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Background: Exercise limitation in chronic obstructive pulmonary disease (COPD) is 
commonly attributed to abnormal ventilatory mechanics and/or skeletal muscle function, 
while cardiovascular contributions remain relatively understudied. To date, the integrative 
exercise responses associated with different cardiopulmonary exercise limitation 
phenotypes in COPD have not been explored but may provide novel therapeutic utility. 
This study determined the ventilatory, cardiovascular, and metabolic responses to 
incremental exercise in patients with COPD with different exercise limitation phenotypes.

Methods: Patients with COPD (n = 95, FEV1:23–113%pred) performed a pulmonary 
function test and incremental cardiopulmonary exercise test. Exercise limitation phenotypes 
were classified as: ventilatory [peak ventilation (VEpeak)/maximal ventilatory capacity 
(MVC) ≥ 85% or MVC-VEpeak ≤ 11 L/min, and peak heart rate (HRpeak) < 90%pred], 
cardiovascular (VEpeak/MVC < 85% or MVC-VEpeak > 11 L/min, and HRpeak ≥ 90%pred), or 
combined (VEpeak/MVC ≥ 85% or MVC-VEpeak ≤ 11 L/min, and HRpeak ≥ 90%pred).

Results: FEV1 varied within phenotype: ventilatory (23–75%pred), combined (28–90%pred), 
and cardiovascular (68–113%pred). The cardiovascular phenotype had less static hyperinflation, 
a lower end-expiratory lung volume and larger tidal volume at peak exercise compared to both 
other phenotypes (p < 0.01 for all). The cardiovascular phenotype reached a higher VEpeak 
(60.8 ± 11.5 L/min vs. 45.3 ± 15.5 L/min, p = 0.002), cardiopulmonary fitness (VO2peak: 
20.6 ± 4.0 ml/kg/min vs. 15.2 ± 3.3 ml/kg/min, p < 0.001), and maximum workload (103 ± 34 W 
vs. 72 ± 27 W, p < 0.01) vs. the ventilatory phenotype, but was similar to the combined phenotype.

Conclusion: Distinct exercise limitation phenotypes were identified in COPD that were 
not solely dependent upon airflow limitation severity. Approximately 50% of patients 
reached maximal heart rate, indicating that peak cardiac output and convective O2 delivery 
contributed to exercise limitation. Categorizing patients with COPD phenotypically may 
aid in optimizing exercise prescription for rehabilitative purposes.

Keywords: COPD, cardiopulmonary exercise testing, clinical exercise physiology, exercise limitations, exercise 
prescription
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a complex 
heterogenous condition with diverse clinical presentations and 
prognoses that cannot be  entirely explained by differences in 
airflow limitation and dyspnea (Agusti et  al., 2010; Casanova 
et al., 2011). As such, delineating clinical phenotypes in COPD 
is important to facilitate the prescription of targeted therapies 
to optimize clinical outcomes. Incremental cardiopulmonary 
exercise testing (CPET) is an important tool in the risk 
stratification of patients due to the integrative assessment of 
physiological responses that can help distinguish subgroups of 
patients with unique disease characteristics (Oga et  al., 2003; 
Yoshimura et  al., 2014; Neder et  al., 2019), and may provide 
therapeutic utility beyond the severity of airflow obstruction.

In COPD, exercise limitation has classically been attributed 
to expiratory flow limitation causing an abnormal rise in lung 
volumes. In patients with greater static and/or dynamic 
hyperinflation, end-inspiratory lung volume (EILV) rises close 
to total lung capacity (TLC) during exercise and normal tidal 
volume (VT) expansion becomes mechanically constrained 
(Laveneziana et  al., 2011; O’Donnell et  al., 2012). The greater 
mechanical work associated with breathing at higher lung 
volumes and at a greater frequency increases inspiratory neural 
drive, while the ability to efficiently increase minute ventilation 
(VE) is reduced (O’Donnell et  al., 2006, 2012; Ofir et  al., 2008; 
Laveneziana et  al., 2011; Guenette et  al., 2014). The resulting 
imbalance ultimately leads to the sensation of dyspnea, early 
exercise cessation and an attenuated peak O2 consumption 
(VO2peak) (O’Donnell et  al., 2006, 2012; Ofir et  al., 2008; 
Laveneziana et  al., 2011; Guenette et  al., 2014).

It is intuitive that patients with COPD would be  primarily 
limited by the pulmonary system; however, considerable 
evidence supports that all systems in the O2 cascade integratively 
contribute to the body’s inability to meet metabolic demand 
(Maltais et  al., 2000; Puente-Maestu et  al., 2009; Broxterman 
et  al., 2020). Although rarely acknowledged, a number of 
patients with COPD reach age-predicted maximal heart rate 
(HRmax) with or without a ventilatory reserve during incremental 
CPET (Babb et  al., 1991; Plankeel et  al., 2005). In health, 
VO2peak is predominantly limited by the cardiovascular system; 
stroke volume plateaus at ~50%VO2peak and cardiac output 
cannot increase further once HRmax is reached (Astrand et al., 
1964; Higginbotham et  al., 1986; Plotnick et  al., 1986). As 
such, the observation that certain patients with COPD reach 
HRmax suggests that cardiac output and convective O2 delivery 
are maximized, indicating a significant cardiovascular 
contribution to exercise limitation. However, whether the 
integrative physiological exercise responses [e.g., lung volumes, 
exertional symptoms, VO2peak, and maximum workload (Wmax)] 
differ in patients who have different cardiopulmonary exercise 
limitations has not been studied. Thus, this study aimed to 
determine the distinct ventilatory, cardiovascular, and metabolic 
responses to incremental CPET in patients with COPD who 
presented with either a ventilatory, cardiovascular, or combined 
(reach both ventilatory and cardiovascular criteria) exercise 
limitation. We  hypothesized that the cardiovascular limited 

phenotype would have the least amount of static and dynamic 
hyperinflation, and thus the greatest VT expansion during 
exercise. Consequently, VO2peak and Wmax would be  higher in 
the cardiovascular phenotype compared to the ventilatory and 
combined phenotypes.

MATERIALS AND METHODS

Stable individuals with physician confirmed COPD [post 
bronchodilator forced expiratory volume in 1 s (FEV1)/forced 
vital capacity (FVC) < 0.7 and below the lower limit of normal 
(LLN); Culver et al., 2017] were included. Patients were excluded 
if they had recently experienced an exacerbation (<3 months), 
were taking a β-adrenoreceptor antagonist, had a concomitant 
condition that could influence exercise limitation (i.e., other 
respiratory condition, neuromuscular disease, diabetes, or 
hypoxemia), presented with a cardiovascular contraindication 
to exercise or did not achieve the predetermined exercise 
limitation criteria. Study participant flow is depicted in Figure 1. 
Testing was performed at the Universities of British Columbia 
(n = 55) and Calgary (n = 6), and identical protocols were used 
at both sites. Participants signed an informed consent form 
that had received approval from the University of British 
Columbia Clinical Research Ethics Board and the University 
of Calgary Conjoint Health Research Ethics Board. Additionally, 
34 incremental CPETs previously conducted to screen for 
exercise contraindications in prior studies were retrospectively 
analyzed and included. While the submaximal exercise responses 
have never been published, some of the peak exercise responses 
(n = 22/34) have been published elsewhere (Davidson et  al., 
2012; Gelinas et  al., 2017).

Pulmonary Function and Exercise Testing
Pulmonary function (6200-Autobox; SensorMedics, CA, 
United States) was assessed according to the American Thoracic 
Society (ATS)/European Respiratory Society guidelines (Wanger 
et al., 2005; Graham et al., 2017, 2019). An incremental CPET 
was performed to symptom limitation on an electrically braked 
cycle ergometer (Ergoselect 200, SensorMedics GmbH, Bitz, 
Germany) with expired breath-by-breath gas analysis [Vmax-
29C, SensorMedics, CA, United States (n = 89) or QuarkCPET, 
COSMED, Italy (n = 6)] according to ATS/American College 
of Chest Physicians (ACCP) guidelines (American Thoracic 
Society and American College of Chest Physicians, 2003). 
Following 5-min of stable resting ventilatory values, participants 
cycled unloaded for 1-min followed by an increase in 5–10 watts/
min until symptom limitation. Oxyhemoglobin saturation 
(SpO2; Radical 7, Maximo, CA, United  States) and heart rate 
(12-lead ECG; CardioSoftTM, GE-Healthcare, WI, 
United  States) were monitored continuously. Exertional 
symptoms (modified 0–10 Borg Scale; Borg, 1982) and 
inspiratory capacity (IC; Yan et al., 1997) were measured every 
2-min. VO2peak and VEpeak were selected as the highest 30-s 
average, while peak heart rate (HRpeak) was the highest recorded. 
The VE-VCO2 slope and intercept were determined by plotting 
30-s averages of VE vs. VCO2 following the first minute of 
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exercise until the respiratory compensation point, which was 
considered the lowest VE/VCO2 (nadir) before a consistent 
rise and confirmed by the modified Beaver plot (Wasserman 
et al., 1973; Beaver et al., 1986). If the respiratory compensation 
point could not be  identified, all data were included and the 
lowest VE/VCO2 was considered the nadir. Exercise limitation 
was determined according to ATS/ACCP recommendations 
whereby maximal ventilatory capacity (MVC) was estimated 
as 35*FEV1 and age-predicted HRmax was calculated as 220-age 
(American Thoracic Society and American College of Chest 
Physicians, 2003). Phenotypes were classified as ventilatory 
(VEpeak/MVC ≥ 85% or MVC-VEpeak ≤ 11 L/min, and HRpeak <  
90%pred), cardiovascular (VEpeak/MVC < 85% or MVC-VEpeak >  
11 L/min, and HRpeak ≥ 90%pred), or combined (VEpeak/
MVC ≥ 85% or MVC-VEpeak ≤ 11 L/min, and HRpeak ≥ 90%pred).

Statistical Analysis
Normality was assessed with the Shapiro–Wilk test. Parametric 
data were analyzed with a one-way ANOVA and Tukey HSD 

post hoc at rest, 40 W (isoload-1) and peak exercise. Differences 
between the cardiovascular and combined phenotypes at 60 W 
(isoload-2) were assessed with an independent t-test. Isoloads 
represented the highest workload achieved by ≥90% of patients 
in each phenotype. Appropriate non-parametric tests were 
performed as needed. Data are presented as mean ± SD. Utilizing 
data from our laboratory, it was anticipated that 55, 35, and 
10% of COPD patients would be  ventilatory, combined, or 
cardiovascular limited, respectively. Assuming similar 
proportions, a minimum difference of the change in IC (ΔIC) 
between groups of 200 ml, a SD of 300 ml, a β = 0.8, and a 
two-tailed α = 0.017 (to correct for multiple comparisons), 69 
participants was the minimum required.

RESULTS

Ninety-five patients were included (Figure  1). Phenotype 
characteristics are presented in Table  1. Forty-eight, 35, and 

FIGURE 1 | Study participant flow.
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17% of patients were classified with a ventilatory, combined, 
or cardiovascular phenotype, respectively. Age, body mass index, 
and smoking history were not different between phenotypes. 
The ventilatory phenotype included more males and reported 
a higher MRC dyspnea compared to both other phenotypes. 
FEV1/FVC and FEV1 were significantly different between 
phenotypes with a wide range within each: ventilatory (FEV1:23–
75%pred), combined (28–90%pred), and cardiovascular 
(68–113%pred; Figure  2). The cardiovascular phenotype had 
a lower residual volume (RV)/TLC ratio compared to both 
other phenotypes, while RV and functional residual capacity 
(FRC) were lower and IC/TLC was greater compared to the 
ventilatory phenotype.

Peak Exercise Responses
The cardiovascular phenotype reached a higher HRpeak and VEpeak 
compared to the ventilatory phenotype but not the combined 
phenotype (Table  2; Figures  3, 4). Patients with a cardiovascular 
phenotype had a larger VT (Figure  3), and lower end-expiratory 
lung volume (EELV) and EILV compared to both other phenotypes 
(Figure 5). IC was larger in the cardiovascular phenotype (Figure 5); 
however, ΔIC was not different between phenotypes (−0.33 ± 0.43 L, 
−0.51 ± 0.26 L, and −0.54 ± 0.33 L in cardiovascular, combined, and 
ventilatory, respectively, p = 0.09). Inspiratory reserve volume (IRV), 
VT/IC, O2pulse, and exertional symptoms were not different 
between phenotypes (Table  2; Figures  4, 5). Workload, VO2, 
VCO2, SpO2, and respiratory exchange ratio (RER) were similar 

TABLE 1 | Phenotype characteristics and pulmonary function.

Variable Ventilatory (n = 46) Combined (n = 33) Cardiovascular (n = 16)
ANOVA  
 p-value

Males:females 27:19 17:16 8:8 0.75a

Age (years) 68 ± 7 71 ± 7 68 ± 8 0.24
Height (m) 1.69 ± 0.09 1.68 ± 0.11 1.70 ± 0.09 0.77
Body mass index (kg/m2) 27.1 ± 5.9 27.5 ± 3.6 26.3 ± 3.4 0.61
Smoking history (pk yr) 38 ± 23 33 ± 19 26 ± 18 0.11
MRC dyspnea score 3 ± 1*† 2 ± 1 2 ± 1 <0.01
FEV1 (L) 1.34 ± 0.45*† 1.66 ± 0.45‡ 2.43 ± 0.59 <0.01
FEV1 (% pred) 49 ± 13*† 64 ± 15‡ 88 ± 14 <0.01
GOLD stage (%) (I/II/III-IV) 0/47/54 18/61/21 62/38/0 <0.01a

FVC (L) 3.42 ± 0.97 3.53 ± 0.94 4.02 ± 0.78 0.09
FVC (% pred) 93 ± 16* 100 ± 14‡ 113 ± 13 <0.01
FEV1/FVC (%) 40 ± 11*† 49 ± 11‡ 60 ± 7 <0.01
VC (L) 3.33 ± 0.91* 3.33 ± 0.78‡ 4.05 ± 0.81 0.01
VC (% pred) 90 ± 17* 97 ± 14‡ 113 ± 13 <0.01
TLC (L) 6.85 ± 1.71 6.32 ± 1.39 6.54 ± 1.00 0.35
TLC (% pred) 108 ± 17 105 ± 13 107 ± 14 0.64
IC/TLC (%) 36 ± 10* 40 ± 11 45 ± 9 <0.01
RV (L) 3.52 ± 1.11* 2.98 ± 0.92 2.48 ± 0.50 <0.01
RV (% pred) 154 ± 41* 133 ± 32 112 ± 26 <0.01
RV/TLC (%) 51 ± 8* 47 ± 7‡ 38 ± 7 <0.01
FRC (L) 4.65 ± 1.33* 4.03 ± 1.21 3.66 ± 0.75 0.01
FRC (% pred) 147 ± 32* 132 ± 29 117 ± 24 <0.01
DLCO (ml/mmHg/min) 14.5 ± 4.9 16.1 ± 5.2 18.2 ± 6.4 0.11
DLCO (% pred) 63 ± 18* 72 ± 19 79 ± 21 <0.01
DLCO/VA (ml/mmHg/min) 3.25 ± 0.91 3.60 ± 0.84 3.43 ± 0.81 0.23
DLCO/VA (% pred) 79 ± 22 86 ± 19 82 ± 19 0.27

 Medications [n (%)]

SABA 28 (61) 18 (55) 7 (44)
Anticholinergic 28 (61) 15 (45) 4 (25)
LABA/LAMA 12 (26) 1 (3) 0 (0)
ICS/LABA 21 (46) 16 (48) 4 (25)
Inhaled corticosteroid 6 (13) 3 (9) 1 (6)
Statin 10 (22) 3 (9) 6 (4)
ARBs 7 (15) 4 (12) 4 (25)
ACE inhibitor 5 (11) 6 (18) 0 (0)
Diuretic 6 (13) 6 (18) 0 (0)

MRC dyspnea score, measured with the medical research council breathlessness scale; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; VC, vital capacity; TLC, 
total lung capacity; RV, residual volume; FRC, functional residual capacity; DLCO, diffusion capacity of the lungs for carbon monoxide; DLCO/VA, diffusion capacity of the lungs for 
carbon monoxide corrected for alveolar ventilation. SABA, short-acting β2-adrenergic receptor agonist; LABA/LAMA, long-acting β2-adrenergic receptor agonist and long-acting 
muscarinic antagonist; ICS/LABA, inhaled corticosteroid and long-acting β2-adrenergic receptor agonist; ARBs, angiotensin II receptor blocker; and ACE inhibitor, angiotensin-
converting enzyme inhibitor. 
aValue of p determined from Chi-Square test.
*Between phenotype comparisons: p = 0.05, ventilatory vs. cardiovascular.
†Between phenotype comparisons: p = 0.05, ventilatory vs. combined.
‡Between phenotype comparisons: p = 0.05, combined vs. cardiovascular.
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between the cardiovascular and combined phenotypes but were 
lower in the ventilatory phenotype (Table  2).

Submaximal Exercise Responses
Absolute VE, VT, and breathing frequency were not different 
between phenotypes at isoloads (Figure  3). However, EELV 
was lower and IRV was larger in the cardiovascular phenotype 
compared to both other phenotypes at isoload-1 and the 
combined phenotype at isoload-2 (Figure  5). EILV was lower 
in the cardiovascular phenotype vs. ventilatory phenotype at 
isoload-1 and vs. the combined phenotype at isoload-2 (Figure 5). 
The cardiovascular phenotype had a larger IC at both isoloads 
(Figure  5) and a smaller ΔIC at isoload-1 (p = 0.02) and 
isoload-2 (p = 0.056) compared to both other phenotypes. VT/IC 
was lower in the cardiovascular phenotype at isoload-1 and 
isoload-2 compared to the ventilatory (p = 0.01) and combined 
(p = 0.02) phenotypes, respectively. Heart rate was lower at 
isoload-1  in the ventilatory vs. combined phenotype; however, 
O2pulse was not different between phenotypes (Figure  4). 
VE/VCO2 nadir was higher in the ventilatory phenotype than 

both other phenotypes (Table 2). VO2 and exertional symptoms 
were not statistically different between phenotypes.

DISCUSSION

This study is the first to provide empirical evidence that three 
distinct exercise limitation phenotypes can be  identified in COPD 
that are associated with different physiological incremental CPET 
responses, not solely dependent upon airflow limitation severity. 
In partial support of our hypothesis, patients with a cardiovascular 
phenotype had the least amount of static hyperinflation and larger 
IC throughout exercise compared to both other phenotypes. Patients 
with a cardiovascular phenotype also had a higher VO2peak and 
Wmax compared to the ventilatory phenotype but were similar to 
the combined phenotype.

Lung Volume Responses to Exercise
Compared to the ventilatory phenotype, the cardiovascular 
phenotype had less static hyperinflation which allowed a greater 

FIGURE 2 | The distribution of airflow limitation severity in patients with chronic obstructive pulmonary disease (COPD) who have a ventilatory, combined, or 
cardiovascular exercise limitation phenotype. Phenotype quadrants are differentiated by a dash horizontal and vertical line representing the classification criteria for a 
ventilatory limitation (VEpeak/MVC ≥ 85%) and cardiovascular limitation (HRpeak ≥ 90%pred), respectively. GOLD severity is represented by the symbols to show the 
range of airflow limitation severity within each phenotype. GOLD I (mild airflow limitation) is represented by triangles. GOLD II (moderate airflow limitation) is 
represented by squares. GOLD III–IV (severe to very severe airflow limitation) is represented by circles.
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reserve for VT expansion resulting in a greater peak VT and 
VE. Additionally, EELV remained lower in the cardiovascular 
phenotype due to slower dynamic hyperinflation as IC was 
reduced by ~330 ml over ~100 W compared to ~540 ml over 
~70 W in the ventilatory phenotype. In COPD, it has been 
suggested that a critical inspiratory constraint to VT expansion 
occurs when IRV reaches 500–600 ml, EILV ≥ 90%TLC and VT/IC 
~70% (O’Donnell et al., 2006, 2012; Ofir et al., 2008; Laveneziana 
et al., 2011; Guenette et al., 2014). In the cardiovascular phenotype, 
IRV was reduced to ~650 ml, EILV reached ~90%TLC and VT/IC 
was ~77% at peak exercise. However, when compared to recently 
published age-and-sex-matched normative CPET reference 
equations (Lewthwaite et  al., 2020), IRV was >LLN and EILV 
(%TLC) and VT/IC were below the upper limit of normal (ULN) 
in 14/16 patients with a cardiovascular phenotype. Additionally, 
peak IC and VT were >LLN in 100% of the cardiovascular 
phenotype demonstrating normal VT expansion. The cardiovascular 
phenotype also appeared to exhibit a relatively normal 
hyperventilatory response after the respiratory compensation 

point as VE/VCO2 significantly increased from nadir to peak 
(33 ± 5 vs. 35 ± 5, p < 0.001) and PETCO2 significantly decreased 
(36.6 ± 5.1 mmHg vs. 34.4 ± 5.2 mmHg, p < 0.001), while peak RER 
was >1.10 (Inbar et  al., 1994; Neder et  al., 2001). These findings 
taken together with the ability to reach ≥90%pred HRmax, while 
maintaining a significant ventilatory reserve at VO2peak, demonstrate 
that the cardiovascular phenotype essentially exhibited a normal 
ventilatory and cardiovascular exercise response similar to healthy 
aging. As such, while minor alterations in pulmonary mechanics 
likely contribute to exercise limitation, they do not appear to 
be  the primary limitation in the cardiovascular phenotype.

In the ventilatory phenotype, greater static and dynamic 
hyperinflation resulted in VT constraint and reduced peak VT 
and VE as EILV rose to ~94%TLC and IRV reached ~420 ml 
at a significantly lower Wmax compared to both other phenotypes. 
Breathing at higher lung volumes increases the elastic work 
of breathing (Eves et  al., 2006) and creates an imbalance 
between the inspiratory neural drive to breathe and ability to 
efficiently increase VE, resulting in intolerable dyspnea and 

TABLE 2 | Incremental cardiopulmonary exercise testing (CPET) responses between phenotypes.

Variable Ventilatory (n = 46) Combined (n = 33) Cardiovascular (n = 16) ANOVA p-value

VEpeak (L/min) 45.3 ± 15.5*† 54.0 ± 15.4 60.8 ± 11.5 <0.01
VEpeak (%MVC) 101 ± 15* 98 ± 12‡ 73 ± 10 <0.01
Ventilatory reserve (L/min) −0.2 ± 5.8* +1.3 ± 5.9‡ +24.4 ± 15.8 <0.01
HRpeak (beats/min) 120 ± 12*† 146 ± 11 147 ± 10 <0.01
HRpeak (% pred) 79 ± 7*† 98 ± 7 97 ± 6 <0.01
Cardiac reserve (beats/min) 32 ± 11*† 3 ± 10 5 ± 9 <0.01
O2pulse (ml/beat) 9.9 ± 3.1 9.8 ± 2.7 10.7 ± 2.6 0.57
Maximum workload (watts) 72 ± 27*† 91 ± 30 103 ± 34 <0.01
VO2peak (ml/kg/min) 15.2 ± 3.3*† 18.3 ± 4.3 20.6 ± 4.0 <0.01
VO2peak (% pred)b 63 ± 19*† 86 ± 26 87 ± 17 <0.01
VO2peak (L/min) 1.19 ± 0.40*† 1.43 ± 0.40 1.57 ± 0.40 <0.01
VCO2 (L/min) 1.22 ± 0.46*† 1.53 ± 0.48 1.77 ± 0.45 <0.01
RER 1.02 ± 0.10*† 1.07 ± 0.09 1.13 ± 0.10 <0.01
VE/VCO2 peak 38 ± 7 36 ± 5 35 ± 5 0.08
VE/VCO2 nadir 38 ± 7*† 34 ± 5 33 ± 5 <0.01
VE-VCO2 slope 30 ± 6 27 ± 5 28 ± 4 0.13
VE-VCO2 intercept 8 ± 4 9 ± 3 7 ± 2 0.17
PETO2 (mmHg) 102.9 ± 6.8* 106.2 ± 6.5 109.9 ± 6.2 <0.01
PETCO2 (mmHg) 35.3 ± 4.3 35.3 ± 4.4 34.4 ± 5.2 0.79
VD/VT 0.28 ± 0.08*† 0.22 ± 0.06 0.18 ± 0.04 <0.01
EILV (L) 6.25 ± 1.76 5.84 ± 1.40 5.89 ± 0.88 0.40
EILV (%TLC) 94 ± 3* 93 ± 4‡ 90 ± 5 <0.01
EELV (L) 4.88 ± 1.58 4.29 ± 1.36 3.93 ± 0.77 0.04
EELV (%TLC) 72 ± 9*† 68 ± 9‡ 60 ± 8 <0.01
IRV (L) 0.42 ± 0.23 0.41 ± 0.22 0.65 ± 0.40 0.04
VT/IC (%) 77 ± 9 79 ± 9 77 ± 10 0.49
SpO2 (%) 92 ± 4*† 95 ± 4 96 ± 2 <0.01
ΔSpO2 (%) −3 ± 3* −2 ± 3 −1 ± 2 0.01
Dyspnea (Borg 0–10 scale) 5.3 ± 2.2 5.5 ± 1.9 5.1 ± 2.8 0.76
Leg fatigue (Borg 0–10 scale) 5.4 ± 2.5 5.9 ± 2.5 5.9 ± 2.7 0.69
Dyspnea/LF/Both (%) 39/46/15 42/42/15 31/44/25 0.89a

VEpeak, peak minute ventilation; MVC, estimated maximum ventilatory capacity; HRpeak, peak heart rate; VO2peak, peak oxygen consumption; VCO2, volume of exhaled carbon dioxide; 
RER, respiratory exchange ratio; VE/VCO2, ratio of minute ventilation to volume of exhaled carbon dioxide; PETO2, partial pressure of end-tidal oxygen; PETCO2, partial pressure of 
end-tidal carbon dioxide; VD/VT, estimated ratio of dead space ventilation to tidal volume obtained in ventilatory n = 33, combined n = 26, and cardiovascular n = 12; EILV, end-
inspiratory lung volume; EELV, end-expiratory lung volume; VT/IC ratio of tidal volume to inspiratory capacity; SpO2, peripheral oxyhemoglobin saturation; ΔSpO2, change in peripheral 
oxyhemoglobin saturation from rest to peak exercise; LF, leg fatigue; and Both, both dyspnea and leg fatigue. 
aValue of p determined from Chi-Square test.
bCalculated using the FRIEND database (de Souza e Silva et al., 2018).
*Between phenotype comparisons: p = 0.05, ventilatory vs. cardiovascular.
†Between phenotype comparisons: p = 0.05, ventilatory vs. combined.
‡Between phenotype comparisons: p = 0.05, combined vs. cardiovascular.
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exercise cessation (O’Donnell et  al., 2006, 2012; Ofir et  al., 
2008; Laveneziana et  al., 2011; Guenette et  al., 2014). At 
isoload-1, EELV, EILV, and VT/IC were lower and IRV was 
~175% larger in the cardiovascular vs. ventilatory phenotype. 
In the cardiovascular phenotype, breathing at lower lung volumes 

maintained a more efficient breathing pattern that likely 
contributed to the lower dyspnea at isoload-1 (p = 0.03, ANOVA 
main effect) enabling the cardiovascular phenotype to reach 
a higher Wmax. In the combined phenotype, EELV was also 
lower at isoload-1 compared to the ventilatory phenotype. As 

A B

C D

FIGURE 3 | Phenotype responses in (A) absolute ventilation, (B) relative ventilation (expressed as percentage of estimated MVC), (C) tidal volume, and 
(D) breathing frequency during an incremental CPET. Between phenotype comparisons: *p = 0.05, ventilatory vs. cardiovascular. †p = 0.05, ventilatory vs. combined. 
‡p = 0.05, combined vs. cardiovascular.

A B C

FIGURE 4 | Phenotype responses in (A) absolute heart rate, (B) relative heart rate (expressed as a percentage of estimated maximal heart rate), and (C) O2pulse 
during an incremental CPET. Between phenotype comparisons: *p = 0.05, ventilatory vs. cardiovascular.
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such, the combined phenotype reached both a ventilatory and 
cardiovascular limitation at peak exercise, and a higher VO2peak, 
Wmax, and VEpeak compared to the ventilatory phenotype.

While it is acknowledged that, on average, the cardiovascular 
phenotype had milder airflow obstruction compared to both other 
phenotypes, the range in FEV1 across phenotypes supports that 
phenotype classification is not solely dependent upon airflow 
limitation severity. Patients with moderate obstruction were scattered 
across all three phenotypes (Figure  2) and accounted for ~40% 
of the cardiovascular phenotype (FEV1:74 ± 5%pred) indicating 
that a subset of patients had similar physiological exercise responses 
to healthy aging despite having moderate airflow obstruction. 
Additionally, ~20% of the combined phenotype presented with 
severe obstruction (FEV1:42 ± 8%pred) demonstrating that VO2peak 
was limited by the attainment of peak cardiac output and convective 
O2 delivery in addition to abnormal ventilatory mechanics.

Cardiovascular Exercise Responses
In health, VO2peak is predominantly limited by the cardiovascular 
system due to a finite cardiac output once HRmax is reached 
(Astrand et al., 1964; Higginbotham et al., 1986; Plotnick et al., 

1986). In the current study, ~50% of patients reached 
HRpeak ≥ 90%pred, supporting that peak cardiac output and 
convective O2 delivery to the skeletal muscle contribute to 
exercise limitation in a large percentage of COPD patients. 
Only one previous study has categorized exercise limitations 
in COPD to better understand the variable adaptations gained 
following pulmonary rehabilitation (Plankeel et  al., 2005). 
Utilizing slightly different criteria (i.e., HRpeak ≥ 80%pred), a 
similar percentage of patients (56%) were reported to achieve 
a cardiovascular limitation with or without a ventilatory limitation 
(Plankeel et al., 2005). Acknowledging the limitations of O2pulse 
as a surrogate of stroke volume (Whipp et  al., 1996), peak 
O2pulse was greater than the LLN (Lewthwaite et  al., 2020) 
in 40/49 patients who reached HRpeak ≥ 90%pred, suggesting 
that the majority of these patients had a normal stroke volume 
response. Although the O2pulse response was not statistically 
different between phenotypes, peak cardiac output would 
be  expected to be  significantly greater in the cardiovascular 
and combined phenotypes due to reaching a higher HRpeak, 
which may partly explain the higher VO2peak achieved compared 
to the ventilatory phenotype.

A B

C D

FIGURE 5 | Phenotype responses in (A) relative end-expiratory lung volume (EELV) and end-inspiratory lung volume (EILV), (B) inspiratory capacity, (C) inspiratory 
reserve volume, and (D) the relationship between dyspnea and inspiratory reserve volume during an incremental CPET. Between phenotype comparisons: *p = 0.05, 
ventilatory vs. cardiovascular. †p = 0.05, ventilatory vs. combined. ‡p = 0.05, combined vs. cardiovascular.
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Metabolic Exercise Responses
Fifty-six percentage of the cardiovascular and 48% of the 
combined phenotype had a normal VO2peak (i.e., VO2peak > 84% 
of age-and sex-predicted; American Thoracic Society and 
American College of Chest Physicians, 2003) demonstrating 
preserved cardiopulmonary fitness in certain individuals. 
Interestingly, ~25% of the cardiovascular and combined 
phenotypes reached a VO2peak ≥ 100%pred. Given that the 
cardiovascular phenotype had a relatively normal ventilatory 
and peak O2pulse response and that the VO2-workrate relationship 
was normal (i.e., >8.5 ml/min/watt; Hansen et al., 1988) in 15/16 
patients, it is likely that the low VO2peak reported in the remaining 
44% of patients with a cardiovascular phenotype was due to 
deconditioning. In contrast, 87% of the ventilatory phenotype 
achieved a VO2peak < 84%pred. VE/VCO2 nadir was highest in 
the ventilatory phenotype as exercise cessation occurred at a 
lower Wmax (often before the respiratory compensation point) 
due to VT constraint and greater dead-space. Despite differences 
in dynamic hyperinflation at isoloads and VT constraint at peak 
exercise, the VE-VCO2 slope and intercept did not differ between 
phenotypes demonstrating that the ventilatory response to VCO2 
and the CO2 set-point were similar and independent of exercise 
limitation phenotype. In COPD, it has been suggested that an 
EILV ≥ 90%TLC and a VE/VCO2 nadir >34 more strongly predicts 
reductions in VO2peak compared to ventilatory reserve (Neder 
et  al., 2019). In the current study cohort, 82% of all patients 
reached an EILV ≥ 90%TLC and a VE/VCO2 nadir >34 varied 
between phenotypes (67% in ventilatory, 39% in combined, 
and 50% in cardiovascular). Regardless, VO2peak was significantly 
higher in the cardiovascular and combined phenotypes vs. the 
ventilatory phenotype. Therefore, classifying patients phenotypically 
may be  a more appropriate method to predict reductions in 
an integrative measure like VO2peak. Furthermore, the identification 
of a ventilatory phenotype may be  of prognostic importance 
as VO2peak was below normative values in the majority of these 
patients (Cote et  al., 2008).

Skeletal Muscle Contributions
It must be  acknowledged that all systems in the O2 cascade 
integratively contribute to the body’s inability to meet metabolic 
demand even in patients with advanced lung disease (Maltais 
et  al., 2000; Puente-Maestu et  al., 2009; Broxterman et  al., 
2020). In COPD, alterations in skeletal muscle structure and 
function contribute to exercise limitation (Maltais et  al., 1996, 
2000; Saey et  al., 2005; Puente-Maestu et  al., 2009). In many 
patients, skeletal muscle deconditioning and/or dysfunction 
leads to a greater reliance on anaerobic glycolysis resulting in 
increased H+ and CO2 production above the anaerobic threshold 
(Maltais et  al., 1996; Saey et  al., 2005). Increased drive to 
breathe from chemoreceptor stimulation in addition to type 
III/IV afferents (Gagnon et  al., 2012; Bruce et  al., 2016) could 
accelerate dynamic hyperinflation and VT constraint leading 
to a ventilatory limitation at a lower workload, independent 
of airflow limitation severity. However, with maintained or 
improved skeletal muscle quality ventilatory drive is likely 
reduced allowing heart rate to rise closer to maximal values. 

Therefore, the ability for certain patients to achieve age-and-
sex-predicted VO2peak may be  associated with preserved or 
enhanced skeletal muscle quality.

Clinical Relevance
Although the submaximal exercise responses varied between 
the three exercise limitation phenotypes, exercise responses 
ranged even within phenotype. This is not surprising as many 
groups have demonstrated that all steps within the O2 cascade 
contribute to VO2peak in health and also in individuals with 
COPD (Maltais et al., 2000; Richardson et al., 2004; Broxterman 
et  al., 2020). As such, in patients who are predominantly 
ventilatory limited, cardiac output and systemic O2 delivery 
still contribute to exercise limitation albeit to a smaller degree 
than abnormal lung mechanics and tidal volume constraint. 
Similarly, patients with a predominantly cardiovascular limitation 
are primarily limited by the obtainment of cardiac output and 
systemic O2 delivery but also have a smaller respiratory 
contribution. Therefore, exercise limitations in COPD likely 
lie on a continuum with the ventilatory and cardiovascular 
phenotypes positioned at either end of the continuum separated 
by the combined phenotype. The transitions between phenotypes 
demarcate where the pulmonary and/or cardiovascular systems 
significantly limit VO2peak.

As incremental CPET responses differ between phenotypes, 
the use of a generic exercise prescription even if individualized 
(i.e., 60%Wmax) will result in different durations (and thus 
volume) of exercise that can be  achieved due to the different 
ventilatory, cardiovascular, and metabolic responses associated 
with each exercise limitation phenotype. This may explain 
previous findings in which patient with COPD who demonstrated 
a cardiovascular limitation achieved the greatest improvement 
in VO2peak following pulmonary rehabilitation compared to their 
ventilatory limited counterparts (Plankeel et  al., 2005). 
Additionally, in the pulmonary rehabilitation setting it may 
be assumed that the majority of patients with moderate airflow 
obstruction are primarily ventilatory limited. However, our data 
demonstrates that patients with moderate airflow limitation 
represent a significant portion of all three phenotypes (Figure 2). 
By identifying the patient-specific exercise limitation phenotype, 
practitioners can prescribe a more appropriate exercise 
prescription for each patient to target the ventilatory and/or 
cardiovascular limitation to exercise. With this tailored approach, 
more patients are likely to gain important physiological 
adaptations and improvements in clinical outcomes thus increasing 
the efficacy of pulmonary rehabilitation for patients with COPD.

Study Considerations
The estimates for predicting MVC and HRmax have a number of 
limitations that have been previously documented (Johnson et al., 
1999; Tanaka et  al., 2001). However, alternative techniques (e.g., 
maximum voluntary ventilation maneuver or VECAP method; 
Johnson et  al., 1999) are either inaccurate in COPD or complex 
to perform and interpret clinically. Additionally, more recent 
approaches for determining critical inspiratory constraint (i.e., IRV 
~500–600 ml, EILV ≥ 90%TLC, and VT/IC ~70%; Laveneziana et al., 
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2011; O’Donnell et al., 2012) may not distinguish between different 
exercise limitation phenotypes as these values were similar across 
groups. As such, while predicting MVC and HRmax may not 
be completely optimal, these measures are routinely used in clinical 
practice to objectively identify adequate or abnormal cardiovascular 
and breathing reserves as per current ATS/ACCP recommendations 
(American Thoracic Society and American College of Chest 
Physicians, 2003). Therefore, we believe that using these estimates 
still provides considerable utility to identify important phenotypes 
of exercise limitation in COPD. Exercise responses may have 
differed had a treadmill been used due to the greater associated 
metabolic cost and ventilatory demand (Palange et  al., 2000). 
While this would not affect the identification of patients with a 
ventilatory phenotype, a small percentage of the cardiovascular 
phenotype may change to a combined phenotype. However, a 
number of patients with COPD would still maintain a considerable 
ventilatory reserve and therefore still present with a primary 
cardiovascular limitation to exercise even on a treadmill.

CONCLUSION

Three distinct exercise limitation phenotypes were identified in 
COPD that were associated with different physiological incremental 
CPET responses, not solely dependent upon FEV1. The 
cardiovascular system significantly contributed to exercise limitation 
in ~50% of patients. The relative contribution of the pulmonary 
and/or cardiovascular systems to VO2peak (and thus phenotype) 
is likely mediated by skeletal muscle function. Classifying patients 
phenotypically may be  prognostically important and aid in 
optimizing exercise prescription for rehabilitative purposes.
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