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Interpreting tissue architecture plays an important role in gaining a better understanding

of healthy tissue development and disease. Novel molecular detection and imaging

techniquesmake it possible to locatemany different types of objects, such as cells and/or

mRNAs, andmap their location across the tissue space. In this review, we present several

methods that provide quantification and statistical verification of observed patterns in

the tissue architecture. We categorize these methods into three main groups: Spatial

statistics on a single type of object, two types of objects, and multiple types of objects.

We discuss the methods in relation to four hypotheses regarding the methods’ capability

to distinguish random and non-random distributions of objects across a tissue sample,

and present a number of openly available tools where these methods are provided. We

also discuss other spatial statistics methods compatible with other types of input data.
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1. INTRODUCTION

A range of new imaging-based methods make it possible to explore the architecture of tissue
samples both at the transcriptomics and proteomics level. Multiplexed in situ RNA detection
methods (Ke et al., 2013; Shah et al., 2016; Codeluppi et al., 2018; Moffitt et al., 2018; Wang
et al., 2018; Eng et al., 2019) map mRNA molecules at sub-cellular resolution, and multiplex
immunohistochemical staining (Parra et al., 2019), make it possible to detect and identify a large
number of different cell types in the same tissue sample, enabling the discovery of their functional
role inside the tissue architecture (Grün and van Oudenaarden, 2015; Svensson et al., 2018). The
first step toward further interpretation of the data is detection and decoding, or classification, of
each individual object; in this case resulting in maps of the locations of either specific mRNA
molecules or cells.

One of the key challenges in fully exploiting this type of spatially resolved data is the availability
of appropriate computational methods. The second step in interpretation is to be able to quantify
relationships and patterns in an unbiased and reproducible way, and provide confidence measures
for observed patterns as compared to a more randomized organization. This is often referred to as
spatial statistics.

In this mini-review, we focus on spatial statistics applicable to tissue data independent of image
resolution. We start with the assumption that each observed object has a unique position in 2D
tissue space, and is assigned a specific type (e.g., cell type or mRNA species). Further, we assume
that we also want to take the tissue context, and distribution of other objects, into consideration.

Objects can then be presented either as dots, a graph, a density map, or spatially binned counts in
tissue space, as illustrated in Figures 1A–D. In the dot representation (Figure 1A), a different color
would typically be used for each species. In a graph representation (Figure 1B), neighboring objects
are connected. These connections can be restricted to fulfill criteria, such as a maximum number
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FIGURE 1 | Schematic representations of objects, such as cells or mRNAs, in microscopy images, where each dot represents an object, and the color reflects the

object type (where gray is an unspecified type). (A) Simple representation, where each dot has a specific location in 2D tissue space. (B) The same data represented

as a graph, where each dot is a node, and nodes are connected based on a maximum distance criterion. (C) Dots can also be represented by a probability density

map, where warmer colors represent more dense dots, or (D) as counts in fixed spatial bins. Here, bins are squares and warmer colors represent higher object counts

per bin. Spatial statistics are used to prove four different hypothesis (with the top row representing the random case): (H1) Visualization of hypothesis H1: Objects of

type A (green) are non-randomly distributed. (H2) Visualization of hypothesis H2: Objects of type A (green) are non-randomly distributed as compared to the

distribution of other objects (gray) in the same tissue sample. (H3) Visualization of hypothesis H3: Objects of type A (green) and B (blue) are non-randomly distributed

in relation to one another within the distribution of other objects (gray) in the same tissue sample. (H4) Visualization of hypothesis H4: There are groups of object types

(multiple colors in “niches”) that are non-randomly distributed within the tissue sample.

of connections or distance, reflecting a hypothesis on amaximum
distance for interaction. The density map representation
(Figure 1C) translates the object distribution into a probability
map, where high values represent high object concentrations,
but the exact spatial location of objects is lost. Finally, different
types of binning can be applied (Figure 1D), providing a lower-
resolution map with counts of objects per bin.

We review methods that explore the null hypotheses of
randomness for either a single type of objects, pairs of
objects, or multiple types of objects. We have created a set
of synthetic images describing different scenarios of object
distributions within a tissue section, illustrating that the question
of randomness is often relative. We first explore a single type of
objects, as shown in Figure 1H1, and propose the hypothesisH1:
Objects of type A are non-randomly distributed. In a biological
context this could be, e.g., quantifying the distribution of immune

cells in the presence or absence of an infection. If we take the
tissue context (all objects of other types) into account, as shown
in Figure 1H2, the hypothesis becomes H2: Objects of type A
are non-randomly distributed as compared to the distribution of
other objects in the same tissue sample. In a biological context
this could be, e.g., distribution of a certain cell type in tumor and
stroma areas of a tissue. Next, we consider two types of objects,
and their potential interaction or repulsion. This is illustrated in
Figure 1H3, and the hypothesis is H3: Objects of type A and B
are non-randomly distributed in relation to one another within
the distribution of other objects in the same tissue sample. In
a biological context the question could, e.g., be whether cancer
cells interact with endothelial cells or not. Finally, if there are
multiple types of objects, we may want to see if certain groups
of objects tend to coincide and form so-called ’niches’ of unique
combinations of objects in the tissue, as shown in Figure 1H4.
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In this case, we pose hypothesis H4: There are groups of object
types (‘niches’) that are non-randomly distributed within the
distribution of other objects in the tissue sample. This could
be used for finding mRNAs that are co-expressed, where niches
would then correspond to different cell types (Partel andWählby,
2020).

In the following review, we group different spatial statistics
methods according to what types of tissue patterns they
investigate, and also summarize and discuss their theoretical
ability to answer the four hypotheses we pose above.

2. SPATIAL STATISTICS ON A SINGLE
TYPE OF OBJECT

In this section, we describe methods which are capable to
test hypothesize H1 (non-random distribution) and H2 (non-
random distribution, compared to other objects). The input data
can be described as points in space determining the presence of
an object. The main idea is to identify and characterize spatially
variable objects.

2.1. Ripley’s Function
Ripley’s function (Ripley, 1976) measures whether objects with
discrete positions in space (see Figure 1A) follow random,
dispersed, or clustered patterns. For each object, the function
counts how many other objects of the same type appear within
a given distance. Subsequently, the object counts are averaged
over the whole dataset and the number is compared with
the number of objects one would expect to find based on a
completely spatially random pattern (null hypothesis). If the
average number of objects found within the given distance is
greater than for a random distribution, the dataset is clustered
(see green dots in Figure 1H1-down). If the number is smaller,
the dataset is dispersed. Ripley’s K function is generally calculated
at multiple distances allowing detection of pattern distributions
at multiple scales. For example, at short distances, the objects
may be clustered, while at long distances, objects may be
dispersed. This method can be used to test hypothesis H1
(non-random distribution).

2.2. Newman’s Assortativity
Newman’s assortativity (Newman, 2002) evaluates spatial
organization using a graph (see Figure 1B) as input. The
principle is to count existing connections between objects of
the same category and compare these counts to the number
of connections expected at random object distribution (null
hypothesis). This method can be used to test hypothesis H1.
Figure 1H1-up shows no significant difference in the number
of connections compared to a random distribution. However,
Figure 1H1-down indicates that there would be a significant
difference in the number of connections than under the null
hypothesis. The difference between Ripley’s function and
Newman’s assortativity is that Ripley’s forms an overall cluster
analysis providing various evaluations using various distances
while Newman’s tests the dataset as one object determining
clustered patterns. However, the graph structure in Newman’s
assortativity provides more flexibility since graph connections

can be created by different techniques, such as k-nearest
neighbors or Delaunay triangulation.

2.3. Centrality Scores
Centrality scores (Everett and Borgatti, 1999) are based on
computational analysis to show object patterns in a graph
representation (see Figure 1B). This provides awareness of
complicated relations in large graphs. Figure 1H2 can be used as
an example where green dots represent one object type (group
members, e.g., immune cells) and gray dots represent members
of all the other object types (non-group members, e.g., all types
of tumor cells). This method can be used to test hypothesis
H2. There are four different centrality scores: Group degree

centrality is interpreted as a ratio of non-group members (gray)
that are connected to group members (green). Higher values
reveal random distribution. Lower values indicate more grouped
objects. This measure helps to identify crucial clusters in a
graph.Group closeness centrality computes how close the group
(green) is to the non-group members (gray). It is defined as the
amount of non-group members (gray) divided by the sum of
all distances from the group (green) to all non-group members
(gray). Higher values reveal random distribution. Lower values
indicate more grouped objects. Group betweenness centrality

calculates the quantity of shortest paths connecting two non-
group members (gray) while passing through the group (green).
This can be thought of as a measure of cell infiltration. Average
clustering coefficient measures how likely the group members
favor to cluster together.

3. SPATIAL STATISTICS ON TWO TYPES
OF OBJECTS

In this section, we describe methods capable of testing hypothesis
H3: objects of types A and B are non-randomly distributed in
relation to one another within the distribution of other objects
in the same tissue sample. The main idea is to identify if different
types of objects are closer thanwhat would be expected by chance.
It is worth noting that physical closeness is no guarantee for
interaction, but a non-random pattern may indicate involvement
in similar processes.

3.1. Cluster Co-occurrence Ratio
Cluster co-occurrence ratio (Tosti et al., 2021) describes co-
occurrence of two types of objects in the tissue. It measures
the probability that an object of type A appears in a given
distance from an object of type B by taking the ratio between
occurrences of object type A within a distance from object
type B and occurrences of object type A within a distance
from object type B at random (null hypothesis). It is computed
across multiple distances across the tissue area. It measures
the probability that an object of type A appears in a given
distance from conditioned object type B. Figure 1H3-up shows
example of low cluster co-occurrence ratio and Figure 1H3-
down shows example of high cluster co-occurrence ratio within a
short distance.
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3.2. Neighborhood Enrichment Test
Neighborhood enrichment test (Schapiro et al., 2017) identifies
two non-randomly distributed objects types in relation to one
another. The first step is to create a graph (see Figure 1B).
Then two object types are selected (A and B) and the count of
connections between A and B object types (nAB) is compared
to random permutations of the objects (null hypothesis). The
random configuration is set by keeping the object locations
and reshuffling the object identities. Based on these estimates,
expected means (µAB) and standard deviations (σAB) are
calculated for each pair in the randomized dataset. Subsequently,
a Z-score is calculated as, ZAB =

nAB−µAB
σAB

. The Z-score
indicates if an object type pair is over-represented (positive
Z-score, see Figure 1H3-down) or over-depleted (negative Z-
score, see Figure 1H3-up) in the connectivity graph. The
difference between cluster co-occurrence ratio and neighborhood
enrichment test is that cluster co-occurrence ratio evaluates
various distances when determining if two objects types are in
relation to one another while neighborhood enrichment test
examines the dataset as one object determining object relation.
However, the graph structure in Neighborhood enrichment test
again provides flexibility since graph connections can be created
by different techniques.

3.3. Object-Object Correlation Analysis
Object-Object Correlation Analysis (Stoltzfus et al., 2020)
investigates the correlation of different object types within
neighborhoods over the tissue. A neighborhood is a composition
of objects inside a circular area. The neighborhoods’ locations are
uniformly allocated in a grid pattern throughout the space. The
next step is to calculate the Pearson correlation coefficient of two
types of objects within the neighborhoods. This method reveals
which types of objects are associated with each other or unrelated
to each other. Figure 1D shows an example of this neighborhood
representation. The idea is to create this representation of two
object types and then estimate the correlation coefficient across
all overlapping neighborhoods.

4. SPATIAL STATISTICS ON MULTIPLE
TYPES OF OBJECTS

In this section, we describe methods which are capable to test
hypothesis H4 (existence of “niches”). The input data can be
described as points in space determining the presence of the
object types. The main idea is to identify if there are reoccurring
spatial patterns, or ’niches’ of objects, in the tissue.

4.1. Spatial Co-expression Patterns
Spatial co-expression patterns (Dries et al., 2021) identify robust
patterns of object types that follow correlated spatial expression
arrangements throughout the tissue. The first step is to smooth
the object expression over the space by averaging in a grid
or k-nearest neighbor technique. This results in a one density
map for every object type as illustrated in Figure 1C. The
next step is to calculate the Pearson correlation coefficient of
the pair combinations of all object types (e.i., density maps).
Subsequently, similarly co-expressed object types are clustered

together into modules, and averaging them creates meta-object
types to represent the similarly co-expressed object types.

4.2. Spage2vec
Spage2vec (Partel and Wählby, 2020) analyzes the spatial
heterogeneity of complex patterns of objects. The input data
is a graph (see Figure 1B), and it uses a graph representation
learning technique based on a graph neural network (GNN).
During training, the GNN learns the topological structure of each
object’s local neighborhood. It does not require labeled training
data, but learns to find re-occurring patterns by comparing
to a randomization of the data. After training, the observed
patterns are summarized in a lower-dimensional embedding
space that encapsulates high-dimensional information about
each object’s neighborhood. The last step is to cluster the
multidimensional space using an unsupervised classification
method (i.e., Leiden, Traag et al., 2019). Clusters represent
combinations of object types that can be identified as specific
domain types or ‘niches’. Figure 1H4-down shows an example,
where different neighborhood compositions were identified as
different niches. The types of discovered niches can be further
identified by correlation between the object composition of the
niches and e.g., in the case of in situ sequencing data an external
dataset of scRNA-seq signatures. The approach has also been
applied to detect niches in multiplex fluorescence microscopy
data of tissue micro arrays (Solorzano et al., 2021).

4.3. Spot-Based Spatial Cell-Type Analysis
by Multidimensional mRNA Density
Estimation (SSAM)
SSAM (Park et al., 2021) was defined to identify tissue niches
in transcriptomics data. The first step is to create probability
maps of the object types. Kernel Density Estimation (KDE) with
a Gaussian kernel is applied to every object type resulting in a
density map for each object type (see Figure 1C). Then all the
images are put into a stack creating a multi-channel image where
each pixel is a vector describing the local expression profile.
Next, group type signatures are computed by clustering using
Louvain (Blondel et al., 2008) or DBSCAN (Ester et al., 1996),
and outliers (vectors far from their cluster medoid) are removed.
The cluster centroids represent the group-type signatures. The
third step is to generate a group-type map. Each pixel in the
vector field is classified according to the maximum correlation
with the group-type signatures. The group-type signatures can
be taken from the previous step or an external dataset, such as
scRNA-seq. The fourth step is to identify the tissue niches with
definite group-type composition. The composition is computed
in a circular sliding window over the tissue and clustered by
agglomerative hierarchical clustering, merging highly correlating
clusters. Finally, each cluster represents a unique tissue niche, an
example can be seen in Figure 1H4-down where two different
niche types were found.

4.4. Vector Approach
Describing local neighborhoods as vectors of counts of object
types has been suggested in several publications under multiple
names (Stoltzfus et al., 2020; He et al., 2021; Salas et al., 2021).
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TABLE 1 | Overview of the methods’ functionality.

Object Method H1 H2 H3 H4 Toolbox

Single Ripley’s function yes no no no Squidpy, PySpacell, CytoMap

Newman’s assortativity yes no no no PySpacell

Centrality scores no yes no no Squidpy

Two Cluster co-occurrence ratio no no yes no Squidpy

Neighborhood enrichment test no no yes no Giotto, Matisse, Squidpy, histoCAT

Object-Object Correlation Analysis no no yes no CytoMap

Multiple Spatial co-expression patterns no no yes yes Giotto

Spage2vec no no no yes Spage2vec

SSAM no no no yes SSAM

Vector approach no no no yes CytoMap, ClusterMap, Matisse

Here we refer to it as the vector approach. Its goal is to identify
similar neighborhoods across the tissue sample. The first step is
to define the neighborhoods. A neighborhood is a composition
of object types inside a fixed area. The neighborhoods’ locations
can be uniformly allocated in a grid pattern throughout the
space, constructed around each object from the dataset (Stoltzfus
et al., 2020), based on Density peak clustering (He et al., 2021),
or be defined by previously segmented tissue structures (Salas
et al., 2021). Next, each neighborhood is presented as a vector
containing counts of object types normalized, for example,
by dividing each object count by the sum of all counts in
the neighborhood (local normalization) or by dividing each
object count by the sum of all the counts in the sample
(global normalization). The normalized vectors are projected
to a multidimensional space followed by clustering to identify
niches. Examples of supervised clustering methods are common
methods such as k-means and hierarchical clustering, or more
advanced methods such as Self-Organizing Maps (Kohonen,
1982), Gaussian Distribution Model, or DBSCAN (Ester et al.,
1996). Other clustering possibilities are unsupervised approaches
such as Leiden (Traag et al., 2019) or Louvain (Blondel et al.,
2008).

5. TOOLBOXES

Several toolboxes simplifying spatial statistics are available.
Squidpy (Palla et al., 2021) includes four methods from
this review: Ripley’s function, Centrality scores, Cluster co-
occurrence ratio, and the Neighborhood enrichment test. The
toolbox PySpacell (Rose et al., 2019) includes methods such as
Ripley’s function andNewman’s assortativity. CytoMap (Stoltzfus
et al., 2020) includes Ripley’s function, Object-Object correlation
analysis and the Vector approach. Giotto focuses mostly on the
data consisting of coordinates and quantitative information on
multiple measurements per location, but also includes techniques
as such as the Neighborhood enrichment test and Spatial co-
expression patterns. The recently published Matisse (Salas et al.,
2021) includes the Neighborhood enrichment test and the Vector
approach. The toolbox histoCAT (Schapiro et al., 2017) includes
the Neighborhood enrichment test, and Clustermap (He et al.,
2021) includes the Vector approach. Table 1 summarizes these

toolboxes and lists the hypotheses that each of the methods is
capable of testing.

6. DISCUSSION

There aremany publishedmethods for spatial statistics. However,
they differ in the type of input data they can handle. In this
review, we focused on methods where the input data can
be described as points in 2D tissue space representing the
presence of different object types. Another type of input data
consists of coordinates and quantitative information on multiple
measurements per location, as in e.g., spatial transcriptomics
(Larsson et al., 2021). Spatial statistics for exploring this type
of data can focus on a single type of objects, with methods
such as Binary Spatial extracts (BinSpect, Dries et al., 2021),
Getis-Ord General G (Getis and Ord, 2010), Spatial pattern
recognition via kernels (SPARK, Sun et al., 2020), spatialDE
(Svensson et al., 2018), Trendsceek (Edsgärd et al., 2018), Geary’s
c (Geary, 1954) or Moran’s I (Moran, 1950). In the case of
more than a single type of object, there are other methods,
such as Spatially informed ligand-receptor pairing (Dries et al.,
2021), Object-Object Correlation Analysis (Stoltzfus et al., 2020)
and Spatial domain detection (Dries et al., 2021) that can be
applied for exploring co-locations, potential interactions and
niche discovery.

The methods mentioned above are also applicable on the
type of data we present in this paper (input data as points in
space determining the presence of the object types) but the data
would have to be pre-processed by transferring dots into spatially
binned counts for all object types, as exemplified for a single
object type in Figure 1D. With such a representation, spatial
resolution would be lost, but data could be analyzed by methods
such as Trendsceek and SPARK.

Many of the methods for analyzing multiple object types
include clustering as a final step of the analysis. Different
clustering algorithmsmight lead to different results when applied
to the same data, and should be carefully selected. It should
also be noted, that proving or disproving a hypothesis regarding
spatial statistics will depend on quality and amount of input data.
One should also keep in mind that a 2D section may not always
be a good representation of a true 3D structure such as an organ.
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