDDs (Ogrodnik et al., 2021). Finally, epigenetic manipulation 
is a promising approach to modulate the state of brain cells and 
reverse ageing and senescence. Over the last years, potential 
epigenetic inhibitors have emerged (Verma and Kumar, 2018). 
DNA methylation inhibitors (Decitabine, Zebularine, and 5’Aza) 
but also histone deacetylase inhibitors (Trichostatin A, Vorinostat) 
have shown promising results in experimental models of NDDs 
(Narayan and Dragunow, 2010; Konsoula and Barile, 2012; 
Coppedè, 2014; Kim and Hong, 2014). The use of genome-
engineering tools, e.g., the CRISPR/Cas9 system, could also emerge 
as potential epigenetic regulators to treat patients (Yao et  al., 
2015; Vojta et  al., 2016).

Overall, maintaining protective astrocyte function or 
alleviating astrocyte neurotoxicity seems a promising avenue 
for AD and NDDs. However, before crystallizing such a strategy, 
it is crucial to map with more precision the detrimental 
phenotypes of astrocytes across ageing and age-associated NDDs.
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