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Regulation of intracellular calcium is a critical component of cardiac electrophysiology
and excitation-contraction coupling. The calcium spark, the fundamental element of the
intracellular calcium transient, is initiated in specialized nanodomains which co-locate
the ryanodine receptors and L-type calcium channels. However, calcium homeostasis
is ultimately regulated at the cellular scale, by the interaction of spatially separated but
diffusively coupled nanodomains with other sub-cellular and surface-membrane calcium
transport channels with strong non-linear interactions; and cardiac electrophysiology
and arrhythmia mechanisms are ultimately tissue-scale phenomena, regulated by the
interaction of a heterogeneous population of coupled myocytes. Recent advances in
imaging modalities and image-analysis are enabling the super-resolution reconstruction
of the structures responsible for regulating calcium homeostasis, including the internal
structure of nanodomains themselves. Extrapolating functional and imaging data from
the nanodomain to the whole-heart is non-trivial, yet essential for translational insight
into disease mechanisms. Computational modeling has important roles to play in
relating structural and functional data at the sub-cellular scale and translating data
across the scales. This review covers recent methodological advances that enable
image-based modeling of the single nanodomain and whole cardiomyocyte, as well
as the development of multi-scale simulation approaches to integrate data from
nanometer to whole-heart. Firstly, methods to overcome the computational challenges
of simulating spatial calcium dynamics in the nanodomain are discussed, including
image-based modeling at this scale. Then, recent whole-cell models, capable of
capturing a range of different structures (such as the T-system and mitochondria) and
cellular heterogeneity/variability are discussed at two different levels of discretization.
Novel methods to integrate the models and data across the scales and simulate
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stochastic dynamics in tissue-scale models are then discussed, enabling elucidation
of the mechanisms by which nanodomain remodeling underlies arrhythmia and
contractile dysfunction. Perspectives on model differences and future directions are

provided throughout.

Keywords: cardiac electrophysiology, calcium handling in cardiomyocytes, excitation-contraction coupling,
computational modeling methods, multi-scale model

INTRODUCTION

Intracellular calcium (Ca2t) handling is a critical component of
cardiac electrophysiology (Cheng et al., 1993; Bers, 2002; Song
et al., 2015): it governs excitation-contraction coupling (ECC),
is involved in multiple signaling pathways, and its impairment
has been causally linked to both mechanical and electrical
dysfunction of the heart (Eisner et al., 2009; Voigt et al., 2014;
Clarke et al., 2015). Elucidating the fundamental mechanisms of
Ca?* homeostasis and the perturbations of the system in disease
is therefore vital for understanding the electrophysiology of the
heart and identifying better diagnostic and treatment strategies
for multiple cardiovascular diseases.

One major challenge of dissecting the specific roles and
contributions of the many components of intracellular Ca?*
handling to observed (dys)function is the complex, non-
linear and multi-scale properties of the system in space and
time. Spatially, Ca?* sparks, the fundamental element of
Ca?*-induced-Ca? T -release (CICR; see next sub-section), are
controlled at the nanometer-scale in localized nanodomains
referred to as dyads or couplons, yet Ca?’" homeostasis
occurs inherently at the cellular-scale where flux balance
through the membrane and subcellular transporters determines
the total Ca?* levels in the cell and in the Sarcoplasmic
Reticulum (SR, the intracellular Ca?*t store). Homeostatic
conditions of cardiomyocytes at the cell-level are integrated
in the heterogeneous syncytium of cardiac muscle tissue
where individual myocytes do not function as isolated entities.
Temporally, the gating of Ca?* channels occurs on sub-
millisecond time-frames (Zahradnikova et al, 1999); the
heartbeat itself occurs on the order of a second; signaling and
regulation, such as sympathetic stimulation, can occur over
minutes (Heijman et al., 2011); and transcription and circadian
rhythms can influence dynamics over hours or even days (Black
et al, 2019; D’Souza et al., 2021). Thus, structure-function
relationships from the nanometer- to the whole-heart-scales and
dynamics occurring over nanoseconds to hours all contribute to
the macroscopic behavior of the heartbeat.

Recent advances in experimental imaging modalities and
image-analysis are enabling the super-resolution reconstruction
of the structures responsible for regulating Ca®>* homeostasis
at the nanometer scale (Baddeley et al.,, 2009; Crossman et al.,
2011; Macquaide et al., 2015; Jayasinghe et al., 2018b; Sheard
et al,, 2019). Extrapolating functional and imaging data from
the dyad to the whole-heart is non-trivial due to multi-scale
systems interactions; it is therefore a substantial challenge using
experimental techniques alone to employ integrative approaches
which aim to understand how macroscopic cardiac function

arises from these fundamental building blocks. Computational
modeling therefore has important roles to play in helping to
dissect these structure-function relationships at multiple scales
and elucidate the mechanisms by which cellular phenomena
translate to the whole-heart.

Over the last decade in particular there have been substantial
advances in the complexity and sophistication of computational
models of spatial intracellular Ca?* handling. Due to the variety
of independently developed models and range of contexts in
which they have been applied, it can be a challenging field to get
into and understand, whether one is a computational modeler
wanting to use and develop these models, or an experimental
researcher hoping to understand the models’ limitations and
where they can be used to support one’s research. This review
aims to provide an accessible entry-point for those not already
familiar with these models and a useful reference for those
who are. We focus on methods and approaches, in particular
those for image-based and multi-scale modeling, how these differ
between models, and the implications of these model differences.
Applications of the models will be discussed primarily within
this context; the reader is referred to previous reviews for
more extensive descriptions of the role of computational
modeling in elucidating the Ca’?*-mediated mechanisms of
cardiac (dys)function (Heijman et al., 2016; Maleckar et al., 2017;
Vagos et al., 2018; Sutanto et al., 2020).

Structure-Function Relationships in
Ca?t Homeostasis: Local Control of

Ca’*-Induced-Ca®*-Release
Excitation-contraction coupling is mediated by CICR (Cheng
etal., 1993; Bers, 2002), illustrated in Figure 1: (1) Ca> T enters the
cell through the L-type Ca?™ channels (LTCC) during electrical
excitation (the action potential, AP); (2) This local rise in Ca?t
activates the ryanodine receptors (RyRs) to trigger a large release
of Ca?* (triggered Ca®™ spark) from the SR; (3) Ca®* diffuses
throughout the myocyte, binds with the contractile apparatus,
and initiates cellular contraction; (4) Peak contraction occurs
when Ca?™ has diffused sufficiently throughout the cell to permit
substantial binding with the contractile apparatus; Ca?" influx
has largely terminated at this point; intracellular Ca?* is removed
into the extracellular space through the sodium-Ca?* exchanger
(NCX) and the plasmalemmal Ca?* pump, and SR-Ca?* is
restored through the SR-Ca?™ pump (SERCA); (5) As NCX
and SERCA reduce the Ca>* concentration in the intracellular
volume, myofilaments release Ca?>* from their binding sites and
cellular relaxation occurs; (6) NCX and SERCA continue to act to
restore resting Ca® ™ levels, ready for the next cycle.
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FIGURE 1 | Simplified illustration of the intracellular Ca“—handling cycle in ventricular myocytes. Left: illustration of an action potential (voltage), calcium transient
(CaT), and developed tension, with the different stages broadly labeled on the CaT. Right: cartoon schematic of the different stages of Ca™* cycling in the
intracellular volume. High Ca2* concentration is indicated by the green areas; SL refers to the sarcolemmal membrane and TT to a transverse tubule, illustrated on a
real cell image (modified from Gadeberg et al., 2016). Numbered stages correspond to those in the main text and are illustrated at different spatial locations of the
schematic for brevity — it should be clarified that all stages occur throughout the cell volume.

The rise and decay of Ca’* in the intracellular volume
is referred to as the intracellular Ca?* transient (CaT), and
broadly follows the AP (Figure 1). Rather than being a whole-
cell, homogeneous event, the CaT is the summation of many
thousands of locally controlled Ca?* sparks, conferred in the
specialized nanodomains called dyads or couplons which co-
localize the RyRs on the SR membrane with the LTCCs on
the sarcolemma membrane. Cardiomyocytes therefore feature
an intracellular structure which facilitates whole-cell contraction
mediated by this local control of CICR: the SR forms a cell-
wide network coupling the spatially distributed dyads throughout
the intracellular volume; the surface sarcolemma (SL) membrane
contains multiple invaginations into the cell interior, consisting
of the transverse-tubule (TT) and axial-tubule (AT) system (T-
system), harboring LTCCs, NCX, and other ion channels (Dibb
et al., 2022) which enables dyads to be formed throughout the
cellular volume. The reader is referred to the previous works and
reviews by Cannell and Kong (2012, 2017) and Laver et al. (2013)
for discussion about the importance of local control to explain the
properties of CICR in the heart.

Although the Ca?*-handling system is conceptually similar
and involves the same machinery in all regions of the heart, there
are functional and structural differences between myocytes from
the pacemaker regions, cardiac conduction system, atria and
ventricles that are important for normal physiology as well as the
genesis of cardiac arrhythmias (Sutanto et al., 2020). For example,
atrial myocytes do not have as robust and dense a T-system
as ventricular myocytes (Richards et al., 2011), featuring more
orphaned RyR clusters (those without associated LTCCs); in the
pacemaker cells of the sinoatrial and atrioventricular nodes, the
Ca?" handling system forms the Ca?>*-clock which is involved
in the generation of APs and does not function primarily to
initiate cellular contraction (Maltsev and Lakatta, 2013; Yaniv
etal,, 2015; Maltsev et al., 2017). Discussing models of pacemaker

and conduction system myocytes is beyond the scope of the
current review, which will focus on the working myocardium of
the ventricles and atria.

Multi-Scale Dynamics of Ca2t Handling

The inherently multi-scale nature of cardiac Ca?*-handling
is perhaps best illustrated by considering the mechanisms of
spontaneous Ca?™ release events (SCRE) and their involvement
in proarrhythmogenic premature focal excitations (Figure 2).

One consequence of local control is that each dyad contains
only small numbers of channels, with typical values thought
to be 5-15 LTCCs and 5-200 RyRs (Baddeley et al., 2009;
Jayasinghe et al., 2018a,b), located within a very small volume of
order < 1073 wm? (Scriven et al., 2013). Stochastic oscillations of
single RyR channels can result in small-scale intracellular Ca?*-
release (Ca’* quarks), potentially inducing the nanodomain-
wide event of a spontaneous Ca2* spark by recruiting further
RyRs within the dyad to sustain a release flux. The specific
mechanism for this recruitment is either a large flux of Ca*
through the pore of a channel that stochastically opens, which
raises the local Ca’t sufficiently to trigger the opening of
adjacent RyRs, or a cascade of events where a single channel
opening increases the probability of opening of a second round
of receptors, which triggers more rounds of receptors opening
(Asfaw et al., 2013). Irrespective of the specific mechanism,
once a reasonably large spark is originated, spatial-diffuse
coupling provides a substrate for the propagation of Ca?*-sparks
throughout the cell as a spark-induced-spark mediated Ca?™-
wave (Figure 2).

These SCRE are potentially pro-arrhythmic cellular
phenomena: Ca’>t release can activate NCX which results
in a transient inward current when Ca?* is extruded,
depolarizing the cell membrane potential as a delayed-
after-depolarization (DAD) or, if of sufficient magnitude,
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| Multi-scale Ca* handling dynamics |
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FIGURE 2 | lllustration of the scales involved in cardiac Ca?*-handling electrophysiology. Left, upper: illustration of a single RyR and the distribution of RyRs in a
dyad, RyR channel function at low and high local Ca?*, and propagation of a Ca?*-spark between dyads. Cell-structure image re-rendered using data from
Jayasinghe et al. (2018a). Left, middle: lllustration of an intracellular Ca®*-wave and the impact of the spontaneous Ca?*-transient on NCX and the action potential
(AP), demonstrating both a delayed-after-depolarization (DAD) and triggered AP (TA). Left, lower: illustration of a focal excitation in tissue which degenerates into a
re-entrant excitation pattern. Simulation data from Colman et al. (2013). Right, upper: spatial model of a single dyad (model as presented in Sheard et al.,
illustration of a sub-micron full-cell model with dyads distributed therein. Right, middle: illustration of a coarse-grained 3D cell model with different intracellular and SR
compartments labeled. Right, lower: illustration of standard, non-spatial Hodgkin-Huxley electric circuit models of cardiac electrophysiology, their coupling in a 1D
strand, and implementation in 3D whole-heart models based on imaging data, reproduced using data from Benson et al. (2011).

2019) and

a full triggered AP (TA; Figure 2). Multiple cells must
undergo some degree of synchronization of these TA in
order for them to overcome electrotonic load and manifest
in tissue as a focal excitation (Xie et al., 2010; Campos
et al, 2015; Liu et al, 2015; Colman, 2019). Similar
considerations apply for many sub-cellular Ca?* handling
phenomena, from rate-dependence to arrhythmogenic CaT
alternans; the fundamental pumping function itself ultimately
depends on these multi-scale interactions and can thusly
be potentially perturbed by random, stochastic oscillations
at the nanometer-scale. Ca’'-dependent regulation of the
membrane potential is one of the key factors in understanding
arrhythmogenesis. Elucidating these mechanisms is, alongside
ECC and contractile function, a primary motivation for the
development of biophysically detailed models of intracellular
Ca?* handling. For a comprehensive overview of the multi-scale
implications of Ca?* handling in normal and abnormal cardiac

function, the reader is referred to, for example, the reviews of
Eisner et al. (2009, 2017).

Multi-Scale Computational Models of
Spatial Ca2* Handling

Due to the importance of local control, common-pool models of
the cell - that is, those which treat the intracellular space as single
homogenized volumes - fail to properly capture the underlying
mechanisms and dynamics of Ca?* handling. For example, Sato
et al. (2013) demonstrated that stochasticity in Ca** cycling
is necessary to explain the emergence of discordant alternans,
which cannot be reproduced with deterministic, common-pool
cell models. Models which explicitly account for the spatial nature
of the cardiomyocyte as well as stochastic dynamics of the RyRs
and LTCCs are therefore much better suited to detailed analyses
of Ca’>*-handling phenomena. However, these models are also
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computationally more intensive than common-pool models, by
a factor of >10°, and less suitable for tissue-scale and especially
whole-heart simulations. Therefore, different models need to be
considered at different spatial scales (Figure 2).

This review will discuss models of spatial Ca?>* handling at
the multiple scales of the single nanodomain, the cardiomyocyte,
and the whole-heart. Models describing the kinetics of the RyRs
will first be discussed, followed by spatial models of the single
nanodomain. Approaches to whole-cell modeling will then be
discussed, with a particular focus on mechanisms of spatial Ca?™
coupling. This discussion will then be expanded to approaches for
modeling variable and heterogeneous sub-cellular structure and
the integration of experimental imaging data. Finally, approaches
to develop simplified, computationally efficient models which
still capture important features of spatial and stochastic Ca?™
handling will be discussed, in both the context of providing
generalizable mechanistic explanations and for performing
tissue-scale simulations of many thousands or millions of
coupled cells. Overall clarity is prioritized over providing
substantial details of all available models and investigations;
thus, this review should not be considered exhaustive. The
reader is also referred to the extensive overview of multi-scale
mathematical and computational modeling methods presented
in Qu et al. (2014).

MODELING
Ca2*+-INDUCED-Ca?*-RELEASE:
DESCRIPTIONS OF RYANODINE
RECEPTORS’ KINETICS

There are multiple descriptions of RyR kinetics which have been
used in computational modeling. The simplest form are two-
state models, which have only a closed/inactivated state and an
open/activated state. Most frequently used are four-state models,
which have more details of refractoriness and inactivation (which
may or may not physiologically occur, discussed in the later sub-
section “Perspectives on model differences”) and can simulate
different potential mechanisms of these behaviors. The model
structure of the RyR is directly related to the type of behavior
that is considered to be behind the appearance of local sparks.
In two-state models, refractoriness is not considered relevant in
the dynamics of initiation and termination of sparks, whereas
refractoriness and more complex gating, that may play critically
important roles in the regulation of spark dynamics, can be
included in four-state and other models. Previous studies and
reviews have compared fundamentally different models of the
RyR regarding their ability to reproduce different features of
the physiology and/or assess the ability of different proposed
mechanisms to explain these features. For example, Stern et al.
(1999) evaluated different Markov-chain model constructions for
reproducing CICR, and Cannell and Kong (2012, 2017) assessed
different mechanisms of Ca?*-spark termination.

This section aims to provide a clear indication of the models
used in various studies by different groups and explain what
the major features of these models’ differences are, in order to

guide the reader through the many studies. The focus is primarily
on those models which are utilized in whole-cell simulations,
rather than those designed specifically to evaluate RyR function
in isolation or in bilayers, such as Zahradnikovd et al. (1999).

Model Structure

The four-state Markov chain RyR model (Figure 3) which
forms the basis for the majority of modeling studies, originally
presented in Stern et al. (1999), is governed by the following
state-equations:

dc *

at 0-Ko-c +C Ker_¢ = C(Ke-o+Ke_¢r) (D

do *

- =CKco+0 Ky o= 0(KoctKy o) ()
dc’

o 0" Ko ¢+ +CKo_¢r = C -(Ker_g +Ker_o) ()

And by definition/conservation:
0 =1-(C+0+C) (4)

Where O, O*, C, and C* represent the four states of the model
and correspond to different physical conditions dependent on the
specific model implemented (e.g., active; refractory; inactivated;
buffer binding state). The release flux, ], is generally given by:

Jrel = ]:Iellax'o'([cau]szz - [C"H]i) ()

Where J,;"* is the maximal flux rate and the subscripts SR
and i denote the SR and intracellular Ca?* concentrations. The
models have the following symmetries (some of which are broken
in further model developments):

Kc_o =Kg_or (6)
Ko—c =Ky _¢ (7)
Ke_cr = Ko_or (8)
Ker ¢ =Ko o ©)

If all of these symmetries are preserved, the description
becomes equivalent to a Hodgkin-Huxley model with two
independent gating variables.

The functional form of these transition rates, including the
variables that they depend on and which states correspond to
release flux, differ between the different implementations. In the
original study by Stern et al. (1999), and henceforth referred
to as the “Stern-like” models, one single state (O) corresponds
to the release flux [equation (5)]; transitions from the closed-
to-open states, which are symmetric for C-O and C*-O, are
dependent on the square of local cytosolic Ca?* (“Ca;” from
herein for brevity and to avoid confusion with notation of
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| RyR models |
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FIGURE 3 | lllustration of RyR Markov-chain models. The four-state, two-state and three-state models are illustrated with the different features highlighted and a
selection of publications in which they are used listed. Block arrows indicate model inheritance.

powers); transitions from the top-to-bottom, also symmetric, are
linearly dependent on the local Ca;:

Kc—o0 = K+ _or = fo(Ca?) = koCa? (10)
Ke_c+ = Ko_or =f1(Ca;j) = ki Ca; (11)
Ko-c =Ky _c» =k (12)
Koo c=Ky_o=ks (13)

Where kq_3 are constants. This model is directly used in, for
example, Nivala et al. (2012a,b, 2015).

Shannon et al. (2004) updated this formulation to introduce
the SR-Ca?* (Cagy for brevity) as a gating variable, which will
be referred to here as “direct luminal gating.” The transition
rates from the closed-to-open states are now functions of Casg
as well as Ca;2, and the transitions from active to inactive (top-
to-bottom) are dependent on both Cagr and Ca;:

ky

Kc—0 = K+ = fa(Ca?, Cagg) = ( - ) Ca? (14

CaSR

Ke_o+ = Ky_o+ = fs(Cay, Casr) = kskcasrCai  (15)

Where

A oSk
kcasg = SR™ — (SR™™ — SR™™) | 1 4{ —2 (16)
Cagr

This formulation is one of the most-commonly used (Alvarez-
Lacalle et al., 2013, 2015; Voigt et al., 2014; Marchena and
Echebarria, 2018, 2020; Sutanto et al., 2018; Vagos et al., 2020,
2021).

Whereas the above model introduced direct luminal gating,
many models include “buffer-mediated luminal gating,” wherein
the Cagr influences gating of the RyRs not directly but rather
mediated through the SR-Ca?* buffer calsequestrin (CASQ),
as introduced by Restrepo et al. (2008) and similar to that
of Gaur and Rudy (2011). The closed-to-open transition rates
have the same form as the original Stern formulation and the
top-to-bottom rates are now dependent on CASQ. Two major
differences are: (1) There are now two open states (O and O*
in the illustration) with the formulation for ], [equation (5)]
updated accordingly [equation (21)]; (2) The constant for the
open transition rate for the lower portion of the model (which
now corresponds to CASQ-bound) is smaller than that of the top,
breaking one of the symmetries in the previous models [equation
(6) is no longer true]:

Kc-o :fé(Caz) = k6Ca%
Koo = f7(Ca®) = k;Ca?

(17)
(18)
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Where

k6 > k7 (19)

And CASQ determines the unbound-bound transition rates:

Ke_¢r = Ko_o+ = fs(Cai, CASQ) (20)
The release flux is now given by:
Jrat = J5% (04 0”) (Case — Cay) 1)

The reader is referred to the work of Restrepo et al. (2008)
for details of the CASQ buffering and gating equations [equation
(20)]. Models which use this formulation include Song et al.
(2015, 2017, 2018) and Shiferaw et al. (2017).

In Sato and Bers (2011) and subsequent studies (Sato et al.,
2012, 2014, 2016), this model was updated in order to reduce the
number of RyRs open during a Ca?* spark:

kgcw2
Ke—o = fz(Ca?) = ——1 22
c-o = fs(Cay) 2 1 cal (22)
k9Ca2
Koo =fo(Cal) = ——— +w 23
ct—o* = Jfo(Cay) 2+ Ca (23)

Where k¢ and w are further constants. The majority of the
models presented in the field - especially those of whole-cells —
implement an RyR model which falls into one of these three broad
categories. It is worth noting that the relatively simple functional
forms of the transition rates given for the different models above
may be modified in studies which aim to fit to experimental
data describing RyR open probability, e.g., Voigt et al. (2014),
Sutanto et al. (2018), and Vagos et al. (2020); these studies contain
further parameters and more complex functions, but their Ca;
and Caggr dependence is still captured in the general forms of the
model given above. Further alternatives and updates exist of these
baseline models. In Colman et al. (2016, 2017a,b) and Colman
(2019), a functionally motivated hybrid was developed wherein
only one state corresponds to the open condition but the luminal
dependence is buffer-mediated rather than direct.

One feature of the models, which is independent of the
fundamental model structure but nonetheless important for
model behavior, is the Hill coefficient, H, to which Ca; is raised by
for the closed-to-open (left-to-right) transition rates. Many of the
models use a simple coefficient of H = 2. However, single-channel
and single-nanodomain studies (Sobie et al., 2005; Cannell et al.,
2013) indicate that H is species-dependent and varies in the range
2-2.8 which may be implemented in some studies.

Alternative Models of the Ryanodine
Receptors

There are alternative formulations to describe RyR kinetics which
either: (1) are not of the form of a four-state model or (2)
introduce further environmental variables to control gating. In
Song et al. (2016), a reduced two-state approximation of the four-
state RyR model was introduced in a study focused on elucidating
long-lasting Ca?* sparks. A reduced, or minimal, two-state
model (Figure 3) was used in studies of single nanodomains

(Greenstein and Winslow, 2002; Walker et al., 2014; Sheard et al.,
2019). In Greene and Shiferaw (2021) a three-state RyR model
(Figure 3) was implemented which does not correspond directly
to a reduction of the four-state model. The model included a
second closed state after the open state, which was introduced
to reproduce “flicker” based on Mukherjee et al. (2012), as well
as containing regulation of the RyRs by Calmodulin (CaM). CaM
was also included in the deterministic model presented in Wei
etal. (2021).

There is also the question of whether allosteric
interactions/cooperativity play a role in RyR gating, with
Marx et al. (2001) demonstrating that the regulatory subunit
FK506-binding protein could functionally couple neighboring
RyRs to underlie coordinated gating. These interactions are
included in many works (Stern et al., 1999; Sobie et al., 2002;
Chen et al., 2009; Greene and Shiferaw, 2021) and have been
proposed as one explanation for self-termination of the Ca?*
spark, as discussed in Cannell and Kong (2017), although as
argued in that review, unlikely to be a major contributor to
this phenomenon.

Numerical Solutions to the Ryanodine
Receptors Model

In common-pool models of the cardiomyocyte, the solutions to
the RyR/LTCC models are typically numerically approximated
using deterministic algorithms such as the forward-Euler
method. These numerical solutions correspond to tracking only
the average state of the system, ie., the proportion of open
RyRs/LTCCs across the whole-cell; information on the state
of individual channels or channel clusters is not preserved in
such an approximation. One motivation for the development of
detailed spatial models of the dyad or cardiomyocyte is to capture
the stochastic (random) nature of individual RyRs/LTCCs as
well as their local control, due to the relevance of both of these
features for both CICR and more complex emergent dynamics
such as Ca*-waves. Thus, deterministic solutions are no longer
suitable. Instead, stochastic algorithms that explicitly account for
randomness and track individual channels are required.

The most straight-forward method is to implement the
Monte-Carlo approach: the state of each individual channel is
tracked directly, and state-transitions are determined based on
random numbers and the probability of transition. For example,
for a two-state RyR model corresponding to only closed (C) and
open (O) states, the algorithm at each time-step (At) might look
like:

Loop over all RyRs:

RAND = generate random number between 0 and 1

IF state is equal to C:
IF RAND < Kc_o x At: state becomes O
ELSE state remains C

ELSE IF state is equal to O:
IF RAND < Ko_c X At: state becomes C
ELSE state remains O

The release flux is then given by the sum of the open
channels in each dyad. This approach is ideally suited to cases
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where each individual channel is required to be tracked, for
example in spatial models of the single nanodomain (Mesa
et al., 2021). However, in larger models, e.g., of the whole-
cell, this then requires the state of ~50 RyRs + ~15 LTCCs
per dyad x ~20,000 dyads to be tracked individually, with
random numbers generated to determine state transitions for
each one, which can be computationally intensive. There are
more sophisticated approaches that can capture these same
dynamics but at a reduced computational cost, such as a
modified Gillespie’s algorithm (Gillespie, 1976; Rathinam et al.,
2003; Nivala et al., 2012a; Song et al, 2019), or the Fokker-
Planck or Langevin equations (Herzel, 1991; Wang et al., 2015),
which can be briefly summarized as the addition of noise to
a deterministic solution. Further approaches to capture the
stochastic nature of RyR dynamics at a reduced computational
cost, suitable for large-scale tissue simulations, are described in
the final section of this review: “Simplified, minimal and tissue
models.”

Perspectives on Model Differences

The disparity between the gating mechanisms of the different
models could have important implications for model dynamics
and thus mechanistic conclusions drawn from these simulations.
Due to inter-model differences in the setup of the whole-cell
(see section “Spatial models of the whole cardiomyocyte”), it
is not necessarily trivial to directly evaluate RyR function, as
dynamics are intricately linked with other model parameters
such as dyadic cleft volume, LTCC formulation/magnitude, local
Ca’* buffering, and spatial Ca?T coupling; an RyR model
often cannot simply be “dropped in” or “swapped out” in
a whole-cell model. One major difference in model function
is the typical number (or proportion) of RyRs that open in
a given cluster during a triggered Ca?" spark, as directly
addressed in the reformulation presented in Sato and Bers
(2011). A similar model structure (e.g., the same four states
and functional dependence on local Ca?* concentrations)
but with different parameters governing the transition rates
and maximal Ca’*-flux rate may lead to very different
outcomes in adaptive function regarding Ca?*-spark dynamics
and homeostasis.

Another difference is the description of RyR inactivation
and refractoriness, corresponding to the multiple approaches
discussed above (e.g., no inactivation, luminal gating, buffer-
mediated gating). One reason for the disparities between the
model structures is the current debate regarding the fundamental
physiological relevance of RyR inactivation (Cannell and Kong,
2017), where there is no strong evidence that significant
inactivation occurs under physiological conditions. However,
there are strong indications of interactions between CaM binding
sites and opening properties of the RyR that may be relevant for
mathematically equivalent states to inactivation: Wei et al. (2021),
for example, demonstrate that inactivation may be mediated by
CaM-Ca?" binding to the RyR and that this plays a significant
role in CaT alternans. An important implication of the model
choice to either include or omit significant RyR inactivation is
the degree to which the junctional SR depletes during a triggered

Ca? T -spark: models which do not include RyR inactivation (e.g.,
Hake et al,, 2012; Cannell et al., 2013) exhibit substantially greater
depletion of local SR-Ca®* concentrations than those which do
include inactivation (e.g., Restrepo et al., 2008; Colman et al.,
2017b; Sutanto et al., 2018). This further highlights the challenge
of evaluating RyR models under the same environmental cell
conditions: the extent of junctional SR depletion will have
large implications on homeostasis when combined with the
specific formulations and parameterization of the Ca>™ buffers,
SERCA and NCX, which primarily control the balance of SR-
Ca’*-refilling and cellular Ca>* efflux. Recent studies have also
highlighted the direct importance of SERCA function for Ca?™
homeostasis and the dynamics of Ca>*" sparks (Hake et al., 2012;
Sato et al., 2016, 2021; Holmes et al., 2021).

A further factor, which has recently been included in Berti et al.
(2017), is the role of other ions such as K+, Mg? ™, Cl~, and the
counter-ion fluxes they facilitate during SR-Ca?>* release which
help to maintain the trans-SR membrane driving force, especially
at rapid pacing rates. It is possible that these dynamics could also
influence RyR refractoriness by modulating this driving force.

Considerations of further complexity, such as the
inclusion/omission of regulation by CaM (or other potential RyR
and Ca?" signaling modulators) can be directly motivated by
the aim of the specific study; it is generally the perspective that
additional complexity should only be included where specifically
required, in order to reduce the influence of the propagation
of unknown errors. However, it could also be argued that a
non-linear, multi-scale complex system such as this presents the
possibility for unpredictable emergent phenomena, which may
depend on the interaction of factors such as CaM with other
variables. In this case, it can be argued that one should aim to
include as many (rigorously derived) components of the system
as is feasible. Perspectives on this are ultimately philosophical
and it would be unwise to disregard either argument.

Whereas the original study of Stern et al. (1999) compared
multiple formulations of the RyR, this necessarily did not
include the more recent updates described above (Shannon
et al, 2004; Restrepo et al., 2008; Sato and Bers, 2011;
Song et al, 2016; Greene and Shiferaw, 2021). Thus, a
comprehensive benchmarking study which determines the
implications of these model differences in relation to multiple
dynamic Ca"-handling-mediated phenomena would be hugely
beneficial. Previous reviews and studies, such as Cannell
et al. (2013), have performed this in specific contexts such
as in the evaluation of the mechanism of termination of
Ca** sparks, but a more holistic benchmarking study which
considers RyR function in the context of multiple relevant
factors simultaneously (such as CICR, Ca?* spark termination,
spatial Ca?* coupling, spontaneous Ca’* spark dynamics,
responses to changes in pacing rate and cell environment,
reproduction of alternans or after-depolarization) has yet to
be performed. Such a study, requiring the whole-cell models
described later in this review, could be hugely valuable
in understanding the features of the different models and
revealing fundamental insight into the physiology of cardiac
Ca’* handling.
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FIGURE 4 | Spatial models of the dyad. (A) lllustration of model structure (left) and different approaches to RyR arrangement (right), ranging from regular lattice
through irregular lattice to free-placement. (B) lllustration of a triggered Ca®* spark occurring in two different RyR arrangements, corresponding to control and
right-ventricular heart failure (RV-HF) directly reconstructed from imaging data. Scale bar corresponds to 50 nm. Reproduced with data from Sheard et al. (2019).

SPATIAL MODELS OF THE SINGLE
DYAD/NANODOMAIN

Only recently have experimental imaging techniques been able
to resolve individual RyRs (Protasi et al., 1998; Baddeley et al.,
2009; Crossman et al., 2011; Macquaide et al., 2015; Jayasinghe
et al, 2018b; Sheard et al,, 2019), enabling the structure of
dyads (including number and arrangement of RyRs) to be
described in detail. However, it is still challenging to correlate
local Ca?* concentration to RyR activity and quantify the
specific fractional opening of RyRs during a typical spark in
imaging data, and optical methods are limited to the close
proximity of the cell surface. Thus, computational models of
the single, spatially distributed dyad are useful to understand
the mechanisms of Ca?* sparks and their dependence on RyR
number and arrangement.

In the original paper by Stern et al. (1999), which evaluated
multiple RyR Markov-chain structures including the four-state
model described in detail in the previous section, dynamics were
evaluated using a spatial model of the nanodomain. The 2D
model was discretized at a resolution of 10 nm, with RyRs being

arranged in a regular lattice with spacing 30 nm (i.e., each RyR
of size 30 nm occupies a 3 x 3 grid at dx = 10 nm; Figure 4A).
Dynamics were evaluated using different numbers of RyRs in the
dyad. Whereas Ca>™ could diffuse within the dyadic space, the
rapid equilibrium approximation was generally implemented in
order to improve computational efficiency, a far more pressing
constraint in 1999 than presently.

In Louch et al. (2010) a 3D cylinder model of the dyad was
employed to assess the causes of dyssynchronous Ca?™ release
in heart failure. The model was combined with AP recordings
from control and heart failure myocytes. They observed that
whereas AP prolongation reduces the driving force for Ca?*
entry through the LTCCs, this is balanced by the increase in
RyR sensitivity which results from steady-state increased SR-
Ca?*. Thus, they conclude that other factors (such as T-system
disruption, see section “Modelling variability in sub-cellular
structure and function”) underlie the loss of spatial synchrony in
the CaT.

A detailed 3D model of multiple structures surrounding
a dyad, reconstructed from electron tomograms of a mouse
ventricular myocyte, was presented by Hake et al. (2012).

Frontiers in Physiology | www.frontiersin.org

March 2022 | Volume 13 | Article 836622


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

Colman et al.

Computational Modeling of Calcium Handling

Whereas not focusing on RyR distribution, the model included
a substantial level of detail in the structures of the junctional
SR (which was split into three parts of the back, release, and
rim locations) and local T-tubules. The model implemented a
phenomenological description of RyR gating as well as local
buffers (including CASQ) and fluxes (including SERCA and
NCX), and revealed the substantial gradients in local Ca?* in
the cytosol which emphasized the importance of the location of
SERCA and its role in facilitating long-lasting Ca>* sparks.

Walker et al. (2014) developed a 3D model of the dyad,
junctional SR and TT based on the previous work of Sobie et al.
(2002) and Williams et al. (2011). Whereas Ca2* could diffuse in
3D, the RyRs were arranged on a 2D pancake (Figure 4A). Similar
to the Stern et al. (1999) model, the spatial resolution was ~10 nm
with minimum RyR-spacing of ~30 nm; RyRs were arranged
on this regular lattice but now in irregular patterns. This study
demonstrated the importance of specific RyR arrangement -
not just total number - on Ca?* spark dynamics and therefore
highlighted the importance of Ca?* diffusion within the dyad.

A similar model was also presented in Cannell et al. (2013)
and Laver et al. (2013), which included a network SR with
SERCA and its associated intracellular uptake flux. The RyR
model was specifically fit to Ca>* concentrations corresponding
to CICR and thus not suitable for quiescent/spontaneous spark
analysis. These models supported the mechanism of induction-
decay for Ca?*-spark termination, described mathematically
by Hinch (2004) and referring to the mechanism by which
reduced release flux as the SR depletes results in increased
closed-times of adjacent RyRs and thus an increase in the
probability of spontaneous spark termination, as a direct
consequence of the steep relationship between local Ca?* and
the closed-to-open transition rate for the RyRs. This work also
demonstrated that other more complex mechanisms (such as
inactivation of the RyRs, discussed earlier) were not necessary
to explain experimental observations, although they do state
that they likely still play a role facilitating multiple points
of control.

In Sheard et al. (2019) a 2D model was presented based directly
on super-resolution imaging data. The model was also discretized
at a resolution of 10 nm with minimum RyR-spacing of 30 nm.
In this case, RyR positions were not arranged in a lattice, but
were freely placed, directly determined by experimental images
of multiple dyads in both control and right-ventricular heart
failure (RV-HF) conditions (Figure 4). This model also included
differentiation between non-phosphorylated and phosphorylated
RyRs (modeled as a simple increase in sensitivity to Ca®T), and
results support the conclusions of both Cannell et al. (2013)
and Walker et al. (2014) regarding the importance of both
number and specific arrangement of RyRs for triggered Ca®*
spark dynamics and fidelity. Mesa et al. (2021) also investigated
the functional impact of selected phosphorylated RyRs within
a cluster, indicating that they can play a compensatory role in
recovering healthy spark dynamics which had been lost through
cluster disruption. Iaparov et al. (2021) developed a 2D model
which included further possibilities for RyR arrangement and
spacing (including both approaches outlined above), number,
and dyad extent. They found that Ca?>* spark occurrence varied

with the spatial arrangement, but did not consistently correlate
with total RyR number, the magnitude of Ca>* current or the
surface density. This model included allosteric interactions and
the authors found RyR coupling strength to be a major factor
underlying sparks.

Challenges and Future Directions;

Importance of Spatial Ca2* Coupling

As the experimental structural data improves in resolution and
quality it will become more feasible and important to develop
models based directly on these data, requiring semi-automated
image processing pipelines to produce these geometries in both
2D and 3D. This will enable the models to be applied to
more specific conditions including disease states, with many
pathologies producing complex and heterogeneous subcellular
remodeling. However, there are still numerous challenges in
regards to model validation of Ca?* spark spatio-temporal
functional properties. Because of the difficulty in measuring Ca?*
function and underlying sub-cellular structure simultaneously,
computational modeling can be useful to help fill in the gaps to
relate structure to function, but for the same reasons, challenging
to directly validate. It is worth highlighting that the models
of single nanodomains do not reproduce well experimentally
measured values for the full width half maximum (FWHM) of
Ca?™, generally resulting in values of ~1 wm which are below
the 1.8-2.2 pum in experiment. Hoang-Trong et al. (2021) for
example did simulate a realistic feature of 1.85 pwm, but this
required using a large RyR cluster combined with two smaller
satellite clusters. However, due to spatio-temporal limits on the
resolution of functional imaging experiments, sparks smaller
than given sizes are not detected experimentally with any given
accuracy. This generates an arbitrary experiment-dependent cut-
off that affects the spark distribution and thus makes comparisons
between simulation and experiment non-trivial.

A potential limitation of these models is the high spatial-
resolution (and thus small voxel/element volumes) required
to model RyR distribution: whereas this does not pose a
problem during CICR, in which local Ca?* concentration is
relatively large, it does pose a problem at resting/quiescent Ca**
levels, where the low Ca?*concentration of ~0.1 WM in small
volumes of 10721-10718L (Scriven et al., 2013) corresponds
to the presence of countable numbers of Ca?* ions (i.e.,
ion distribution is discrete and the notion of a well-defined
concentration is debatable); similar considerations may also
apply in the junctional SR during CICR when its Ca?T load
has been depleted (Hake et al, 2012; Cannell et al, 2013).
Continuous approximations may therefore no longer be valid,
and simulations of spontaneous Ca?*-sparks, in particular,
may be non-trivial to implement and analyze. Hybrid schemes
which implement spatial stochastic methods to capture the
trajectories of individual particles, such as presented in skeletal
muscle simulations implementing the Mcell framework (Kerr
et al., 2008; Holash and MacIntosh, 2019), may offer solutions
to this challenge.

These spatial nanodomain models have demonstrated the
importance of specific RyR arrangement — and not just the total
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number - in determining Ca?* spark dynamics. This presents
a challenge for the translation to whole-cell modeling, as it is
not feasible to simulate ~20,000 spatially distributed dyads in a
whole cell at resolutions of ~10 nm, even if this high resolution
is only adaptively applied in the local dyadic space. Therefore, in
order to understand how a heterogeneous system of dyads with
different RyR numbers and spatial arrangements coordinates in
a whole-cell, coarse-graining methods will need to be developed
which capture the features of this dyad heterogeneity at a reduced
computational cost.

SPATIAL MODELS OF THE WHOLE
CARDIOMYOCYTE

Spatial models of the cardiomyocyte describe the cell as a 2D area
/ 3D volume throughout which dyads are distributed and within
which Ca?* can diffuse in both the cytosolic and SR spaces. It
is useful now to bring in the terminology of a Ca’*-release-
unit (CRU). Whereas some studies use this to refer to the dyad
or individual RyRs, cellular-scale modeling studies commonly
refer to all of the intracellular and SR compartments associated
with a single dyad as a CRU, i.e, it can be thought of as the
entire volume of cell surrounding each dyad. Typically, this will
contain the network SR (NSR), bulk cytoplasmic space (cyto),
and the restricted volume of the dyad (treated as a common-
pool). It is also common to include a distinct junctional SR
compartment (JSR), as well as other optional sub-spaces, such as
the sub-sarcolemma volume just below the surface or T-system
membrane, included in order to preserve the higher local Ca?™
concentration close to a dyad in regions where the membrane
fluxes are located. A major focus of this section is to discuss the
various approaches to modeling sub-cellular structure in regards
to spatial Ca®* coupling.

Fundamental Model Equations of Ca2*

Transport and Homeostasis
Calcium homeostasis in the compartments is described by:

d[c 2+]c 0
% = ﬁcyto (DVZ[C(,IZ"‘]Cyfo + d)cyto + (VSS/chto) ]55)
(24)
dic 2+
% = Pss (DVZ[Ca2+]ss + dss — Jss + (Vds/vss) Jas)
(25)
d[Ca*T),
% = Busr (DVZ[Ca2+]n3R + Gusr — (Vjsy/vnsr) ]jSR)
(26)
dlc 2+
% = DV?[Ca* s + bas — Jus 27)
d[Ca**
@ = Bjsr (dysr + Jjsr) (28)

dt

Transfer between compartments is given by:

Jio = ([Ca*]gs - [Ca?*],,,,) T (29)
Jas = ([C“2+]ds - [C“2+]ss) T;sl (30)
Jisr = ([C“H]nSR - [Ca2+]jSR) TJ‘_Sflz (31)
And the general form for the reaction terms are:
beyto = INaCa + Jpca + Jcab — (Jup — Jieak) — Jtrpn (32)
dnsk = (Jup — Jieak) (vi/Vnsr) (33)
dss = INaCa_ss + JpCa_ss + Jcab_ss (34)
dds = Jrel + JcaL (35)
dsr = —Jrel (Vas/Visr) (36)

Where cyto, SS, nSR, ds, and JSR refer to the Ca?t
concentrations in each of the (sometimes optional)
compartments, B refers to the instantaneous buffering term,
¢ refers to a general reaction term in each compartment, J,
refers to transfer flux between compartments, V? is the spatial
Laplacian operator in 2D or 3D, describing coupling between
CRUs, D is the diffusion constant, v refers to the volumes of
the compartments, and t to the time constants of diffusion.
The concentration in the dyadic space can be described by
a quasi-steady-state approximation, motivated by the rapid
equilibration of Ca?* in this small volume. By setting:

d [Ca2+]ds
T =0 (37)

An approximation for equation (27) can be obtained as in
Hinch (2004):

Tds- (krel- [Caz+]j3R + ]CaL)
(1 + Tds~krel)

Where ki is defined by Jye = ky|(Casr-Cags) and therefore
corresponds to:

[Ca2+]ds = [Caz+]ss + 38)

Kyel = NRyR_0-8RyR-V, (39)

Where gryr is the conductance of a single RyR channel and
nryR_o is the number of open RyRs in the dyad (corresponding to
states O or O+0O, dependant on the RyR model implemented).
This approximation enables less constraint on the time-step for
the simulation, allowing faster simulations to be performed.
A limitation of this approximation is that the introduction of
this type of equation leads to a lack of ionic Ca?>* conservation
in the models; similar issues arise with the implementation
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of the rapid buffering approximations [ terms in equations
(24) - (28)]. Models that try to analyze homeostatic properties
require that the computing algorithm conserves ions at all orders
(Conesa et al., 2020).

Ca2*-Voltage Coupling; Incorporation
With an Action Potential Model

In general, it is only the Ca®T concentrations and Ca?* -handling
channels which are described spatially, with the membrane
voltage (Vi) and other ion-currents/concentrations assumed to
be homogeneous throughout the cell. This is justified by the fast
diffusion of Vy, along the cell membrane, indicating that it is
valid to assume all channels “see” the same global voltage, at
least, in the time-frames considered by the models; moreover, the
Debye length in cardiac cells is approximately 1 nm (Mori et al,,
2008). Detailed electro-diffusion models, such as implemented
in simulations of neurons (Pods et al.,, 2013), are therefore
not generally used or required for cardiomyocytes. The spatial
description of the Ca?* handling system can simply replace
the equivalent components of common-pool models and can
therefore be integrated with either simplified descriptions of the
AP (such as assuming it follows a simple, analytical form) or
biophysically detailed models of the primary ion currents and
global ionic concentrations.

The Ca®* and voltage systems are coupled through the
influence of Vy, on the activity of the LTCCs and NCX (and any
other voltage-dependent Ca>™ channel), and feedback of Ca?™
into the voltage is captured if a biophysically detailed model of
the AP is included, wherein I, and Inyca directly influence
V. Thus, the interaction between global voltage and local Ca?*
dynamics can be described in these models, enabling study of the
mechanisms of, for example, Ca>*-induced AP duration (APD)
alternans and afterdepolarizations (Eisner et al., 2009, 2017; Qu
etal., 2014).

Whereas explicit diffusion of Vp, along the membrane of
a single-cell has generally not been included in the described
models, this has been simulated in models presented by Crocini
et al. (2014) and Scardigli et al. (2018). These studies simulated
the impact of disruption of the T-system in disease on the ability
of the AP to propagate along the T-system into the interior
of the cell, indicating that AP propagation failure can directly
contribute to a loss of intracellular Ca?* synchronization.

Model Discretization

Numerical solutions to the spatio-temporal reaction-diffusion
equations above require the cell to be described in a discretized
space. Models can be broadly categorized as being one of two
approaches (Figure 5A):

(1) “CRU-grid” or “compartmentalized” models, wherein the
spatial resolution is ~ 1 pm x 1 pm x 2 pm and each
pixel/voxel corresponds to a single CRU;

(2) “Sub-micron” or “free-diffusion” models, wherein the
volumes of the SR and cytoplasm, and SS if present, are
discretized within each CRU.

Details of each approach are described below. In general,
the CRU-grid approach is more computationally efficient and
consequently suitable for statistical simulations and high-
throughput, population-cohort models of spatial structure
and heterogeneity. Its simplified structure also facilitates the
dissection of the mechanisms by which various components
contribute to macroscopic function. The advantages of the sub-
micron approach are that one can more precisely control aspects
such as heterogeneous inter-dyad spacing and co-localization of
different channels, they have a more accurate recapitulation of
Ca?™ diffusion and cellular geometry, and are better suited to
direct incorporation of experimental imaging data.

Ca?*-Release-Unit-Grid Models

In these models, each voxel contains all of the compartments
contained within a CRU. Spatial coupling is described using
the isotropic finite-difference method (FDM), or approximations
thereof. Each CRU is coupled to its four or six nearest-neighbors
(for 2D or 3D, respectively) along the principal axes:

DVZ[Ca2+]c:cyto,nSR,(SS)
D i=3

%f > D> ((THCa T 4+ [Ca’ ) — 29Ca’t],)  (40)
idx

i=1

Where ¢; refers to the three dimensions (x,y,z), the subscript
¢ refers to any compartment which is spatially coupled (i.e., the
bulk cyto and NSR spaces and any coupled sub-space), D is the
diffusion coefficient and dx is the spatial step (i.e., the resolution).
The diffusion term (D/dx?) is often approximated with a time-
constant of diffusion between spatially coupled compartments
(Tc,ei ):

DV [Ca®t ). ~ Jeq i

> (Ei“[cﬁ]c o [Ca e - zel»[cmc) (a1)
i=1

Te,e

Note that whereas these approximations are derived from
the isotropic FDM, the models are often discretized at a larger
resolution in the longitudinal direction than the transverse,
reflecting the larger spacing of dyads along the cell compared
to along a TT. Thus, dx? in equation (40) or T in equation (41)
can be larger in the longitudinal (z) direction compared to the
transverse. This therefore introduces an anisotropy (preferential
propagation along the transverse direction) despite the model
equations being derived from isotropic approximations.

Sub-Micron Models

In these models, each CRU is further discretized into voxels or
elements. Not every voxel necessarily contains all compartments.
For example, nanodomains/jSR will only be present in a small
subset of voxels, and in some models, the T-system or even nSR
may also only be present in a subset of voxels. Spatial coupling
is solved using FDM [equation (40)] on regular structured grids
or using the more complex finite element method (FEM) on
structured or unstructured meshes. They can be discretized at
different choices of resolution, generally between 0.05 and 0.2 um
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FIGURE 5 | Discretization and CRU coupling of whole-cell models of spatial Ca2* handling. (A) lllustration of the CRU-grid and sub-micron approaches to model
discretisation. Top panels illustrate the whole-cell whereas bottom panels demonstrate the discretisation of the cell into either CRUs or sub-CRU voxels.

(B) lllustration of different model structures for inter-CRU coupling. The primary pathway of CRU coupling in the intracellular space is shown by the colored-block

arrows. Note that within the cell, coupling is symmetric in the +-axes directions; a single direction only is shown for the purpose of clarity. Cell image for illustration

(Nivala et al., 2012a, 2015; Colman et al., 2017b; Marchena and
Echebarria, 2018, 2020; Hoang-Trong et al., 2021), although there
are other intermediary approaches, such as Sutanto et al. (2018)
which uses the CRU-grid approach in the transverse direction but
is discretized at half-CRU distance in the longitudinal direction.

Model Compartment Structure:

Inter-Ca2*-Release-Unit Coupling

In addition to model discretization, there are important
differences in underlying model structure, notably regarding
the mechanisms of inter-CRU coupling. Different structures of
inter-CRU coupling lead to variable strengths of spatial Ca?™
coupling, in part due to the variable peak Ca?* concentrations
in the compartments selected for coupling: compartments which

have a smaller volume and are more directly coupled to the
dyad exhibit larger CaTs and thus stronger inter-CRU coupling
compared to larger compartments which are less directly coupled
to the dyad. In this context, coupling strength refers only to
the intracellular space, not the SR, the spatial coupling of which
is independently controlled. Broadly, there can be considered
four different structures which the models follow (Figure 5B
and Table 1):

Type 1

The simplest model structure comprises of the four
compartments of the bulk cytoplasm and dyadic space and
network and junctional SR. The bulk cytoplasm and network SR
spaces are the only ones which are spatially coupled throughout
the cell. These models contain the weakest coupling due to
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TABLE 1 | Summary of properties of whole-cell models of spatio-temporal Ca2+

handling.

Publication CRU-coupling Discretisation T-system Celltype
Alvarez-Lacalle Type 2 CRU-grid Full Ventricle
etal., 2015

Colman, 2019 Type 3 CRU-grid Full Generic
Colman et al., 2016 Type 3 CRU-grid Variable Atria
Colman et al., Type 3 CRU-grid Full Ventricle
2017a

Colman et al., Type 3 Sub-micron  Realistic Ventricle
2017b

Conesa et al., 2020 Type 2 CRU-grid Full Ventricle
Gaur and Rudy, Type 4 CRU-grid Full Ventricle
2011

Hoang-Trong et al., Type 1 Sub-micron  Detailed Ventricle
2021

Greene and Type 2 CRU-grid Variable Atria
Shiferaw, 2021

Marchena and Type 1 Sub-micron Variable Atria
Echebarria, 2018,

2020

Nivala et al., 2015 Type 1 Sub-micron Variable Ventricle
Nivala et al., Type 1 Sub-micron Full Ventricle
2012a,b

Restrepo et al., Type 2 CRU-grid Full Ventricle
2008

Sato et al., 2016 Type 2 CRU-grid Full Ventricle
Shiferaw et al., Type 2 CRU-grid Variable Atria
2017, 2018, 2020

Singh et al., 2017 Type 2 CRU-grid Variable Ventricle
Song et al., 2015, Type 2 CRU-grid Full Ventricle
2016, 2017

Song et al., 2018 Type 2 CRU-grid Variable ~Generic/Ventricle
Song et al., 2019 Type 2 CRU-grid Variable Ventricle
Sutanto et al., 2018 Type 4 Hybrid Variable Atria
Vagos et al., 2020, Type 4 CRU-grid None Atria
2021

Voigt et al., 2014 Type 4 CRU-grid None Atria
Williams et al., 2011 Type 1 CRU-grid Full Generic/Ventricle

the coupling of bulk cytoplasm only, which contains Ca?™"
concentrations of the same order of magnitude as the whole-cell
average. Models using this include Nivala et al. (2012a,b, 2015).

Type 2

Many models also include a sub-sarcolemmal subspace from/into
which the other membrane fluxes (NCX and the plasmalemmal
Ca?* pump) act. This subspace has a smaller volume and higher
Ca’*t concentrations at peak than the bulk cytoplasm. This
sub-space is generally coupled between CRUs in the transverse
direction only, i.e., along the TTs. Longitudinal coupling of this
sub-space may be present where ATs are modeled, but does not
by default occur for every CRU throughout the cell. Coupling
strength is higher than the simplest type 1 models due to the
larger CaT in this sub-space. Models of this type include Song
etal. (2015, 2016, 2018).

Type 3
Other models implement a sub-space which couples CRUs
in both transverse and longitudinal directions independently

of the presence or absence of T-system/SL. Introduced in
Colman etal. (2017a,b) and Colman (2019), this sub-space
contains fewer buffers and represents potential pathways between
dyads around the intracellular buffers. Given the reduced
buffering (higher CaT peaks) and coupling in all directions,
these models have stronger inter-CRU coupling than those which
contain a sub-sarcolemmal subspace only.

Type 4

Finally, other models have more direct inter-CRU coupling
between dyads, or SR-release spaces (Gaur and Rudy, 2011; Voigt
et al., 2014; Sutanto et al., 2018; Vagos et al., 2020). Due to this
direct spatial coupling of the compartment into which release
occurs, these models have the strongest spatial coupling.

This classification is simplified, but captures the major features
of the various approaches. For example, the Heijman-lab models
(type 4) were originally designed to represent atrial cells with no
T-system: interior compartments did not contain the SL fluxes
or associated sub-space. However, models of type 1-3 can be
generalized to match this structure by removing these same SL
fluxes and associated sub-space (where present) from interior
CRUs, e.g., as in Colman et al. (2016), Shiferaw et al. (2017), Song
et al. (2018), and Marchena and Echebarria (2020). Similarly,
the Heijman-lab models can also be generalized to incorporate
a T-system by the inclusion of the SL fluxes and sub-space in
interior CRUs, e.g., as was performed in Sutanto et al. (2018).
Thus, the above types represent four fundamentally different
approaches to inter-CRU coupling, and can be generalized to
any cell structure, containing, for example, full, no, or variable
T-system density (see next section “Modeling variability in sub-
cellular structure and function”).

Implications of Model Structures

One major feature of the differences between these models is
the relationship between RyR sensitivity, inter-CRU coupling
strength and the size of the CaT in normal pacing, which
has significant implications for the robustness of inter-CRU
Ca** propagation. Broadly, models with weaker inter-CRU Ca?*
coupling (type 1-2 above) tend to contain either a physiologically
sized CaT and operate at the threshold of Ca?™ propagation, or
contain a substantially larger CaT (>2-8 M) with more robust
Ca’* propagation (Nivala et al., 2015; Song et al., 2015; Marchena
and Echebarria, 2020). Alternatively, widespread initiation of
CICR (reflecting an extensive T-system bringing LTCC close
to RyR throughout the cardiomyocyte) contributes to robust,
synchronized Ca®™ release in some of these models. Models with
stronger inter-CRU coupling (type 3-4 above) tend to contain
more robust Ca?* propagation while maintaining physiologically
sized CaTs (i.e., below 1 pM), as in Voigt et al. (2014), Colman
etal. (2017a), Colman (2019), and Vagos et al. (2020). Such robust
propagation is particularly relevant when simulating cells without
an extensive T-system that rely more heavily on fire-diffuse-fire
mechanisms for Ca?T-wave propagation, such as in the atria.
The implications of these differences are far-reaching: Ca?™
propagation is relevant for graded release of CICR, the dynamics
of CaT alternans, success or failure of triggered Ca’* wave
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propagation into regions without T-system, and the dynamics of
spontaneous Ca?* sparks and waves.

These features and limitations, generally discussed openly in
the original papers, do not detract from the ambitions of the
various studies nor question their analyses, as model choices are
motivated by the focus of the specific study. It is important to
note that all approaches are capable of reproducing all of the
phenomena described above, including properties such as the
statistics of SCRE and dynamics of alternans, although various
model parameters are likely to be substantially different in order
to reproduce these same macroscopic features. Nevertheless, it
is still important to carefully consider the motivations of the
study for model selection. As an oversimplified example, if the
ambition is to study Ca?*-voltage interactions during SCRE or
alternans, it may be best to prioritize CaT magnitude (as this will
determine the degree of Ca?T-induced inactivation of I, and
the magnitude of Incx which feedback into the voltage) and use a
more “functional” description of inter-CRU coupling (types 3-
4) in order to maintain robust Ca** propagation. However, if
the focus of the study is on the mechanisms and implications
of inter-CRU coupling then the simpler and (potentially) more
physiologically justified inter-CRU coupling structures (types 1-
2) may be prioritized. These considerations may be particularly
relevant for the development of atrial cell models and those with
variable T-system density, and will be discussed in this context in
more detail in the next section.

These disparities and compromises indicate that there are
fundamental properties of the CaT and inter-CRU coupling
which we do not fully understand, and these gaps in our
understanding and model differences reflect the large degree
of uncertainty in the experimental data on which the models
are based. There is an important possibility that different
internal structures need different behavior at the dyadic level
since weaker coupling generally requires stronger transients to
reproduce wave-like propagation. This might lead to important
model-dependent conclusions on new research issues. As models
become more sophisticated, getting closer to genuine cell- and
species- specificity (indeed as more data become available), and
are applied in more complex and clinically oriented studies, it
will become imperative to solve these issues and develop models
which include fully physiologically justified descriptions of RyRs
and spatial Ca?* coupling. Further to this, it is these authors
opinion that future studies would do well to implement multiple,
disparate models in order to navigate the limitation of model-
dependent conclusions.

MODELING VARIABILITY IN
SUB-CELLULAR STRUCTURE AND
FUNCTION

Cardiomyocytes demonstrate a large degree of inter-cellular,
inter-subject and inter-species heterogeneity in properties such
as ion-channel expression and sub-cellular structure, and recent
studies have highlighted the importance of including such
variabilities in, for example, predictive models of pharmacology
(Muszkiewicz et al., 2016; Passini et al., 2017). This section

will describe how heterogeneity in sub-cellular structure can be
captured using models of spatial Ca?™ cycling.

T-System Variability: Models of Atrial and
Remodeled Ventricular Myocytes

The structure and density of the T-system is one of the most
important factors which determines sub-cellular dynamics. In
healthy ventricular myocytes the T-system is generally robust
and dense throughout the volume of the cell. However, in
atrial myocytes and diseased ventricular myocytes the T-system
can be substantially sparser and more variable (Lyon et al.,
2009; Richards et al., 2011; Gadeberg et al., 2016; Singh et al.,
2017). This reduction in T-system density is generally correlated
with alterations to the CaT (primarily, a prolonged time-
to-peak, reduced spatial synchronization, and often a small,
sometimes large, reduction in magnitude) and possibly linked to
an increased vulnerability to pro-arrhythmic dynamics (Trafford
et al., 2013; Gadeberg et al.,, 2016; Shiferaw et al., 2017, 2018).
In these conditions, triggered Ca?* sparks will occur only in
regions of the cell where LTCCs are closely coupled to RyRs
[although even these regions may not exhibit triggered sparks
if the AP fails to reach them (Crocini et al., 2014)]. Ca2t
may then propagate into regions without the T-system, i.e.,
where orphaned RyRs are found without coupling to the LTCCs,
through spark-induced-spark triggered Ca’>* waves, resulting
in “u” or “w” shaped linescan images (Figure 6). However,
Ca’?" may also fail to propagate as a triggered wave, leading
to regions of the cell which do not undergo substantial Ca’™-
release which consequently underlies a substantially smaller
whole-cell CaT. The conditions which either enable or inhibit
triggered Ca’t-wave propagation, which may be species-,
cell-, disease-, and environment-dependent, are unclear from
experimental studies alone, and these analyses form the focus of
many computational studies which implement variable T-system
density and structure.

Implementation of variable T-system structure is relatively
straight-forward in these spatial models of Ca>* handling, for
both the CRU-grid and sub-micron approaches. The inclusion
or omission of a TT or AT from a CRU or voxel/element can
be trivially implemented by either the inclusion or omission of
the membrane Ca?* fluxes (LTCCs, NCX, Ca?>* pump) and
any associated sub-sarcolemma sub-space. Thus, one needs only
create a map which describes which CRUs or voxels/elements
contain a TT or AT. Creation of this map could be through
random selection, a T-system generating algorithm, or directly
based on experimental imaging data.

Modeling Atrial Cardiomyocytes

Atrial cells exhibit variable T-system density in both control
and disease conditions (Richards et al., 2011; Park et al., 2020),
and thus computational models of atrial cells tend to either
not include the T-system or explicitly model its variability.
Koivumiki et al. (2011) developed a simplified, 1D model of
the atrial myocyte which captured the propagation of Ca?™
waves from the surface to the interior. The deterministic
model contained four sub-cellular compartments as a coarse-
grained discretisation of the transversal direction of the cell.
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FIGURE 6 | Models of variable T-system density in atrial and remodeled ventricular myocytes. (A) Experimental data demonstrating “u” waves in pig atrial myocytes,
and the corresponding local CaTs at the surface (black) and interior (gray) of the cell. Data is from Gadeberg et al. (2016). (B) Dynamics in different computational
models of atrial cells, illustrating recapitulation of “u” waves, dependence on T-system density, and Ca?* silencing and CaT alternans. Data from Colman et al.
(2016); Marchena and Echebarria (2020), and Vagos et al. (2021). (C) Experimental and simulation data from remodeled ventricular myocytes (Singh et al., 2017),
demonstrating a loss of T-system density and associated loss of spatial synchrony of the CaT, in relation to the Organizational index (Ol; experiment) and the
proportion of CRUs associated with LTCCs (g; simulation).
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Colman et al. (2016) implemented an atrial cell model with
variable T-system density in a “type 3, 3D CRU-grid model.
Variable T-system structure was crudely implemented by
removing patches of the T-system of variable and controllable
size within the cell, based on randomly generated seeds. This
model demonstrated “u” and “w” linescans during normal pacing
(Figure 6), a delay in the time-to-peak, and a small reduction in
the magnitude of the CaT as T-system density decreased. CaT
alternans and SCRE were found to increase as T-system density
decreased and the specific dynamics were highly controlled by
the structure: alternans involved alternating between successful
and failed Ca?* propagation into the non-T-system regions, and
spontaneous Ca’>" waves preferentially emerged from regions
withouta TT or AT.

The atrial models developed in the Heijman-lab (Voigt et al.,
2014; Vagos et al., 2020) contained no T-system by default. These
models, of type 4 structure, demonstrate generally robust Ca?™
propagation into the cell interior, the mechanisms and sensitivity
of which were investigated in detail in Vagos et al. (2020) and
further expanded on in Vagos et al. (2021). A mechanism of CaT
alternans similar to that described in Colman et al. (2016) was
observed (Figure 6). Sutanto et al. (2018) expanded the approach
by incorporating RyR/LTCC expression/distribution based on
experimental imaging data (see later sub-section “Pipelines for
image-based modeling”), as well as the inclusion of variable
T-system in the interior of the cell, demonstrating the important
role of both TTs and ATs in facilitating Ca®* propagation.

In a series of studies which integrated computational
modeling with experimental functional measurements of atrial
cell dynamics Shiferaw et al. (2017, 2018, 2020) comprehensively
investigated the mechanisms and sensitivity of triggered Ca®*
wave propagation using a model of heterogeneous T-system
density, in combination with other factors such as B-adrenergic
stimulation. In brief, these studies demonstrated rate-dependent
triggered Ca?* waves emerging in SR-Ca T overload conditions.
It is argued that the emergence and dynamics of triggered
Ca?* waves exhibit a highly non-linear dependence on SR-Ca?*
load and that this feature of atrial cells contributes to dynamic
instabilities which may be pro-arrhythmic.

Marchena and Echebarria (2018, 2020) also developed
models of the atrial cell using a type 1 sub-micron approach.
A comprehensive analysis of the relationship between the
fractional area occupied by the T-system and the magnitude
and morphology of the whole-cell CaT was provided (Figure 6).
These studies indicated that SR-Ca®* load was unaffected by
T-system density and that reduced CaTs were a consequence of
failure of Ca®>*-wave to fully propagate from the cell periphery
into the interior; however, Ca’*-release gain was increased
in detubulated cells as a consequence of the activation of
at least some orphaned RyRs. No significant differences in
spontaneous Ca?* spark dynamics were found, indicating that
experimental observations of heterogeneous spark dynamics
(Hiser et al., 1996; Kirk et al., 2003; Brette et al., 2005) could
be explained by different kinetics or regulation of RyRs in
membrane and non-membrane regions, not captured in the
models. This is consistent with Brandenburg et al. (2016) and
Sutanto et al. (2018) which show, in experiment and modeling,

that RyR hyperphosphorylation contributed to these regional
differences.

Modeling Ventricular Cardiomyocytes With
Disease-Related T-System Remodeling

In a combined experimental-computational study, Wagner
et al. (2012) characterized the remodeling of sub-cellular
structure (T-system properties and other related proteins
such as junctophilin) post myocardial-infarction (MI). They
observed a progressive, time-dependent post-MI increase in
the cross-sectional area of individual T-tubules, a decreased
expression of junctophilin, an orphaning of RyR clusters,
and uncoupling of CICR. Simulations were performed using
the previously presented model of Williams et al. (2011),
which implemented the simplest type 1 structure at CRU-
grid resolution. Remodeling was incorporated by an increased
spacing between TTs and RyRs in a subset of the model’s
compartments. Simulation results demonstrated that RyR
orphaning contributed to post-MI associated AP prolongation,
especially when combined with remodeling of NCX and
SERCA, as well as reduced SR-Ca’* load and increased
Ca?*-leak, potentially contributing toward arrhythmogenic
afterdepolarizations. However, the changes to TT cross-sectional
area were not captured in this model and require more detailed
models, discussed in the later sub-section: “Toward realistic sub-
cellular structure.”

Nivala et al. (2015) implemented a loss of the T-system
representing remodeled ventricular myocytes using a sub-
micron, type 1 model. Voxels containing LTCC:s (i.e., dyads) were
randomly selected for removal of the membrane components.
This study demonstrated that disruption of the T-system led
to perturbed spatial Ca’>™ handling (delay in the time-to-peak
and slightly reduced magnitude of the CaT) which was more
pronounced when combined with remodeling of whole-cell
parameters associated with heart failure.

Song et al. (2018) expanded on the work of Nivala et al. (2015)
using a type 2 CRU-grid model. In this study, an algorithm
was developed to generate more realistic variable T-system
structures. Results were largely concurrent with the previous
studies, with the major differences that: (1) a more substantial
reduction in CaT amplitude was observed in detubulated
cells; (2) a biphasic relationship between T-system density and
arrhythmogenic dynamics was observed, wherein intermediate
densities demonstrate the most instabilities.

Singh et al. (2017) combined experimental measurements
and computational modeling to explore the relationship between
T-system density and the features of the CaT in a rat
ventricular model of the progression of heart failure (Figure 6C).
Experimental measurements, in agreement with their previous
study (Shah et al, 2014), demonstrate that the CaT exhibits
a slower upstroke and reduced magnitude associated with
substantial loss of the T-system, but Ca’t propagation is not
silenced. The computational (type 2) model was in strong
agreement with these observations, revealing a non-linear
relationship on both distribution of release units and separation
between LTCCs and RyRs.
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Model Parameterization

Differences in the dynamics and sensitivity of triggered wave
propagation observed in the models can be largely related to
the underlying model structure (type 1-4 as described in the
previous section). The development of models of atrial myocytes
presents a major challenge in this context, ie., in obtaining
robust triggered Ca?* wave propagation with physiologically
sized CaTs but without an over-propensity for spontaneous
activity. In the Colman-lab and Heijman-lab models, stronger
inter-CRU coupling (type 3-4) was implemented for this
purpose, as it facilitated triggered Ca’t wave propagation
with physiologically sized CaTs. Without this strong inter-
CRU coupling, it was not possible to reproduce stable Ca?™
homeostasis during regular pacing while maintaining robust
Ca’* wave propagation and physiological CaTs without also
observing highly arrhythmogenic spontaneous activity — either
the spontaneous spark rate or Ca’*-wave rate was too high.
Type 3-4 models somewhat solve this through the inclusion of
these stronger coupling mechanisms, but also tend to exhibit low
spontaneous spark rates and a higher probability for a spark to
develop into a full wave. This indicates the possible physiological
relevance of stronger coupling (e.g., pathways between buffers
and/or along the SR membrane), but this has not been supported
with imaging experiments.

It is generally assumed triggered waves should propagate in
normal conditions in healthy atrial myocytes, but the validity
of this assumption and whether it also translates to remodeled
ventricular myocytes is not clear. It is worth noting that
different experimental observations cover the range of behavior
exhibited by these models, with some experiments observing
generally robust triggered Ca?*-wave propagation with “u” or
“w” waves and only a small reduction in the magnitude of the
CaT in cells with low T-system density (Louch et al., 2010;
Trafford et al., 2013; Crocini et al., 2014; Gadeberg et al,
2016; Setterberg et al., 2021), whereas others demonstrate more
variability and sensitivity of triggered Ca’" waves in many
different pacing conditions, associated with substantially smaller
CaTs in detubulated cells in normal pacing conditions (Brette
et al., 2005; Shiferaw et al., 2017).

Toward Realistic Sub-Cellular Structure
Modeling Cellular Contraction, Mitochondria and
Energetics

Two components of the structure-function relationships
governing cardiac cellular electrophysiology which have not
yet been discussed in detail are the myofilaments (and related
contractile apparatus) and the mitochondria (and associated
localized buffering and energetics). Okada et al. (2005) developed
a FEM-based model of cellular contraction associated with
intracellular Ca®>* waves, enabling investigation of the impact of
cell shortening on Ca?*-wave velocity. The model also revealed
the potential for spiral Ca?* waves which could maintain
arrhythmicity. Hatano et al. (2011, 2012) expanded this model
to include realistic local mitochondrial Ca>* buffering and ATP
production, T-tubules, SR structure, and myofilaments. These
models revealed slow changes in the average mitochondrial Ca?*

during the cardiac cycle and that asynchronous contraction
caused by a large detubulated region can lead to impairment
of myocyte contractile efficiency. Recently, Xie et al. (2018),
Song et al. (2019), and Pandey et al. (2021) developed CRU-grid
spatial models which also explicitly accounted for local buffering
and dynamics of the mitochondria. These mitochondria were
assigned to alternating CRUs in the transverse direction (but
every CRU in the longitudinal direction) and the models
were applied to study the role mitochondria may play in
proarrhythmogenic dynamics including afterdepolarizations.

Heterogeneous Channel Distribution

Beyond the T-system, the distribution and local density of
different Ca?*-handling transporters is also important for
governing Ca?™ homeostasis through effects on local Ca?*-
flux balance. Sub-micron models are ideal for controlling the
fine details of channel distribution and co-localization between
different channels, but CRU-grid models remain suitable for
investigating heterogeneous channel/transporter expression in
different regions of the myocyte.

The number of RyRs and LTCCs per dyad, as well as
dyad volume, are commonly heterogeneous in the default
implementations of many models (assigned by scaling the
expression or volume by numbers randomly sampled from a
normalized Gaussian or other distribution). These heterogeneous
properties have been shown to be important for capturing the
features of graded intracellular Ca**-release (Greenstein and
Winslow, 2002; Shiferaw et al., 2003; Restrepo et al., 2008).
In principle, heterogeneous expression of any transporter or
component (e.g., SERCA, NCX, buffer concentration) could be
implemented in the same manner by sampling scale-factors
from a defined statistical distribution. However, determining
heterogeneous structure based on experimental data and with
constraints on the spatial variation/correlation provide more
powerful and physiologically relevant approaches.

Pipelines for Image-Based Modeling

In Sutanto et al. (2018) a pipeline was developed which enabled
the expression of RyRs and LTCCs (and in principle any desired
Ca%*-handling component) observed in experimental imaging
studies to be processed to align with the modified CRU-grid
model (Figure 7A). Thus, RyR or LTCC expression in each
dyad was determined by the intensity of immunofluorescence
image labeling for each of these channels. The method involved
processing the real cellular data so that it could be registered on
the idealized cellular geometry of the computational model.

In an alternative approach, a method was presented in
Colman et al. (2020) which involved the development of image-
analysis techniques to extract parameters describing the spatial
correlation and distribution of the channels (Figure 7A). This
involved calculating the length-scale which describes the distance
over which expression is correlated. This parameter can be used
to generate Gaussian random fields which produce expression
maps with the same spatial correlations, but not limited to the
specifics of the imaging data.

The above approaches enable efficient and high-throughput
simulations of variable cellular structure to be performed, which
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lower panel illustrates the method of calculating the correlation length-scale (») in
order to describe sub-cellular heterogeneity, as presented in Colman et al. (2020)

presented in Colman et al. (2017b). Right panel illustrates the semi-automated pi
into a 3D structurally-detailed representation of a sarcomere, as presented in Raj

FIGURE 7 | Image-based modeling approaches. (A) Approaches for image-based modeling in idealized, CRU-grid cell models. The top panel illustrates the
processing of LTCC/RyR image data so that it can be aligned and registered on an idealized grid computational model, as presented in Sutanto et al. (2018). The

cell models. The top-left panel demonstrates processing of ultra-structural data describing T-system structure into a mesh for simulations, and illustrates the large
Ca?t gradients that can occur under different flux-distributions, as presented in Cheng et al. (2010). Lower panel illustrates processing of data describing the
T-system and SR in a portion of a cell, approaches to tesselate the cell portion into a whole-cell, and the substantial Ca2+-gradients observed in this model also, as

order to generate Gaussian-random field maps which match these parameters in
. (B) Approaches for directly incorporating imaging data into realistic, sub-micron

peline for segmenting multiple structures, including the myofibrils and mitochondria,
agopal et al. (2015).

are ideally suited to statistical analysis and the extraction of
fundamental mechanisms of homeostasis. However, sub-micron
models, which are substantially more computationally intensive,
provide more possibilities for the direct inclusion of experimental

imaging data. In a series of studies (Cheng et al., 2010; Kekenes-
Huskey et al., 2012; Hake et al., 2014) an ultra-structure model
of a realistic single TT and its surrounding half-sarcomeres
was developed (Figure 7B), extending their previous work
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which implemented an idealistic TT (Lu et al., 2009). The local
cellular geometry was reconstructed from light-and electron-
microscopy images of a rat ventricular myocyte and the studies
investigated the impact of the distribution of Ca?*-flux channels
and buffers. They observed substantial and rapid spatial gradients
in local Ca®* concentration in the sub-sarcolemmal sub-space
(Figure 7B) and their analyses demonstrate the importance
of accounting for T-system ultra-structure and Ca’* flux
distribution. These detailed models present the possibility for
features of T-tubule ultrastructural remodeling to be included,
such as observed in Wagner et al. (2012) and Crocini et al. (2014),
and could also potentially be extended to account for other
local ionic concentrations and the counter-ion fluxes relevant for
SR-Ca’™ release, such as presented in Berti et al. (2017).

In Colman et al. (2017b) a sub-micron, whole-cell model was
developed which directly incorporated imaging data describing
the structure of the T-system, SR and distribution of the
dyads (Figure 7B). A semi-automatic pipeline was developed in
which the images were processed and down-sampled to create
simulation-ready geometries. Whereas only a portion of the
cellular geometry was reconstructed, the model was tessellated to
construct a whole-cell, exploiting the periodic structure of cardiac
myocytes. This model also observed substantial intracellular
Ca’* gradients which emerged only in the realistic geometries, in
agreement with Cheng et al. (2010). The imaging data was based
on electron-microscopy (Pinali et al., 2013) and thus channel
distribution was not captured in the data. However, future studies
could use advances in correlative light-electron microscopy to
integrate T-system and SR structure with immunofluorescence-
based protein levels associated with each membrane, enabling the
possibility to directly impose local relative channel expression on
these structures.

This model also indicated the importance of realistic (and
variable) dyad distribution on the specific dynamics of both
CaT alternans and SCRE, providing spatial constraints on
the randomness of both. These results are further supported
by the recent sub-micron, type 1 model of Hoang-Trong
et al. (2021) which included experimentally influenced spatial
distributions of multiple Ca?*-flux channels, explicit modeling
of transverse- and axial-tubules, and Ca?>*-CaM interactions.
This study highlighted the importance of CRU distribution and
the presence of rogue (non-junctional or orphaned) RyRs on
Ca**-spark propagation and wave dynamics. The model was able
to reproduce regenerative Ca>* waves at high Ca?*-overload
conditions, emerging from the same location on subsequent
instances, and the implementation employed several techniques
to reduce computational load and memory requirements,
enabling efficient implementation of GPU solvers.

Rajagopal et al. (2015, 2018), Ghosh et al. (2018), and Hussain
et al. (2018) present a rather different approach and focus to the
other whole-cell computational models so-far described, with a
higher level of structural detail accounted for Figure 7B. The 3D
computational model is generated from images of the myofibrils,
mitochondria and RyR clusters; Data from different sources and
of different resolutions (e.g., 3D electron microscopy and high-
contrast confocal) were fused through spatial statistics techniques
(Illian et al., 2008; Theakston et al., 2010). These models focus on

many more details of the structure of myocytes and their impact
on local Ca?* buffering and regulation, including that of the
contractile apparatus and mitochondria, and simulations focus
more on the upstroke of the CaT than on long-term homeostasis.
The methods for processing high resolution imaging data to
generate meshes for simulation are the most advanced in the
field, and the potential of these models to understand the
super-resolution features of channel distribution, co-localization
and Ca’* regulation is currently unparalleled. It would be a
significant achievement to develop computational models which
account for this level of structural detail that are also sufficiently
efficient to simulate long-term dynamics, homeostasis, and Ca?* -
voltage coupling in a whole-cell.

SIMPLIFIED, MINIMAL, AND TISSUE
MODELS

The complexity of the spatio-temporal models described
above hinders ease of analysis and extraction of fundamental
mechanisms, and also precludes the efficient cellular simulations
required to model hundreds, thousands or millions of cells in
cardiac tissue, due to the high computational load of these
detailed models. Thus, approaches are required to simplify
these complex descriptions into easily analyzable systems and/or
efficient computational models while preserving the underlying
stochastic dynamics and the emergent phenomena therein.
Almost 20-years ago, Shiferaw et al. (2003) presented a number of
simplifications to describe spatial Ca?* handling which underlie
many of the developments since. Various different approaches
have been used including those which explicitly model the cell
as a spatial structure but with simplified components of Ca’*
release and propagation, and those which develop entirely non-
spatial descriptions (Figure 8A). This section focuses primarily
on theoretical and numerical approaches which enable large-
scale tissue simulations. Analytical and statistical descriptions
have also been presented but are not described in detail here; the
reader is referred to Rovetti et al. (2007) and Asfaw et al. (2013),
for example, where a mean first-passage-time approach was used
to demonstrate how Ca’T-release depends on local properties
within microdomains and to quantify measures of how events
synchronize in tissue.

Spatial Simplified Models

Williams et al. (2007, 2008) pioneered methods for efficient
simulation of stochastic Ca*>* dynamics while preserving the
importance of local control and features such as graded release.
The first study (Williams et al., 2007) developed a probability
density approach for modeling local control of CICR and
compared results to a Monte-Carlo simulation regarding both
validation and computational efficiency. As a simplification based
on the “all-or-nothing” response of RyRs within a CRU, the
RyRs in each CRU were described as a single “megachannel” i.e.,
treating them as a single channel which can only occupy a single
state at once. Describing this megachannel with a simple two-
state model enabled combination with a two-state model of the
LTCCs to develop a four-state, minimal model of the state of
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FIGURE 8 | Multi-scale modeling approaches. (A) lilustration of different approaches for reducing the computational intensity of models of sub-cellular Ca?*
handling. The center, upper panel illustrates a fully detailed 3D cell model, with biophysically detailed descriptions of gating, fluxes and diffusion. Below this panel are
illustrated mathematical approaches for model reduction, either resulting in simplified spatial models (left) or non-spatial models (right). The left-most panel indicates
how analysis of AP and CaT dynamics on a beat-to-beat basis can lead to the development of a non-spatial, iterated map model. The right-most panel illustrates
how analysis of SCRE statistics enables the parameterization of analytical Ca®™ release functions which can be imposed in a traditional, non-spatial cell model.

(B) lllustration of bi-directional coupling between focal excitations and re-entry. Left: spontaneous excitations interact with each-other to cause conduction block and
re-entry, modified from Liu et al. (2015). Right: illustration of the emergence of focal excitations following self-termination after a period of re-entry, from Colman
(2019). (C) Structurally detailed tissue models imeplementing SCRE. Left: probability of SCRE as a function of SR-Ca?*+ in single-cell and 1D, 2D, and 3D with or
without the pseudo-1D Purkinje System (PS), with the locations of focal exictations shown in the lower panel, modified from Campos et al. (2015); right:
demonstration of a focal excitation emerging within the isthmus of an infarct borderzone, modified from Campos et al. (2018).
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the CRU. The probability density approach was then applied in
the limit that the number of CRUs in the myocyte is sufficiently
large (>5,000, which is less than the ~20,000 observed in
cardiomyocytes) by describing the probability that one would
find a randomly sampled CRU in a specific state (S), associated
with local dyadic Ca?* (Cay,) and Cagg concentrations:

Pr {CadS < Cay(t) < Cays 4 dCags and
o' (Cays, Cagr, t)dCaysdCasg = Cagg < C‘aSR(t) < Cagg + dCagp and
St = i}
(42)

Where i is an index that runs over the four CRU states and
tildes indicate random quantities. This must satisfy advection-
reaction equations in order to make it equivalent to the Monte-
Carlo approach. This approximation was combined with a
deterministic solution to the bulk concentrations and a high
resolution FDM approximation of spatial dynamics. The authors
also derived a univariate approximation to the model based on
the marginal density of Cagr jointly distributed with the CRU
state, although the reader is referred to the original publication
for further details beyond the scope of this overview. Importantly,
they demonstrated that the approximation agreed strongly with
the Monte-Carlo approach, which converges to this result so long
as it contains a realistically large number of CRUs. The resulting
method is ~500 times more computationally efficient than the
Monte-Carlo approach.

Subsequently, the approach was generalized to describe
situations where the dynamics of Cays are much faster than Cagg
(Williams et al., 2008). The minimal four-state model of the CRU
(two states for the RyR megachannel and two for the LTCCs)
was expanded to a 12-state model, by extending the two-state
RyR model to a six-state model that includes highly cooperative
opening and an SR-Ca?* dependence such that depletion of the
SR-Ca?* reduces the open probability. The model builds on
the univariate approximation presented in the previous study,
employing a moment-closure approach truncated at the second-
order. The resulting method similarly agrees with the Monte-
Carlo approach but with a substantial increase in computational
efficiency by a factor of ~10,000.

Chen et al. (2011) developed a simplified spatial model by
imposing a number of reductions to a full description of spatial
Ca?* handling. The following two-assumptions drove model
development: (1) Whereas Ca?*-waves nucleate at some location
within the cell and propagate rapidly in the transverse direction,
the greater length of the cell compared to its width implies
that most Ca T -wave propagation is approximately planar in the
longitudinal direction; and (2) in general during a Ca’*-wave,
all CRUs within a sarcomere are activated at approximately the
same time. These assumptions enable a 1D lattice model to be
constructed where each node represents a sarcomere (Figure 8A).
The state of each sarcomere can be simplified into either being
in a non-spark or spark condition [represented by 0 and 1
respectively and conceptually similar to the use of a single RyR
megachannel as described in Williams et al. (2007, 2008) above].

The rate of spark recruitment was defined by:

R(t) = Ricar(t) + Rscre(t) (43)

Where Rjcqr(t) is the recruitment rate due to activation by
Icar, and Rgcre(t) is the rate of recruitment via spontaneous
sparks and waves. Assuming the release flux (/) associated with
each spark is approximately exponential, the spark-rate, R(t), can
be associated with ] via the following differential equation:

dJre rel () (1 — dC dt|/C
szt(t) = g-Casr(t)-R(t) — L { rd[wam/ 1/ Cost)

(44)

Where t; is the time-constant of the exponential function
assumed to describe the spark flux. The rates of spontaneous
spark initiation and a transmission-time and -probability [i.e.,
the components of Rgcrr(t)] are primarily regulated by Casg and
were fit to experimental data to describe Ca?T-wave velocity,
enabling many features of whole-cell SCRE to be captured at a
significantly reduced cost.

In Hernandez-Hernandez et al. (2015) a similar model was
constructed in 2D (Figure 8A). The state of each CRU (0 or 1 for
non-spark or spark, respectively) was described by the following
simple reaction:

0" (45)
p

Inter-CRU coupling was described using a spatially
exponential function such that the influence of one CRU
on its neighbors decays rapidly as distance increases:

—[xi—xj|*/P

hij = rje (46)
Where r;j is the Ca?t released at site j» xi» and x; are the
locations of the two coupled CRUs and [ is the diffusive length-
scale. This model was used to evaluate the influence of CRU
connectivity on Ca?*-wave nucleation and propagation.

In Romero et al. (2019) a 2D model was developed where
the dynamics of each CRU were described by a non-linear map
which relates Ca?>* concentrations from one beat to the next
(rather than solving concentrations on a small time-step within
each beat). This is a spatial analog of the iterative-map approach
described in the next sub-section. Concentrations for beat n+1
are functions of concentrations and fluxes during beat n:

Cagg (n+ 1) = Cagp(n) — R*(n) + U*(n) (47)

Ca} (n+ 1) = Cai(n) + R*(n) — U*(n) (48)

Where Cagr® and Ca;* are the SR and intracellular Ca?™
concentrations at the spatial point x (=i,j in 2D), R*(n) is the total
Ca?™ released from the SR at point x during beat n and U*(n)
is the total Ca’* pumped back into the SR at point x during
beat n. As a simplification, it is assumed that the total Ca?™ is
conserved (Casp + Ca;j = C) and can be thusly normalized to 1
(arbitrary units). The stochastic dependence of intracellular Ca?t
release (R*) on voltage can be incorporated by accounting for
the probability of release, and intracellular uptake is given as a
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function of the CaT peak. Ca®* diffusion was then described by
accounting for the average Ca?™ over the nearest neighbors in the
2D lattice of CRUs.

In Cantalapiedra et al. (2017) a spatial model was developed
which included simplified descriptions of the LTCCs and RyRs
through exploiting symmetries and other factors to substantially
reduce the number of equations/parameters governing these
dynamics; spatial coupling was described explicitly as in a
CRU-grid fully spatial model. The model was used to study
the influence of SR-Ca?* load and RyR refractoriness on the
dynamics of CaT alternans.

Non-spatial Simplified Models

Further simplification can be achieved by developing non-spatial
(or “OD”) approximations, which have no explicit description
of spatial diffusion in the sub-cellular volume and present the
opportunity for the largest increases in computational efficiency.
Several different techniques have been proposed.

Reduction to (Semi-)deterministic Models
In Chen et al. (2012) a model was developed which describes
single-cell SCRE dynamics using a single simple two-state
reaction scheme that is able to capture the statistics of SCRE
timing and magnitude. This is the same basic scheme as presented
by Hernandez-Hernandez et al. (2015) and equation (45), but
is now solved in the deterministic limit describing the whole-
cell (Figure 8A). This was applied in a 1D model of tissue
to analyze the relationship between the statistics of single-cell
SCRE (pertaining to timing, magnitude and duration) and the
emergence of spontaneous focal (or ectopic) excitation in tissue.
In studies by Shiferaw et al. (2018, 2020) a phenomenological,
population-dynamics-like model of spark recruitment was
developed that matched behavior of the 3D cell model. Here,
rather than modeling CRU dynamics explicitly, the number of
active CRUs (or number of sparks) were tracked and dynamically
evolves dependent on the number of sparks initiated (An™) and
extinguished (An™) at each time-step (A?):

ni(t+ A t) = m()+ A nf— A ny (49)

The number of sparks initiated was determined by the rate
at which sparks are recruited (either spontaneous or triggered)
and stochasticity was maintained through the use of random
number sampling. This used a similar approach to individual
CRU recruitment to that of Chen et al. (2012) and Hernandez-
Hernandez et al. (2015) but now included distinction between
junctional and non-junctional sparks [both described by equation
(45) but with different values for the transition rates], enabling
the impact of heterogeneous and variable atrial T-systems to
be captured in this reduced model. The approximation could
reproduce both CaT alternans and SCRE. The model was used
to study synchronization of SCRE in atrial tissue, developing
focal excitations, conduction-block, and non-stable re-entrant-
like excitation patterns.

Iterated-Map Models
Qu et al. (2007) developed an iterated-map model of CRU
activity, relating Ca>* and voltage properties on a beat-to-beat

basis (Figure 8A), a whole-cell equivalent to the more recent
approach presented in Romero et al. (2019). The approach can be
briefly summarized by the following equations. Firstly, the APD
can depend on both the diastolic interval (DI) and peak of the
CaT (CaP®*). Thus, the APD at the current cycle (n) depends on
the previous cycle (n-1) and is given by:
APD, = fi (DL,_) +f (Caﬁe“k) APD, (50)
Where the functions of DI and intracellular Ca?* have been
separated: f; is the APD restitution function and f, accounts
for the coupling strength between Ca>* and APD (which can be
positive or negative). The peak Ca?* concentration at cycle n can
be given by the sum of the diastolic Ca>" from the previous cycle
(Ca,—1) and the total Ca®™ released from the SR in the current
cycle (rp):

Ca’p;eak = Cay—1 +1y (51)
The total Ca®™ released from the SR, r,, is given by:
u =3 (Dly-1) fs (CasRE™]) (52)

Where f3 describes the restitution properties of SR-Ca?*
release (e.g., RyR refractoriness) and f4 describes the dependence
of Ca?T release on the SR-Ca?™ load. The reader is referred
to the original publication for full details on the parameters
and functions involved. This model reproduced the non-
linear dynamics of Ca?* handling including CaT alternans,
and this simplification helped to develop a unified theory of
CaT alternans in cardiac cells (Qu et al., 2016). Furthermore,
this vast simplification in both space and time produces
exceptionally efficient simulations, computationally less intense
than standard, non-spatial common-pool models of cardiac
cellular electrophysiology.

Models of Imposed, Stochastic Spontaneous Ca?*
Release Functions

As an alternative to the above approaches, it is also possible to
control spontaneous CaTs in otherwise deterministic cell models
by imposing (or clamping) SCRE waveforms (Figure 8A). In Xie
et al. (2010), the intracellular release flux (J,e) associated with
SCRE was controlled by imposing a waveform defined by two
sigmoidal functions, the parameters of which determined the
timing, duration and magnitude of SCRE:

~1
(1 + e(tft")/”) (iCaSR — Cads) (53)
Vjsr

Where Gspont s a rate constant (set to 0.0674 ms~! in

the original study), fo was set to 425 ms and t; = 10 ms
and 1, = 30 ms. The model was used to determine the
minimum number of cells undergoing DADs in various tissue
conditions in order for this to manifest as a focal excitation.
Whereas not performed in the original study, the timing and
duration parameters (¢, 1, T2) could be randomly sampled from
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distributions to reproduce stochasticity in independent cellular
SCRE. This approach was used in Liu et al. (2015), sampling
from Gaussian distributions, in order to study the dynamics
of independently timed DADs in tissue, revealing mechanisms
of synchronization into focal excitation and DAD-mediated
conduction block (e.g., Figure 8B). Liu et al. (2016) and Ko et al.
(2017) used a similar but further simplified approach in which the
Ca; associated with SCRE was directly controlled, described by a
Gaussian-shaped function with equivalent parameters to control
timing, magnitude and duration:
Ca?pom — Ae~(t=10)*/20? (54)
Where A sets the maximum amplitude, t, sets the latency
(timing) and o sets the duration. In Colman et al. (2017a) and
Colman (2019) an approach was developed which used sigmoidal
functions to control the RyR-state directly, reproducing different
shapes of long- and short-release waveforms. For short (spike-
like) waveforms:

Niyro = Niy o (1+ e*(“m/"l)_1 (1+ e(f*fz)/’@)_1 (55)
! WR_

t=1t+05(t, — 1) (56)
ty =ty +0.5(t —tp) (57)
ki = 0.1689(t, — t;) + 0.00255 (58)
ky = 0.1689 (tf — t,) -+ 0.00255 (59)

where #; is the initiation time (equivalent to latency, tp, in
the above models) of the SCRE, t¢ is the end time (duration,
A, thus = t¢-t;), tp is the time of the peak of the waveform
and NRYR_oPeak is the peak proportion of open RyRs. In this
model, Ngyr_o [equation (55)] replaces the “O” in the J
equation [equation (5)] and so ], and the CaT are allowed to
dynamically evolve according to their deterministic functions;
the magnitude of the CaT associated with the SCRE is therefore
dependent on NRYR_OPe“k, the SR-Ca?* and J,, maximal flux
rate. This model demonstrated feedback between re-entry and
focal excitation in which the rapid activation during re-entry
loads the SR-Ca®* to promote focal excitations following re-entry
termination (Figure 8B).

In all implementations, the parameters defining the
distributions which describe SCRE statistics could be set as
a function of environmental variables, such as SR-Ca**, enabling
the simplified cell model to respond to pacing with variable SCRE
statistics in congruence with the dynamics of spatial Ca?* cell
models. All of these models employ an algorithm to determine
if Caj, Jr or RyR-state is controlled by the deterministic cell
model or undergoes the imposed SCRE clamped waveform,
enabling integration with dynamically evolving deterministic
cell models in both single-cell and tissue simulations. The
computational efficiency of these models is comparable to that of

standard common-pool models of cardiac electrophysiology; the
largest computational cost is the generation of random numbers
(where one must indeed be careful with implementations of
parallelization in tissue simulations), but the cost of this inclusion
is smaller than the typical differences in computational efficiency
between common-pool models which feature a different number
of components and governing equations.

Estimating Probabilities of Rare Events
Walker et al. (2017) implemented a study in which 3D cell models
were coupled in a 1D tissue strand (or fiber). They investigated
the mediators of Ca>* waves and DADs in single cells, and used
the 1D fiber model to translate these features to tissue activity.
From this, they developed a spatial-average filtering model which
aimed to estimate V', from intracellular release fluxes, enabling
the estimation of the probabilities of “extreme” (i.e., rare) events
in which multiple cells synchronously undergo large-scale SCRE,
i.e., the requirements for focal excitations. This type of approach
is powerful and important because the generation of a serious
arrhythmia in an individual is often a very rare event that
cannot be robustly or consistently captured in simulations of a
generally normally functioning heart. In agreement with other
studies (Liu et al., 2016; Campos et al., 2017; Colman, 2019), they
found reduced Ix; and inter-cellular coupling to be important
for enabling SCRE to overcome electrotonic load and promote
focal excitations.

Whole-Heart Models; Integration With
Tissue Imaging
A few studies have integrated these reduced models of stochastic
sub-cellular Ca?>* handling into models of the whole atria or
ventricle in order to study the interaction between cellular
function and tissue structure in controlling the emergence and
dynamics of arrhythmogenic triggers. This is perhaps taken the
furthest in a series of papers by Campos et al. (2015, 2017, 2018,
2019). The initial study (Campos et al., 2015) combined the
phenomenological model of SCRE as proposed in Chen et al.
(2011) with a full bi-ventricular 3D model which included a
description of the Purkinje network. This model demonstrated
that focal excitations were preferentially located to the Purkinje
network due to the reduced electrotonic load in these pseudo-
1D-strands, with focal excitations increasingly repressed as
dimensionality increased from 1D to 3D (Figure 8C). Campos
et al. (2017) subsequently incorporated a description of sodium-
channel dysfunction, which promoted focal excitations and
conduction block leading to re-entry. The two more recent
studies (Campos et al., 2018, 2019) now combined these analyses
with structural remodeling associated with infarcts in both
idealized 2D sheets (Figure 8C) and realistic geometries in the 3D
bi-ventricular model, demonstrating that the macroscopic and
microscopic anatomy of the infarct region could promote both
focal excitation and re-entry and highlighting the mechanisms by
which fibrosis could increase the probability of focal excitations
in these conditions.

These studies demonstrate structural features which can
co-localize both focal excitation and re-entrant excitation. In
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Colman (2019) a purely functional mechanism which can co-
locate focal and re-entrant excitation was revealed: the in-excited
core of re-entrant excitation lead to substantially longer latency
times in this region, enabling focal excitation to preferentially
emerge from this same location (Figure 8B); interaction of focal
excitation with the tail of the previous re-entrant excitation could
lead to highly asymmetric focal excitations which themselves
may degenerate back into re-entry with a core in the same
approximate location. Thus, these studies are revealing both
structural and functional mechanisms which spatially relate focal
and re-entrant excitation.

Drawing on Physical Analogies for

Mechanistic Explanation

Other works have used detailed or simplified models to make
analogies that relate cardiac Ca?T-handling phenomena to
other physical phenomena, which may offer further insight
into fundamental underlying mechanisms or provide more
predictive power.

Alvarez-Lacalle et al. (2015) used both a 2D sub-cellular
spatial model and simplified descriptions in order to analyze
the dynamics of CaT alternans. Through scaling analysis of
correlations near the transition to alternans it was demonstrated
that CaT alternans could be described as an order-disorder
phase transition, leading to an analogy to the Ising model
of ferromagnetism in statistical mechanics. This was further
generalized to describe more features of Ca?™ dynamics,
including coupling with voltage, in Romero et al. (2019), where
the analogy was extended to the more general Potts model.
Both discontinuous first-order phase transitions and second-
order continuous phase transitions (alternans) were observed to
emerge under different conditions in cardiac cellular dynamics,
further supporting the idea that statistical mechanics tools may
be valuable for understanding cardiac function.

Conesa et al. (2020) presented a novel approach to
understanding steady-state activity through analysis of a single
beat which is not in homeostatic balance, by reduction to two-
variable general equilibrium conditions in analogy to models of
macro-economics. Such an approach can help to explain the
complex and often counter-intuitive features of Ca?*-handling
and offers substantial predictive power without the requirement
for computer-intensive simulations.

SUMMARY AND CONCLUSION

Recent advances in the robustness, complexity and sophistication
of computational models of spatial Ca?*-handling from the
nanometer-scale to the whole-heart scale are enabling advanced
simulations to be performed to reveal fundamental properties
of cardiac ECC in both health and disease. Multiple different
approaches have been explored to describe nanodomain
dynamics, model inter-CRU coupling, implement experimental
imaging data, and translate models to the whole-heart
scale. There are fundamental differences in the approaches
and structure of these models, and in some cases model
behavior can differ substantially (e.g., in triggered Ca’" wave

propagation). Nevertheless, the general agreement between
models is encouraging and the availability of multiple different
models provides the opportunity to comprehensively test
hypotheses and explore fundamental theories. As computational
power increases, experimental imaging data improves, and
more powerful coarse-graining techniques are developed,
the relevance, scope and power of these models will only
continue to increase.

There are a number of challenges and avenues for future
development and innovation. Robust validation of the
models remains a major difficulty, not-least because of the
challenges in obtaining sufficient and congruent experimental
data to validate the many interacting model components
and emergent functional phenomena. Validation of the
governing RyR models themselves, in isolation and in the
context of the spatial-nanodomain, is non-trivial - important
features of Ca?* sparks, such as the spatial FWHM, do not
necessarily match experimental observations. This is not
the only difficulty associated with obtaining a realistic and
well-validated description of RyR gating: Integration of spark
properties in the context of whole-cell homeostasis is also
highly challenging due to the interaction with the wider
model system and further constraints on model stability and
long-term dynamics.

At the whole-cell scale, many approaches have been
implemented to describe spatial Ca?* coupling, corresponding
to fundamentally different underlying model structures.
Each approach has associated features of the CaT and
Ca’*-handling dynamics, such as the robustness of Ca’*-
wave propagation; certainly, not all of these structures
and parameter combinations can simultaneously accurately
describe real myocytes, and there are therefore fundamental
questions about the mechanisms of inter-CRU Ca?* diffusion
which remain to be resolved. Nevertheless, the success
of these models to explain and provide interpretations
into experimental results is highly encouraging, especially
in the more recent studies which combine experiment
and simulation and are indeed beginning to resolve some
of these issues.

One of the most exciting and challenging prospects is true
multi-scale model integration. The recent spatial models of
single nanodomains highlight the importance of specific RyR
arrangement and microstructure of the dyad; incorporating these
features into a whole-cell model containing tens of thousands
of heterogeneous dyads is far from trivial. The detailed models
of the local regions of a single T-tubule reveal important
features of local Ca’™ gradients and channel distribution —
combining these models with detailed representations of RyR
arrangement in nanodomains, models of counter-ion fluxes, and
the electrophysiology of the T-tubule membrane itself presents
exciting prospects for powerful and highly accurate models of
local control; again, translating these to the whole-cell scale
is associated with a number of challenges. Initial success has
been achieved in models attempting to preserve the impact of
stochastic spatial Ca?" dynamics in reduced, computationally
efficient cell models suitable for tissue simulations, revealing the
mechanisms of ectopic excitation, its interaction with re-entry,
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and dependence on tissue structure. Generalizing these models
to naturally capture the dynamics of heterogenous populations
of cells, themselves depending on heterogeneous sub-cellular
structure, remains a major goal.

Finally, there have been substantial advances in approaches for
image-based modeling, both for high-throughput, population-
cohort simulations, and for direct integration of experimental
structures. Closely related to advances in experimental imaging
modalities, this is occurring at multiple spatial scales including
the nanodomain, localized sub-cellular regions, whole-cells,
and whole-heart. The further development and automation
of these experimental-simulation frameworks presents exciting
prospects for the true mechanistic analysis of structure-function
relationships underlying cardiac electrophysiology from the
nanometer to the whole-heart.
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