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Erythrocytes represent at least 60% of all cells in the human body. During circulation, they 
experience a huge variety of physical and chemical stimulations, such as pressure, shear 
stress, hormones or osmolarity changes. These signals are translated into cellular 
responses through ion channels that modulate erythrocyte function. Ion channels in 
erythrocytes are only recently recognized as utmost important players in physiology and 
pathophysiology. Despite this awareness, their signaling, interactions and concerted 
regulation, such as the generation and effects of “pseudo action potentials”, remain elusive. 
We  propose a systematic, conjoined approach using molecular biology, in vitro 
erythropoiesis, state-of-the-art electrophysiological techniques, and channelopathy patient 
samples to decipher the role of ion channel functions in health and disease. We need to 
overcome challenges such as the heterogeneity of the cell population (120 days lifespan 
without protein renewal) or the access to large cohorts of patients. Thereto we will use 
genetic manipulation of progenitors, cell differentiation into erythrocytes, and statistically 
efficient electrophysiological recordings of ion channel activity.

Keywords: erythrocyte, erythropoiesis, patch-clamp, ion channel, electrophysiology, channelopathy, genotype-
phenotype correlation, pseudo action potential

INTRODUCTION

Ion channels are crucial to feel, to see, to hear, to move, and to think. In other words, 
they are essential to live. They are important membrane transporters that have the singular 
capacity to generate transmembrane currents, and to convey signals that rapidly modify the 
properties of a cell on a time scale of the order of μ-seconds. Their function is evident in 
sensory organs, including the skin, and excitable cells such as neurons, where they are the 
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core of signal transduction. Remarkably, evolution has conserved 
ion channels in all cell types, also in red blood cells (RBCs). 
This may not be surprising because ion channels are important 
to sense shear stress, so called mechano-sensors. RBCs have 
to “feel” shear stress when they pass the capillary bed in 
the tissues, and during quality control when they pass the 
spleen and have to slide through slits between endothelial 
cells. The 2021 Nobel prize for medicine or physiology placed 
the mechano-sensor Piezo1, a nonspecific cation channel, in 
the spotlights.

Although RBCs were among the first cell types used to 
study ion channels with the patch-clamp technique (Hamill, 
1981, 1983), researcher quickly lost interest in the topic, i.e., 
after a number of initial publications in the first half of the 
1980s, for 15 years almost no work about RBC ion channels 
was published. Indeed, especially human RBC presented a 
number of bottlenecks such as the limited copy number of 
channels per cell (Grygorczyk et  al., 1984; Egée et  al., 2002; 
Bennekou et  al., 2003; Kaestner, 2015) and the impossibility 
to experimentally manipulate them genetically which made 
their study in this aspect complex and difficult. Therefore, 
most of the information available today is scattered, contradictory 
and does not permit the reconstruction of the whole jigsaw 
puzzle that would reveal the role of ion channels in the function 
of the RBCs. This holds true, especially in the context that 
ion channels in RBCs are still being discovered, like the transient 
receptor potential channel TRPV2 (Belkacemi et al., 2021; Egee 
and Kaestner, 2021) suggesting that further ion channels can 
be  discovered, or new electrophysiological effects like “pseudo 
action potentials,” which are found in RBCs (Jansen et  al., 
2021) and awaiting their full physiological explanation.

FUNCTIONAL EVIDENCE FOR ION 
CHANNELS IN RBCs

There is a growing body of evidence that ion channels play an 
essential role in RBCs from their terminal differentiation in the 
bone marrow (Moura et  al., 2019; Caulier et  al., 2020), during 
their enucleation, and during the subsequent 120 days that they 
circulate in the bloodstream (Moras et al., 2017) and pass through 
capillaries sometimes much smaller than their own diameters 
(Faucherre et  al., 2013; Cahalan et  al., 2015; Danielczok et  al., 
2017). Mature RBCs cannot renew their proteins. Therefore, ion 
channels have to function or gradually lose their function within 
the 120 days (in humans) until the cells are removed from the 
circulation in the spleen (Deplaine et  al., 2011). This generates 
a tremendous functional heterogeneity (Wang et al., 2013; Bogdanova 
et  al., 2020).

In RBCs, activation of Piezo1 results in Ca2+ influx, which 
activates the Gárdos channel to release K+ from the cells and 
subsequently results in export of H2O. This rapid, transient 
process facilitates the cells to move through narrow passages. 
Congenital mutations in Piezo1 and the Gárdos channel were 
found in hemolytic anemia and unexpected iron overload, 
underscoring the importance of this ion channel interaction 
in RBCs. The role of most other ion channels remains unexplored.

TECHNOLOGICAL PROGRESS AND 
ADVANCEMENTS OF THE RECENT 
YEARS

Limitations and technological bottlenecks that have hitherto 
hindered the study of ion channels in RBCs are just about 
to be  overcome: RBCs can be  analyzed by automated high 
throughput patch-clamp robots (Rotordam et al., 2019), in vitro 
erythropoiesis is mastered up to mature erythrocytes (Heshusius 
et al., 2019) and available for systematic genetic screens (Verhagen 
et  al., 2021), and significant cohorts of genotyped/phenotyped 
patients with channelopathies are available.

Transcriptomic (An et  al., 2014) and proteomic (Gautier 
et  al., 2016; Karayel et  al., 2020) studies, clearly show that 
ion channels are not only differentially expressed upon 
differentiation but also selectively sorted during the enucleation 
step before the release of reticulocytes within the bloodstream. 
RBC production is qualitatively impaired in hereditary hemolytic 
anemia, linked directly or indirectly to ion channel defects 
(Moura et  al., 2019; Caulier et  al., 2020). This suggests that 
ion channels are critical regulators during the 2-week period 
required for complete maturation of a precursor culture to 
enucleated, hemoglobinized RBCs and for their function in 
the circulation. An accurate knowledge of the role of these 
channels is paramount for our understanding of erythropoiesis, 
especially as no less than 80 genes that are directly linked to 
membrane transport are expressed during erythropoiesis, 
including at least a dozen ion channels (Karayel et  al., 2020). 
Tackling this knowledge gap will result in a major advance 
in the understanding and personalized management of rare 
inherited diseases but also in the role played by transport 
defects in much more common diseases such as sickle cell disease.

RBC ION CHANNELS IN MOLECULAR 
SIGNALING

Enucleated RBCs have evolved to optimize the transport of 
O2 and CO2. These cells are unique as they have a membrane 
potential dictated by anions (in contrast to almost all other 
eukaryotic cells) to ensure optimal CO2 transport (VM = −12 mV; 
Thomas et  al., 2011). Consequently, RBCs must maintain their 
cationic permeability (Na+, K+, and Ca2+) at the lowest possible 
level to survive. Having a permeability tightly under control 
can be seen as a major advantage in terms of signaling because 
the simple flux of a few cations generates a variation in 
membrane potential equivalent to the variations recorded during 
a neuronal action potential (Dyrda et  al., 2010; Jansen et  al., 
2021). The role of these “pseudo action potentials” occurring 
in RBCs is completely unknown. Importantly, ion channel 
activity becomes a threat if the fine-tuned equilibrium is 
disrupted by a genetic defect (Lew et  al., 2002; Bogdanova 
et  al., 2013; Rapetti-Mauss et  al., 2017) or any other external 
signal (Li et  al., 1996; Kaestner et  al., 2004; Föller et  al., 2008; 
Bogdanova et  al., 2013; Wang et  al., 2021). The dissipative 
power of the ion channels will immediately compromise the 
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survival of the RBCs by altering their volume, shape, and 
deformability, which are the hallmarks of the longevity of RBCs 
within the circulation. The last decade has been marked by 
the discovery of several causative genes for hereditary RBC 
diseases (PIEZO1, Zarychanski et al., 2012, KCNN4, Glogowska 
et  al., 2015; Rapetti-Mauss et  al., 2015, and RhAG, Stewart 
et  al., 2011). Their mutation alters the ionic balance directly 
(Rapetti-Mauss et  al., 2015; Fermo et  al., 2017, 2020; Hertz 
et  al., 2017; Filser et  al., 2020; Pérès et  al., 2021) or indirectly 
as the result of deregulated ion channel activity (Barneaud-
Rocca et  al., 2011; Flatt et  al., 2011). It has been hypothesized 
that incidence of this group of disorders may be underestimated 
and could affect one in 8,000 adults (Kaufman et  al., 2018).

REQUIRED TECHNOLOGICAL AND 
ORGANIZATIONAL INNOVATIONS

To obtain a better and more complete picture of the role of 
ion channels in RBCs, further efforts are required. Here, 
we  propose two complementary concepts that need to 
be combined: (I) high throughput measurement of ion channel 
activity and membrane potential, and (II) the in vitro culture 
and maturation of genetically manipulated RBCs.

I: Automated patch-clamp technology became available to 
scientific community within the past 10–15 years. Due to the 
intrinsic properties of RBCs to pass small constrictions, e.g., 
capillaries or slits in the spleen, make them difficult to patch, 
i.e., seal them tightly on a small artificial opening (giga-seal 
formation). What is well described and required a lot of 
initial research in manual patch-clamp (Kaestner, 2011), holds 
also true for automated approaches, although, the aperture 
geometry changed from micropipettes to mainly planar chips 
with a hole. Therefore protocols to measure ion conductance 
and membrane potential of RBCs in automated high throughput 
patch-clamp robots need the active collaboration of the 
manufacturers to optimize chip geometries for RBCs (Rotordam 
et  al., 2019). However, such a patch-clamp robot is to our 
best knowledge not available in any hematological laboratory 
– worldwide, i.e., the technology is in principle available 
but cannot be  used for regular RBC research. Part of the 
problem is the high costs of initial required investment, the 
still unique qualification required to run the machines and 
in this context the putative operating grade, which might 
not be high enough to justify such an investment. Furthermore, 
hard core electrophysiology and hard core cell biology 
laboratories are often spatially separated (different Universities, 
even different countries). Shipment of RBCs is problematic 
and likely to result in compromised measurements (Makhro 
et  al., 2016; Hertz et  al., 2017; Rotordam et  al., 2019). 
Therefore, we  propose a mobile concept of such a patch-
clamp robot. Such an implementation is not just placing a 
machine in a van, it is more like a small version of a space-lab 
module with a high integration level between the vehicle 
and the delicate instrument as well as the associated equipment 
to work autonomously from an independent power supply 
to sample preparation equipment. Nevertheless, Nan]i[on 

Technologies regards it a feasible concept (Nils Fertig and 
Michael George, personal communication). In the following, 
we  refer to this mobile patch-clamp robot concept as the 
“PatchC]l[amper.”

II: Furthermore, a systematic approach of RBC investigations 
combining functional electrophysiology with a genetic approach 
based on an extended scale patient screening as well as accompanying 
in vitro erythropoiesis is necessary. This would allow to implement 
various concepts of genetic manipulations to functionalize RBCs 
and to manipulate their properties for medical needs (knock-out 
or downregulation of ion channels, their mutations – including 
the results from patients screening – the overexpression of ion 
channels to address experimental difficulties due to their low 
copy number in the membrane or even the expression of new 
and heterologous channels). The in vitro erythropoiesis also allows 
RBC age synchronization overcoming the RBC age variation 
occurring in human samples.

PROPOSED CONCRETE RESEARCH 
ACTIVITIES

The research innovations outlined above would require to 
be embedded into research activities to address the most urgent 
needs in RBC ion channel research. We  propose three lines 
of activity as outlined below and summarized in Figure  1.

To Understand the Regulation and 
Concerted Activity of Ion Channels in 
RBCs and to Unravel the Generation and 
Role of “Pseudo Action Potentials”
Based on the low K+ conductance of the RBC membrane, 
activations of the Gárdos channel (KCa3.1) result in a 
hyperpolarization of the membrane potential (Monedero 
Alonso et al., 2021). Because the Gárdos channel number 
per RBC is low (in average approximately 10 copies per 
cell) and due to the stochastic nature of the channel openings, 
membrane potential jumps (cycles of hyperpolarization and 
depolarizations) occur, an effect that we  call “pseudo action 
potential”. These “pseudo action potentials” appear to induce 
the opening of voltage activated Ca2+ channels in RBCs 
(Kaestner et  al., 2018; Jansen et  al., 2021). This process 
could partly explain the increased intracellular Ca2+ in patients 
with gain of function mutations of the Gárdos channel 
(Fermo et  al., 2017, 2020; Jansen et  al., 2021). This “pseudo 
action potential” is a new and unique finding among 
non-excitable cells and requires further investigations 
concerning its contribution to the ion homeostasis, the 
elucidation of the associated Ca2+ signaling and the involvement 
of other ion channels as associated processes. Aside the 
potential use of the PatchC]l[amper, we  propose the use of 
RBCs from patients and genetically modified RBCs and to 
combine it with other biophysical methods like confocal 
live cell imaging, microfluidic approaches, and mathematical 
modeling. This research activity would require a level of 
patch-clamp mobility involving, e.g., the laboratories of all 
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authors of this Speciality Grand Challenge. As a result we 
expect to understand the role of transient transmembrane 
cation transport in the dynamical behavior of RBCs in the 
circulation, and how this sustains the lifespan of in average 
120 days.

To Elucidate the Molecular and Functional 
Basis of Channelopathies in RBCs, as Well 
as the Secondary Involvement of Ion 
Channels in Congenital Anemia
We are only at the beginning to understand the role of ion 
channels as molecular regulators or modulators of RBC 
channelopathies and other RBC diseases, respectively. The 
availability of large patient cohorts allows to identify and 
characterize new genes involved in aberrant activation of 
ion channels, to clarify the pathogenetic mechanism of new 
variants identified in known genes and to verify the functional 
effects of the large number of “variants with unknown 
significance” (VUS) identified by next generation sequencing 
(NGS) approaches. A common treatment of hemolytic anemia 
is splenectomy. In hereditary xerocytosis (caused by a gain 
of function mutation in Piezo1), splenectomy results in a 
high incidence of thrombotic complications (Picard et  al., 
2019). One should make use of the available mouse model 
with a Piezo1 gain of function mutation (Ma et  al., 2018) 
to investigate the effect of splenectomy on the flow behavior 
of RBCs in vivo, and the thrombus formation in an experimental 
setup. The knowledge gained in the animal model should 
be used to further investigate blood samples of splenectomized 
patients to endorse a better patient treatment and disease 
management. This research activity would require a broad 

involvement of patients and the maximal regional operation 
of the PatchC]l[amper, i.e., whenever the patient/hospital can 
be  reached on road within a reasonable effort. For individual 
patients this is within Europe, where the RBC community 
is traditionally well connected, e.g., through the EuroBloodNet 
initiative, the European Red Cell Society (ERCS) and numerous 
projects funded by the European Commission. For the 
involvement of patient groups, e.g., malaria, sickle cell disease, 
or thalassemia, the PatchC]l[amper could also move to other 
continents like Africa or Asia. For transoceanic investigations, 
a second PatchC]l[amper would probably being a preferred 
solution. Overall, we expect novel causative genes to be found 
involved in deregulated ion channel activity, and to have 
better insight in the role of ion channels in disease modulation 
including thrombus formation.

To Assess the Role of Ion Channels During 
RBC Production (in Bioreactors)
We anticipate to bring automated high throughput patch-clamp 
recordings to the clinic and to the cell biology laboratories 
combined with the opportunity of bioreactor based in vitro 
erythropoiesis and the expertise in molecular biology to perform 
genetic manipulations. Recently, bioreactor based erythropoiesis 
progressed considerably (Hansen et  al., 2019; Heshusius et  al., 
2019; Connor et al., 2021; Pellegrin et al., 2021), which showed 
the importance to understand channel activity (Piezo1) in this 
process (Aglialoro et  al., 2021), especially since the cells in 
bioreactors are due to the nature of these reactors under 
constant flow or shear stress. Erythropoiesis under physiological 
conditions in the bone marrow occurs rather in the absence 
of flow, but crawling over macrophages may cause shear stress. 

FIGURE 1 | The proposed research activities to address the most urgent needs in red blood cell (RBC) ion channel research. One should make use of freshly 
isolated or cultured RBCs from healthy donors or channelopathy patients. Cultured precursors can be genetically modified to delete ion channels or to (over)express 
(mutated) ion channels in mature RBCs. This is the common basis for three conceptual research line activities. (i) The systematic investigation of RBC ion channels, 
their interactions, modulation by external factors and the induced signaling in the RBCs using classical patch-clamp and high throughput planer chips. (ii) Anemic 
patients suspected of channelopathies can be diagnosed by next generation sequencing (NGS) technology. This will allow to elucidate the molecular regulation of 
RBC channelopathies and RBC diseases with secondary involvement of ion channels. It should aid to develop more precise diagnosis and assessment of disease 
state, and future (personalized) therapeutic approaches. (iii) Although erythropoiesis is well documented for gene expression the functional activity of ion channels 
during the differentiation process needs to be investigated. Additionally, various gene-manipulation concepts should be applied and investigated in terms of cell 
function and efficiency of in vitro RBC production including the use of bioreactors.
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Several groups work on the further improvement of bioreactor 
technology. The goal is to decrease the costs with the clear 
aim to allow the use of in vitro (designed) RBCs in 
transfusion medicine.

All these developments enable a unique systematic approach 
to identify and understand the role of ion channels during 
maturation and function of RBCs in health and disease. To this 
end, it is advisable to compare patient RBCs with known mutations 
with their counterparts generated in vitro to understand the ion 
channel contribution during cellular development and to create 
treatment concepts based on that knowledge. The inclusion of 
multi-omics offers the possibility to identify cellular processes 
controlled by ion fluxes and membrane potential. One can in 
principle test the physical and biological effect of novel mutations 
and one can explore how to control ion channel activity during 
the large scale production of cultured RBCs for transfusion 
purposes in a stirred bioreactor. There is the option to characterize 
ion channel activity during terminal differentiation of RBC 
precursors to mature, functional cells. Furthermore, we  have the 
opportunity to confirm or negate the role of VUS in ion channels 
detected by NGS in anemia patients.

SUMMARY

The research concept described above enables a unique systematic 
approach to identify and understand the role of ion channels 
during maturation and function of RBCs in health and disease 
and we  expect to understand how ion channel activity has to 
be regulated during the production of cultured blood to obtain 
functional RBCs for transfusion purposes.
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