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A Commentary on

The Circulatory Effects of Increased Hydrostatic Pressure Due to Immersion and Submersion

by Weenink, R. P., and Wingelaar, T. T. (2021). Front. Physiol. 12:699493.
doi: 10.3389/fphys.2021.699493

We noted with interest the article by Weenink and Wingelaar published last July in Frontiers
in Physiology (Weenink and Wingelaar, 2021). However, reading the abstract and the article
was largely disappointing. We cannot agree with many statements made by the authors. In our
opinion, their analysis of the physiological responses to immersion lacks precision in physical
and physiological evidence presented, and cannot support the actual mechanisms underlying
their findings.

One cannot assert with certainty that buoyancy reduces movement of fluid from the vascular
to extracellular compartment. Also, the authors suggest that the hydrostatic force does not exert a
compressive force on the body and this is not correct. In a fluid (liquid or gas), hydrostatic pressure
acts in every direction on the sheath of the immersed object (or body). Buoyancy results from the
upward force experienced by the whole object according to both the volume of fluid displaced and
the difference between densities of the object/body and the fluid. For example, a hot air balloon gets
buoyancy from the atmospheric (hydrostatic) pressure due to the lower density of the inner volume
than the same atmospheric volume outside.

However, the “Archimedes principle” operating on the entire immersed human body does not
exert any buoyancy effect inside the vascular network where gravity still acts on blood exactly as
when outside water. In an upright position an immersed subjects’ pulmonary tissue is still less
distended in the base of the lungs which supports the whole lung weight than in the apex. X-
Ray evidence of immersion pulmonary œdema appears in different lung areas that relates to the
subject’s position during the œdema development (Hårdstedt et al., 2020; Castagna et al., 2021).
Similarly, degrees of lung ventilation and perfusion are known to change with subject’s position in
lying patients. Further, during immersion “Archimedes buoyancy” roughly equilibrates the weight
of human body, but does not suppress gravitational effects. Thus, while the “weightlessness” sensed
during immersion arises from this buoyancy, the immersed cardiovascular physiology remains
different from cardiovascular physiology during real microgravity in orbit. Even though thoracic
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blood volume is increased under both conditions, in spacecrafts
no external body compression operates nor does hydrostatic
pressure (Regnard et al., 2001; Prisk, 2011). Relying simply on the
word “weightlessness” is confusing in the context of a purposely
comprehensive article.

Hydrostatic pressure is very much a compressing force able
to squeeze compliant vessels and reduce total vascular capacity,
which in an emerged state amounts to nearly five times the
blood volume. Blood flow and volume are allocated to various
parts of the vascular network according to circumstances: resting
supine or upright, leg or arm exercising. . . Gradually increasing
immersion exposure from the feet to the neck progressively
reduces total vascular capacity (Koubenec et al., 1978). The
compression by hydrostatic pressure and the accompanying
displacement of blood volume immediately shifts this volume
upon squeezing the leg and trunk vessels inducing enlarged heart
chambers and an increased central venous pressure (Risch et al.,
1978; Johansen et al., 1992, 1995, 1997). Likewise pneumatic
anti-shock garments and g-suits compress and increase cardiac
preload (Regnard et al., 1990; Gilbert et al., 1991). Similar
reduction of vascular capacitance and displacement of blood
volume are not produced when people are placed in dry
hyperbaric chambers. Three bars in compressed air does not
compress leg and thigh vessels nor increase heart dimension by
even one tenth of a bar in water. Upright water immersion up
to heart level creates a hydrostatic pressure around the ankle of
e.g., 125 cm H2O or 90 mmHg, which roughly equals hydrostatic
pressure in the body blood column (at the ankle level). In air
the ankle skin is subjected to an external atmospheric pressure
of 0.11 mmHg higher that at the heart level (800 times lower
than the internal hydrostatic pressure), and in compressed air
at a 3-bar pressure, the external atmospheric pressure at the
ankle is only 0.34 mmHg higher than at heart level. Hydrostatic
pressure applied to the skin is transmitted by tissues of grossly
hydric density (hence little compressible as skin, muscles, liver,
kidney. . . ) at the adventitial side of vessels to exert a squeezing
effect. Because room is available in other parts of the vascular
network (pelvic, mesenteric, lung. . . ), blood is shifted in more
or less incompletely filled vessels. This shift of blood volume
operates no matter the position, i.e., independently of gravity
direction relative to the body. Quite similar pulmonary and heart
engorgement occurs in upright and supine immersed subjects,
as reflected in the autonomic nervous system adjustments in
heart rate and vasomotor tone (Bahjaoui-Bouhaddi et al., 2000;
Mourot et al., 2007, 2008). A cold-triggered vasoconstriction
can be added without or with face cooling (Mourot et al.,
2008).

The external hydrostatic pressure changes the transmural
pressure in vessel walls, which in capillaries and venules affect
microvascular filtration between the vascular and interstitial
spaces. In governing these exchanges gravity controls blood
pressure (hydrostatic pressure) differently from interstitial
pressure (e.g., with postural changes), leading to microvascular
filtration or conversely plasma reabsorption (Hagan et al., 1978).

The time constant of transmural fluid exchange is much higher
than that of blood displacement across vascular beds. Thus,
upon immersion the rapid (about 1 s time constant) increase
in thoracic blood volume results from arrival of blood from
the compressed legs and thigh muscles and then from the
abdominal vessels (Risch et al., 1978; Regnard et al., 1990;
Johansen et al., 1997). The much slower increase in plasma
volume (hemodilution) is due to reabsorption of interstitial
and intracellular fluids, largely in the lower limbs (Greenleaf
et al., 1980; Johansen et al., 1992, 1997; Pendergast et al.,
2015). The “Perspective” article by Weeninck and Wingelaar
missed the pivotal distinction between rapid blood translocation
between vascular beds (Risch et al., 1978; Gilbert et al.,
1991), and the much slower (and long lasting) interstitial fluid
reabsorption from extravascular space that leads to the increased
urine output (Johansen et al., 1992, 1997; Castagna et al.,
2013).

After firstly dismissing any hydrostatic compression effect and
suggesting buoyancy is at play, the authors then rely on the
compressive effect of “tight fitting suits” to make their arguments.
It is of note that the pressure exerted by elastic neoprene suit
has been accurately measured (Castagna et al., 2013) and yes
hydrostatic pressure acts as elastic stocking (Tipton et al., 2017)
and can reducemicrovascular filtration or induce interstitial fluid
reabsorption (Johansen et al., 1997).

The analysis of immersed lung mechanics improperly refers
to Pascal’s Law, which operates on incompressible fluids, not
on lung gas spaces. The miscellaneous discussion (section
“Additional factors to consider”) is inaccurate regarding the data
presently available (Wilmshurst et al., 1989; Castagna et al., 2018;
Wilmshurst, 2019). It is not true that after immersed cooling
a subject is in a vasoplegic state. In fact the reduction in large
cold-induced arterial and venous vasoconstrictive tone occurs
over several hours (Robinet et al., 2006; Boussuges et al., 2009;
Florian et al., 2013; Riera et al., 2014). Yes removing the squeezing
effect of hydrostatic pressure precipitate rescue collapse (Lloyd,
1992).

As presented in the paper several physical or physiological
concepts are misleadingly described and some related
statements are therefore uninformative and difficult
to accept. Quoted as they were, these perspectives
had to be cautiously considered. Much recent factual
evidence is not considered. Main physiological effects
of immersion are sometimes too simply explained
adding confusion and bordering on misleading. All this
can putatively detract from a clear understanding for
the readers.
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