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Simplifying the Process of Going
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Statistical Mechanics
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The value of digital twins for prototyping controllers or interventions in a sandbox
environment are well-established in engineering and physics. However, this is challenging
for biophysics trying to seamlessly compose models of multiple spatial and temporal
scale behavior into the digital twin. Two challenges stand out as constraining progress:
(i) ensuring physical consistency of conservation laws across composite models and
(i) drawing useful and timely clinical and scientific information from conceptually
and computationally complex models. Challenge (i) can be robustly addressed with
bondgraphs. However, challenge (i) is exacerbated using this approach. The complexity
question can be looked at from multiple angles. First from the perspective of
discretizations that reflect underlying biophysics (functional tissue units) and secondly by
exploring maximum entropy as the principle guiding multicellular biophysics. Statistical
mechanics, long applied to understanding emergent phenomena from atomic physics,
coupled with the observation that cellular architecture in tissue is orchestrated by
biophysical constraints on metabolism and communication, shows conceptual promise.
This architecture along with cell specific properties can be used to define tissue specific
network motifs associated with energetic contributions. Complexity can be addressed
based on energy considerations and finding mean measures of dependent variables. A
probability distribution of the tissue’s network motif can be approximated with exponential
random graph models. A prototype problem shows how these approaches could be
implemented in practice and the type of information that could be extracted.

Keywords: systems biology, multiscale modeling, statistical mechanics, functional tissue unit, physically
consistent modeling

1. INTRODUCTION

Digital twins are increasingly becoming critical components of modern life (Tao and Qi, 2019).
Much of modern engineering design, analysis and development rely strongly on validated, high
fidelity computer models (Wynn and Clarkson, 2018; Lim et al., 2020). These models are not only
cost-effective design tools but are critical to understanding long term behaviors. Mirroring these
developments in general engineering, there has been significant progress in developing quantitative
models of human and animal physiology (Gillette et al., 2021). However, general engineering
approaches differ from their biophysical science counterparts in at least one important aspect.
Scientific inquiry into complex biophysical functions typically uses reductive methods to tease
apart complex mechanisms. Engineering often uses compositional approaches to build a feature
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rich system (c.f. Ai et al, 2018). This principal lies at the
heart of systems biology, where the systems approaches
developed in engineering are used to piece together the
reductive models of physiological function (Tavassoly et al.,
2018). For quantitative understanding of biological systems,
digital models often incorporate physical properties at multiple
spatial and temporal scales. To achieve this requires the
provenance of models and data sources and an ability to
seamlessly integrate biophysics at different scales (Hunter
and Borg, 2003). To systematically handle system complexity,
many model development, data storage and simulation
standards have been developed (Hunter, 2020). Figurel
shows an example of applying systems-based approaches to

human physiology from the IUPS Human Physiome project
(Hunter, 2004).

Models conforming to these standards should enable
algorithmic, automated composition and analysis of
physiological systems (Hunter, 2020). In practice there remain
challenges to developing useful digital twins. Here we discuss
two critical bottlenecks that have stifled progress and propose
approaches for addressing them. The bottlenecks are: 1) taming
physically inconsistent “language” across composite model
scales, especially for conservation of mass and energy; and
2) taming the inevitable growing conceptual and computational
complexity to usefully inform scientific inquiry, clinical decision
making and support biotechnology development.
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FIGURE 1 | Physiological systems, processes, and corresponding spatial scales encompassed by the Human Physiome Project. The databases hold physiologically
relevant data and model information encoded in markup languages such as CellML (see www.cellml.org) and FieldML. The markup languages ensure that models are
encoded in a consistent form and allows simulation packages to import the models in a standard format. Reproduced with permission from Hunter (2004).
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2. TAMING THE TOWER OF BABEL

Clinically useful physiological models must do more than
just characterize complex anatomical and functional domains.
Model parameters need to be linked with multiscale modeling
to molecular processes where drugs operate. However, many
models are developed in response to specific needs such as
bridging measurement scale gaps, interpolating or extrapolating
missing data or as empirical relationships extracted from big
data (for example, using machine learning approaches). Often
these models are mutually incompatible. To support inter-
model coupling, standards and provenance information have
been proposed, ensuring semantically consistent data exchange
from model to model (Hunter, 2020). Organ scale models can
be built as a hierarchical compositions of finer scale models
if spatio-temporal scales can be correctly characterized. The
compositional language matters, and anatomical components
and physiological systems must satisfy physical principles such
as mass-, charge-, and energy balances along with associated
thermodynamics. A consistent physical language simplifies the
development of algorithmic approaches to compose, analyse and
verify composite models.

2.1. Physically Consistent Model
Development

Bond graphs are a model development framework that is
biophysically and thermodynamically consistent (Oster et al.,
1971; Gawthrop et al,, 2015). The kinetics of most biophysical
phenomena can be described using a potential, u, as a function
of a physical quantity, g. The flow, v = dg/dt, and potential,
u, must satisfy conservation laws. For example, mass or charge
conservation for v and force balance or Gibbs free energy
for u. The lumped-matter discipline of electrical engineering
(Agarwal and Lang, 2005) is used to define the constitutive
relation between the potential u and physical quantity q. Since
power is independent of the physical domain (Broenink, 1999),
the formalism enables seamless and consistent integration of
multiple physical domains through notional use of concepts
such as junctions, transformers and gyrators. A bond graph
description of a biophysical process produces models that
have both physical and biophysical interpretations (Gawthrop
et al, 2015). Models can be correctly and algorithmically
coupled, and the composite model is itself a physically
consistent bond graph, biologically interpretable and causally
transparent (Cobos Mendez et al.,, 2020; Shahidi et al., 2021).
Supplementary Figure 3 shows an example bond graph model
of a biophysical cardiac cell action potential.

3. TAMING TOWERING COMPLEXITY

Bond graphs are a consistent framework for addressing multiple
parameter descriptions and ensuring consistent units and
conservation laws. But this does not mitigate the need to specify
appropriate constitutive relations. Some of these relationships
can be determined from experimental data; however, often a
multiscale model approach is used to determine constitutive
parameters by simulating subscale models. Additionally, bond

graphs are zero-dimensional so space-time discretizations are
required, with each discrete unit encapsulated in a bond graph
and each of these instances coupled. This rapidly becomes a
problem of towering complexity. In the following discussion,
multiscale modeling of cardiac electrophysiology is used as
an exemplar for addressing this challenge and to illustrate an
approach for unlocking emergent biophysical insights.

3.1. Functionally Dependent Cellular

Interconnections

The adult human heart contains several billion myocytes.
Computationally tractable mathematical models based on
homogenization techniques (Tung, 1978) are currently the gold
standard for simulating electrochemical conduction in cardiac
tissue (Franzone et al., 2014). For solving, the cardiac domain
is spatially discretized into blocks representing the activity of
groups of myocytes. For example, if a domain is discretized
into a regular lattice of blocks with edge length 0.25 mm, a
block will contain about 1,000 myocytes. State-of-the-art human
heart bioelectric models on this scale solve for around 11
billion electrical potentials at each step in time (Potse et al,
2020). The spatially discrete models are coupled to models of
myocyte membrane ion transport (typically one homogenized
model per block of myocytes) to account for dynamic electrical
loading type behavior with cardiac activity. Reaction-diffusion
bidomain models assume interwoven extracellular, membrane
and intracellular spaces everywhere in the tissue. This restricts
the range of problems that can be realistically simulated by the
model. For example, simulating the role of spatially localized
effects like altered ion channel expression, fibrosis, tissue scarring
and so on, in rewiring interconnection topology and the
consequent impacts on macroscopic conduction is not possible
(Pastore et al., 1999; Qu et al.,, 2000; Amoundas et al., 2001;
Kawara et al., 2001; de Bakker et al., 2005).

3.2. Computational Complexity

Solving for dependent variables at many millions of discrete
points over an acceptable time frame is a significant issue.
Existing models with this capability require specialized software
and hardware (Richards et al., 2013; Potse et al., 2020). While
it is argued that computational capacity, including specialized
processing based around graphical processing units (Kaboudian
et al,, 2019), will grow, become cheaper and more accessible,
data transfer bottlenecks remain and may be limiting factors
(Mo, 2018). The drive to capture more features in models keeps
pace with developing computational resources and the capacity
to clinical or intervention diagnostics by simulating physiological
functions in or near real-time has not been realized (Islam et al.,
2016; Yip et al., 2018).

3.3. Structural Complexity

Coupling topology describes how individual discretized units are
inter-connected to reproduce tissue space-time behavior. Cells
embedded in a connective tissue matrix sense signals (inter-
cellular and systemic) and process the complex information to
make decisions enhancing survival (as well as the function)
of the whole tissue (Karemaker, 2015; Silvani et al., 2016).
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For example, these processes rewire excitable cellular pathways,
alter refractory periods and so on. Consequently, the process
of discretizing tissue and coupling together the dynamics of
discrete units must be informed by how the cells within the
tissue organize under different conditions. Some of this may
not be known a priori. Coupling methods like homogenization
(Neu and Krassowska, 1993) model local short-range interactions
and not non-local long-range interactions unless they are
explicitly handled. Incorrect short and long-range coupling is
observed in a disconnect between model and physiology in
simulations of tissue level phenomena such as cardiac electrical
arrhythmia. The same may also be true if the discretization
is too coarse to capture important phenomena. Addressing
these challenges requires appropriate interpretation of tissue
structure and a digital representation that integrates tissue,
cellular, and molecular understanding across multiple scales
(Hunter, 2004).

3.3.1. Functional Tissue Unit

Cells embedded in a connective tissue matrix are biophysically
required to be within diffusion distance of a capillary blood
vessel for access to nutrients, such as oxygen and glucose, and
elimination of waste, such as carbon dioxide and urea. Coupled
mammalian cells are mostly within 50, m of a capillary (Renkin
and Crone, 1996). Based on this length scale observation, the
concept of a functional tissue unit (FTU) was developed to
facilitate digital representation of tissue (de Bono et al., 2013).
The FTU gives precise dimensions for subdividing tissues based
on biophysical constraints, and when it is based on local capillary
geometry, it is essentially equivalent to local myofiber orientation
(Vignaud et al., 2006). In this context the FT'U is aligned with the
material axes and this is relevant for both the electrophysiology
and mechanics of cardiac tissue. An FTU should capture the
kinds of cells that exist within that space and the contributions
they make to tissue level phenomena. For example, extracellular
molecules such as ions, paracrine signals and so on.

The concept of FTU has been adopted by Human
BioMolecular Atlas Program (HuBMAP) project (Snyder
et al, 2019). This programme is creating a cellular atlas of
the human body. Methods and tools to interconnect cells
with organs are being developed (Weber et al., 2020). There
are other large scale efforts to map the human body like the
ChanZuckerberg Initiative Human Cell Atlas (HCA) (Human
Cell Atlas, 2021). The outcomes of these projects will be modular
computer models, informed by cellular organization with
tissues and quantification of altered organization under disease
conditions. There are ongoing attempts to model FTUs as
bond graph elements and this is expected to improve spatial
discretization and modeling of spatially heterogeneous processes
(Hunter, 2020).

Given that FTUs provide a digital representation that
integrates tissue, cellular and molecular understanding across
multiple scales; a framework to model FTUs and their
compositions is required. In the following sections, we show that
recent developments in statistical mechanics of networks offer
useful insights.

4. STATISTICAL MECHANICS TO THE
RESCUE?

Multiscale models (bondgraph-based or otherwise) are
conceptually and computationally demanding. Consequently, it
is important to explore other complementary frameworks that
are physically measurable and causally transparent. Statistical
mechanics is a framework that applies probability theory to
large collections of microscopic or atomic particles to explain
macroscopic observations. Approaches based on statistical
mechanics have been widely and successfully used in physics
and engineering to characterize material properties and analyse
physical phenomena (Goldstein et al, 1992; Tohei et al,
2006; Scheffer, 2010; Teschendorft and Feinberg, 2021). While
atomic elements in physics and engineering are comparatively
simple compared to many biological cells of interest, one key
principle stands out in the context of multicellular organ models:
maximum entropy.

It is often assumed that cells or biological systems have
identical processes and this assumption ensures that uniform
spatial discretizations are valid and is common in tissue
models (like the reaction-diffusion bidomain models of
cardiac electrophysiology described previously). However, cells
embedded in a multicellular environment exhibit intercellular
variations due to fluctuations in gene expression, protein
synthesis or access to local nutrient concentration (Nelson and
Masel, 2017). These fluctuations force cells to explore different
metabolic states other than the “optimal” ones. Ideally, cells
evolve interactions so that stress generated to access resources
from a shared capillary is close to minimal for most cells in
the functional tissue unit (Aktipis, 2016). Many intercellular
coupling configurations could reduce generated stress and such
variability needs to be considered in models.

4.1. Statistical Mechanics of Solid Tissues
A functional tissue unit provides guidance for spatial
discretizations and digital representation of tissue. As the
FTU is defined under biophysical constraints (proximity to
blood supply, material orientation, etc.), leveraging the FTU
as a basis for spatial discretization confers these geometric
features onto the topology of a network, G, characterizing
intercellular coupling. Supplementary Section 1 demonstrates
the construction of such a network for cardiac ventricular tissue.
As multiple intercellular coupling’s could lead to the observed
organ-level dynamics, the principle of maximum entropy plays
a key role in determining the set of intercellular configurations
(G € s) that best represents the current state of knowledge.
Such a set of networks s has the largest entropy (Jaynes, 1957),
is consistent with known constraints and can accommodate
maximum uncertainty with respect everything else (Harte and
Newman, 2014). Determining s enables modelers to analyse
distributions of cells and their function within the tissue and use
these coupling configurations to simulate emergent phenomena.
Exponential random graphs model (Park and Newman, 2004;
Barrat et al.,, 2008) provide natural and very elegant frameworks
to determine s that satisfies the principle of maximum entropy.
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4.2. Exponential Random Graphs Model
Exponential random graph models (ERGMs) express a
probability distribution on cell networks that arises from
competing forces causing some interactions to be more or
less likely, given the state of the rest of the network. Complex
dependency patterns can emerge within the network, including
large-scale organizations emerging from relatively simple local
mechanisms. ERGMs incorporate varying network structure and
cell features (biophysical properties or spatial locality) so that a
network and cell configuration can be assessed in the context of
all other model possibilities (Barrat et al., 2008).

The assumption of ERGMs is there are many possible
realizations of a network even if only one is observed empirically.
Given a network, G, and features x; (G) observed on the network,
the model defines a probability distribution over them and
creates a statistical ensemble - the set of networks G € s and the
distribution P (G).

The probability distribution governing s at macroscopic
equilibrium is given by (Lusher et al., 2012)

exp (07x(G))

P (g|9’ X) = ZQ’ES exp (QTX(g/))h (g/)

h(G). (1)

Here G is a particular network (microstate) drawn from the
set of potentially observable networks (microstates) s, G’ is
another potentially observable network, x +— R”", is a vector
of observations encoding the network properties, 6 € R” is
a vector of parameters, and % (G) is the reference measure for
the distribution.

h (G) characterizes the geometric constraints on the network
topology G. Some of these constraints arise from the observed
spatial embedding of cells, such as minimum and maximum
number of neighbors, and other physiological requirements such
as nutrient flow directions. Thus, a network that satisfies these
observations will have a high & value, where as one that does
not satisfy these observations will have low value making it
less probable.

The term #7x(G) is the ERGM potential. Identifying it with
—pBH(G), Equation (1) can be recognized as the Boltzmann
distribution of G and the x(G)s as the energy terms of
the Hamiltonian.

Traditionally Markov Chain Monte Carlo methods are used
to estimate these parameters, and could be computationally
expensive or even intractable for large networks. However, recent
developments have reduced parameter estimation time by orders
of magnitude and make ERGMs amenable for studying biological
systems (Stivala et al., 2020).

In our opinion, these features, such as the ability to
handle sparse multi-domain data and operate in an energy-
based construct makes ERGMs an attractive framework
for studying solid tissues. They link with many powerful
tools developed in the statistical mechanics for studying
complex systems.

4.3. Feasibility Demonstration

To demonstrate the approach, we use a simplified model of
electrical arrhythmia as a datasource to construct and analyse
ERGMs for various structural configurations. We show that the
predicted ERGM potentials characterize the underlying structure
and capture node level observations. Details of the models and
experimental setup are given in the Supplementary Material.

The Christensen et al. (2015) lattice model of electrical
conduction uses parameter v to alter 2D lateral lattice coupling
frequency. At v = 1 the lattice is fully coupled and at v = 0 is
fully uncoupled (see Figure S5). Electrical potential sequences for
a range of v values from 0.1 to 0.9 were determined. Abstracted
network models of these data were built by first subsampling
the lattice model connectivity and encoding the lattice cell state
values (Figure S5) for each v onto a 10 x 10 grid of nodes
using averages of a 3 x 3 neighborhood. Nodes anywhere in the
10 x 10 grid were functionally linked into a network if their
Granger causality [estimated with partial correlations (Runge
et al., 2019) of cell state time series] was greater than 0.1 %.
The cross-correlation of average cell state time series between
connected nodes was the weight for that link. These steps are
shown in the top panel of Figure 2. This is the original network
G(v) in Equation 1. The 10 x 10 networks (and others derived
from them) are abstractions of the original raw data sets [from
the Christensen et al. (2015) models].

Network node motifs were used to encapsulate functional
behavior in the abstracted 10 x 10 grid networks. These
are the variables used by Generalized ERGM to generate
alternative networks from probability distributions that have link
weights (functional connectivity) and node weights (structural
connectivity in this example) h(G) that correlate with the
values in G(v). Three network motifs relevant to arrhythmic
risk were specified: (i) nodes with two incoming network
links (in2stars), (i) nodes with two outgoing network links
(out2stars), and (iii) nodes forming local cyclic networks with
two other nodes (ctriads). Nodes functioning as hubs with either
Sender or Receiver effects were additional constraints on the
GERGM models. GERGM models using these three network
motif variables were fit to the original networks G(v) to find three
weight parameters (6}, 6, and 63) given the observed motif counts
(x1, x2, x3). Together they can be used to compute an ERGM
potential across the equivalent networks at each v. Existing
software tools were used as a black box to solve these problems
(Denny, 2016).

Comprehensive methodology for GERGM is beyond the scope
of this perspective, but can be found in (Desmarais and Cranmer,
2012). Complete code and parameters used for generating and
comparing networks is found in the opensource code base
in github.

The results summarised in Figure 2 show that with statistical
analysis of networks abstracted from detailed but often
inaccessible source data, network potentials (ERGM potentials)
can be found to unmask transitions in behaviour (in this case
arrhyrthmic risk). Traditional models applied at the relatively
coarse scale and resolution of the abstracted networks would not
be expected to expose such features.
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FIGURE 2 | ERGM evaluation. Top: Schematic of ERGM generation process. State-transition kinetics for 2D tissue characterized by v is sampled (red dots), the
transition kinetics (a color coded subset along with their locations on the 2D tissue is shown) is used to create the causal network. Other nodal and network
observations are also collected. A GERGM model is fit to the causal network to predict networks with similar topological characteristics, nodal and network

Granger causality

observations. Bottom Left: Model predicted “Mean time in arrhythmia/Risk of arrhythmia” as a function of lateral uncoupling parameter v. Insets show the plane wave
dynamics exhibited by the model at T = 1, 000 units for each v. Each 2D model consists of 200 x 200 cells with a refractory period of 50 & 5 units, and 20 randomly
placed dysfunctional cells that misfire with a probability of 0.05. Pacemaker cells at the left edge self-activate with a period of T = 220 units and initiate a planar wave.
As v decreases from 1.0, a transition from planar wave fronts to a system of multiple self-sustaining reentrant circuits (v < 0.14) is observed. The corresponding
ERGM potentials are plotted along with the inset label. Bottom Right: GERGM calculated coefficients (6;) for the observed network structural characteristics (x;) and

the calculated potential. See Supplementary Material for full images and method details.

5. PERSPECTIVE

The richness of human physiology and physiological processes
requires a systematic approach to tease out its inner workings.
It is important (but challenging) to develop data, modeling,

provenance and exchange frameworks that can assimilate
multiscale features, respecting physics-based conservation
principles while remaining computationally tractable. Physics-
based statistical mechanics approaches provide clear and concise
principles to investigate complex systems. Recent developments
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in physics-based machine learning tools have incorporated
these principles to explore biophysical mechanisms in empirical
data. Exponential random graph models (ERGMs) belong
to this category of tools and show promise for improving
our understanding and modeling of multiscale physiological
processes. ERGMs may play a significant role in developing
physiological digital twins.
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