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Red blood cells (RBCs) release hemoglobin (Hb)-containing extracellular vesicles (EVs)
throughout their lifespan in the circulation, and especially during senescence, by spleen-
facilitated vesiculation of their membrane. During ex vivo aging under blood bank
conditions, the RBCs lose Hb, both in soluble form and inside EVs that accumulate
as a part of storage lesion in the supernatant of the unit. Spontaneous hemolysis and
vesiculation are increasingly promoted by the storage duration, but little is known about
any physiological linkage between them. In the present study, we measured the levels of
total extracellular and EV-enclosed Hb (EV-Hb) in units of whole blood (n= 36) or packed
RBCs stored in either CPDA-1 (n = 99) or in CPD-SAGM additive solution (n = 46), in
early, middle, and late storage. The spectrophotometry data were subjected to statistical
analysis to detect possible correlation(s) between storage hemolysis and EV-Hb, as
well as the threshold (if any) that determines the area of this dynamic association. It
seems that the percentage of EV-Hb is negatively associated with hemolysis levels
from middle storage onward by showing low to moderate correlation profiles in all
strategies under investigation. Moreover, 0.17% storage hemolysis was determined as
the potential cut-off, above which this inverse correlation is evident in non-leukoreduced
CPDA units. Notably, RBC units with hemolysis levels > 0.17% are characterized by
higher percentage of nanovesicles (<100 nm) over typical microvesicles (100–400 nm)
compared with the lower hemolysis counterparts. Our results suggest an ordered loss
of Hb during RBC accelerated aging that might fuel targeted research to elucidate its
mechanistic basis.
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INTRODUCTION

Extracellular vesicles (EVs) are membrane-limited nanoparticles
that are produced by almost every cell under homeostatic
or pathological conditions. Their cargo and surface molecules
depend on the type and physiological state of the parental cell.
EVs contribute to significant biological processes in the erythroid
lineage, including reticulocyte maturation and red blood cell
(RBC) senescence. Mature RBCs have a lifespan of 120 days,
during which, and due to the finite nature of their proteome,
they accumulate oxidized molecules, lose enzymatic activities
and present membrane/cytoskeletal defects (Ciana et al., 2017).
In order to remove damaged and potentially toxic molecules,
RBCs sacrifice part of their membrane to load them inside
vesicles (Antonelou and Seghatchian, 2016). Since hemoglobin
(Hb) is the main cytosolic protein of RBCs, it is one of the most
prevalent molecules found in RBC-derived EVs (Thangaraju
et al., 2020) and it has been suggested that defects in Hb might
be one of the primary triggers for vesiculation (Leal et al.,
2018). This is supported by the elimination of hemichromes
or the redox active ferryl Hb (Welbourn et al., 2017) via
microvesicles in the case of thalassemic patients (Ferru et al.,
2014), or oxidatively challenged RBCs (Sudnitsyna et al., 2020),
respectively.

Several RBC aging phenotypes are evident under storage.
Generation of EVs is an important homeostasis mechanism
which helps RBCs dispose oxidized or toxic molecules that
accumulate over storage time. While extremely beneficial
and “life-saving” at first, excessive shedding of membrane
parts inevitably leads to less deformable (McVey et al.,
2020) and morphologically altered RBCs that are more
prone to lysis (Safeukui et al., 2012). Several pieces of
evidence support the hypothesis that deregulation of
metabolism, both energy and redox, in stored RBCs, is
associated with the production of EVs during the early
period of storage, while the disruption of the membrane
and cytoskeleton could take the blame for the vesiculation
later on (Bosman et al., 2008; Freitas Leal et al., 2020;
Tzounakas et al., 2021c).

The release of free Hb and Hb-containing EVs are major
aspects of storage lesion (Kim-Shapiro et al., 2011). Hemolysis
and vesiculation are both affected by the storage strategy
followed, as well as the storage duration (Wannez et al., 2019;
Noulsri et al., 2021) and moreover, these two phenomena
seem to be inter-correlated in both stored (Almizraq et al.,
2018), and diseased RBCs (Olatunya et al., 2019). Nonetheless,
apart from a study showing that at least during the first
21 days of storage most of the extracellular hemoglobin is
encapsulated in EVs (Greenwalt et al., 1991), to our knowledge
the specific spatiotemporal modal of Hb loss (soluble or vesicle
encapsulated) during storage has not been studied. Thus,
the aim of the present study was (a) to decipher if there
is an association between the storage hemolysis levels and
the percentage of Hb located inside vesicles under different
storage strategies and durations, as well as (b) to find the
threshold (if any) that determines the area of this dynamic
association.

MATERIALS AND METHODS

Blood Processing
We performed a correlation analysis between storage hemolysis
and the percentage of vesicle-enclosed Hb in stored RBCs. For
this purpose, blood samples from 181 eligible donors (with
Hb > 13.5 g/dL for men or >12.5 g/dL for women) were
analyzed during cold storage under the following conditions:
whole blood units stored in citrate-phosphate-dextrose-adenine
(CPDA-1) (n = 36), non-leukodepleted RBC concentrates
in CPDA-1 (n = 99), and leukoreduced RBC concentrates
in citrate-phosphate-dextrose/saline-adenine-glucose-mannitol
(CPD/SAGM) preservative/additive solution (n = 46). The
hematological data and storage-lesion profiles of the majority
of those blood and RBC units have been previously reported
(Tzounakas et al., 2016, 2017, 2021a, 2022). The study has
been submitted and approved by the Research Bioethics and
BioSecure Committee of the Department of Biology, NKUA.
Investigations were carried out in accordance with the principles
of the Declaration of Helsinki.

Hemolysis Measurements
In-bag hemolysis was calculated by measuring the levels of
free Hb in the supernatant of the blood units using Harboe’s
method. Briefly, each sample was centrifuged at 1,000 × g
for 10 mins and the collected supernatant was processed
again under the same conditions. The supernatant was then
diluted in distilled water and incubated at room temperature
for 30 mins, before measuring the absorbance at 380, 415,
and 450 nm. Allen’s correction was used to calculate the
concentration of released Hb, as follows: Hb(mg/dL) = (167.2 ×
A415 − 83.6 × A380 − 83.6 × A450) × 1/1,000 ×
Dilution factor × 100. Finally, the hemolysis percentage was
calculated using the formula: % hemolysis =

[
supernatant Hb(

mg/dL
)
× (100−% Hct)

] /
total Hb

(
mg/dL

)
where Hct

stands for hematocrit.
To assess the percentage of Hb released through vesicles an

additional step was performed in the abovementioned protocol.
An aliquot of the supernatant was centrifuged at 30,000 × g
for 10 mins (4◦C), the pellet was disposed and the levels of
free Hb of the supernatant were measured following the same
procedure. The percentage of vesicle-enclosed Hb was calculated
by the following formula: EV−Hb (%) =

[(
supernatant

Hb
(
mg/dL

)
− supernatant Hb after centrifugation

(
mg/dL

)) /
supernatant Hb

(
mg/dL

)]
× 100.

Extracellular Vesicles Evaluation by
Dynamic Light Scattering
For selected samples (n = 10) an aliquot of the supernatant
was filtered through sterile 0.8-mm pore size syringe-driven
nitrocellulose filter units (Millipore, Carrigtwohill, County Cork,
Ireland), before ultracentrifugation at 30,000 × g for 1 h at 4◦C.
These conditions are commonly used to isolate microvesicles
of 100–800 nm, so the range of EVs studied in this research
(100–450 nm) is included. Smaller EVs falling in the size range
of “exosomes,” namely of 60–100 nm, may also co-precipitate
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(Kriebardis et al., 2008). For EV sizing, a high performance two
angle particle and molecular size analyzer (Zetasizer Nano ZS,
Malvern, Malvern, United Kingdom) was used, as previously
reported (Tzounakas et al., 2018). The instrument operated at
a wavelength of 633 nm and was equipped with a helium-neon
laser at the standard angle of 173◦ and a glass cuvette with
square aperture. The vesicle solutions were prepared in a dilute
concentration approximately equal to 0.1% (wt/wt).

Statistical Analysis
Correlations between storage hemolysis and vesicular Hb were
evaluated by the Pearson’s test following testing of the variables
for normal distribution and the presence of outliers (Shapiro–
Wilk, Kolmogorov–Smirnov tests and detrended normal Q–Q
plots). Pearson’s test is highly sensitive to outliers, thus such
values were excluded, and the analysis was performed again, to
minimize the false discovery rate associated with the small size
of our subgroups. If the outcome was not modified, the outlier
was included back to the subgroup. Between groups differences
were analyzed by independent t-test. All statistical analyses were
performed using the statistical package SPSS Version 22.0 (IBM
Hellas, Athens, Greece, administered by NKUA). Significance was
accepted at p < 0.05.

RESULTS

We firstly explored the association (if any) between the levels of
total free and vesicle-encapsulated Hb in three distinct storage
strategies (whole blood, non-leukoreduced RBCs in CPDA,
leukoreduced RBCs in CPD-SAGM) and storage time periods
(early, middle, and late storage) (Figure 1). In early storage
the two variables did not correlate with each other in any
storage strategy, while an inverse correlation between them
was evident in both middle and late stored RBCs in whole
blood (Figure 1A), non-leukodepleted CPDA (Figure 1B) or
leukodepleted CPD/SAGM units (Figure 1C). Overall, it seems
that Hb encapsulation inside EVs has a low to moderate (∼9–
32%, based on the R2 values in all conditions mid-storage
onward) but nonetheless statistically significant effect upon the
total, storage hemolysis levels of middle and late stored RBCs. It
should be noted that we observed the lowest effects (9–13%) in
CPD/SAGM RBC units.

Since the inverse correlation between the percentages of
storage hemolysis and EV-Hb was detected in mid-storage
onward, we next analyzed the statistical dependability of the
two parameters in the sum of samples of middle and late
storage groups. Such an analysis serves as the first step, to
subsequently check for a potential threshold of hemolysis or
percentage of Hb enclosed in EVs that determines the area
of the association we found. Indeed, the regression analyses
in all storage strategies exceeded the threshold of statistical
significance (Figure 2A). After searching for a value above or
below which this correlation is observed, it was found that
storage hemolysis of 0.17% serves as a potential cut-off, above
which this inverse correlation between hemolysis and Hb EV
content is evident in non-leukoreduced CPDA units (Figure 2B).

No hemolysis threshold was determined for whole blood and
CPD/SAGM units. Moreover, since we studied two distinct
parameters, we also performed the opposite analysis: we looked
for a possible EV-Hb threshold, above or below which the
correlation with hemolysis exists. Two percentages stood out: 10
and 30% of vesicle enclosed Hb in CPDA (Figure 2B, insert) and
whole blood units (R2

= 0.202, p = 0.009), respectively; above
these values the inverse correlation was statistically significant.
Again, we found no threshold regarding CPD/SAGM stored
RBCs. Finally, we were intrigued to check what would be the
outcome of the correlation analysis in case of removing from
the model the samples that did not participate in any of the
regression lines determined in the two different cut-off analyses,
namely CPDA units presenting hemolysis <0.17 and <10% EV-
Hb simultaneously. Impressively, an inverse correlation with
R2
= 0.390 and p= 10−15 was revealed.
To better understand the EV physiology between the two sides

of the hemolysis cutoff value, CPDA samples with hemolysis
levels below or above 0.17% (n= 5 for each group) were analyzed
by dynamic light scattering (Figure 2C). Interestingly, while there
was a greater percentage of 0–100 nm EVs in the high hemolysis
group during both middle and late storage, the opposite pattern
was unraveled regarding EVs in the range of 100–400 nm: there
was a higher presence of larger EVs in the low hemolysis group in
both time points of storage (Figure 2C).

DISCUSSION

The currently presented data suggest an ordered way of Hb
release during the ex vivo aging of RBCs at blood bank conditions.
Packaging of Hb (along with other sorted membrane and
cytosolic loads) into EVs seems to be the mode of choice at lower
storage hemolysis levels. These conditions may refer to healthier
RBCs, that are able to regulate their membrane vesiculation
program and to sacrifice membrane surface area for generating
Hb-enclosing EVs, and especially, larger ones. At higher levels
of hemolysis insults, however, Hb release seems to follow an
erratic process in which the vesicular-free portion of Hb probably
prevails, and the Hb-EVs are of smaller size. This finding comes
to strengthen the previously reported inverse correlation between
hemolysis markers of stored RBCs and the Hb content of released
EVs as measured by proteomics analysis in beta-thalassemia
minor subjects (Tzounakas et al., 2021b).

This ordered loss of Hb during storage might represent
a regulated cellular response to the escalating intensity of
the stresses by storage time, especially since the phenomenon
is more evident during the middle-late storage period that
is characterized by higher levels of stress and accumulation
of storage lesions. Indeed, stored RBCs present gradual
depletion of energy-related molecules, such as ATP and 2,3-
bisphosphoglycerate (D’Alessandro et al., 2020), metabolic
rewiring (Reisz et al., 2016), and redox imbalance (Bardyn
et al., 2018), that altogether result in cumulative insults to
the cytoskeleton, membrane and Hb molecules (Delobel et al.,
2016). Having in mind the lack of translation machinery in
RBCs, the proteostatic armamentarium, including proteasome,
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FIGURE 1 | Correlation between vesicle-enclosed hemoglobin (Hb) and storage hemolysis in blood bank conditions. Scatter plots showing the correlation between
total free and vesicle-enclosed Hb during early, middle and late storage in (A) whole blood, (B) CPDA, and (C) CPD-SAGM units.

as well as microvesiculation (D’Alessandro et al., 2019) represent
the only available working pathways to maintain cell integrity
and physiology. Inevitably, the initially discoid stored RBCs
irreversibly transform into more rigid shapes, that are prone
to lysis, mainly from middle storage onward (Bardyn et al.,
2017; Tzounakas et al., 2021b). It was recently proposed that
there are two hemolysis pathways related to distinct RBC
morphological changes during storage (Melzak et al., 2021). The
first one implicates stomatocytes, which transform to spherocytes
via endocytic vesiculation (Reinhart and Chien, 1986), while

the second implicates echinocytes which turn to spherocytes
after shedding vesicles from their spikes (Iglic et al., 2004).
It seems plausible to support that RBCs pass through two
distinct phases during storage with respect to Hb loss: the
first one occurs in the first weeks when RBCs are capable
to cope with the energy and redox stresses and respond to
them by ostracizing oxidized/denatured Hb molecules mainly
via extracellular vesicles (Greenwalt et al., 1991) without losing
their integrity; the second one corresponds to middle/late storage
when RBCs have already lost a significant part of their volume
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FIGURE 2 | Correlation between vesicle-enclosed Hb and storage hemolysis in blood bank conditions. (A) Scatter plots showing the correlation between total free
and vesicle-enclosed Hb in whole blood, CPDA and CPD-SAGM units, from mid-storage onward. (B) Threshold analysis in CPDA blood units. The dashed boxes
indicate the hemolysis or EV-Hb percentage (insert) values that serve as cutoffs. (C) Dynamic light scattering (DLS) analysis in selected CPDA samples of high and
low hemolysis (above and below the threshold, respectively; n = 5 per group) during middle and late storage (horizontal axis). ∗p < 0.05, high vs low storage
hemolysis.

and membrane/cytoskeletal properties and are more likely to
rapture, thus, releasing Hb in a free form rather than sorting
it in extracellular vesicles. While senescent RBCs release Hb
through membrane vesiculation as part of the in vivo aging
process (Willekens et al., 2003), during ex vivo aging and
under storage-related stresses both EVs generation and hemolysis
occur. The currently presented hypothesis is also in line with the

size distribution of EVs found in the cut-off analysis of CPDA
samples as blood units of lower storage hemolysis produce larger
EVs (perhaps with the potential to enclose higher proportions
of Hb). Thus, these RBCs seem to be competent to sacrifice
a part of their membrane while disposing of non-functional
Hb. Based on this observation, it would be of great interest
for future studies to focus on potential associations between

Frontiers in Physiology | www.frontiersin.org 5 February 2022 | Volume 13 | Article 840995

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-840995 February 2, 2022 Time: 16:21 # 6

Tzounakas et al. Hb Loss: Vesiculation Versus Hemolysis

storage related variations in the size/volume of RBCs and of
Hb-enclosing EVs.

The overall low to moderate correlation between the two
phenomena, suggests that the relative distribution of released
Hb in soluble and vesicular forms is affected by additional
parameters. Hemolysis is known for its multiparametric nature
(Reisz et al., 2017) and irregular character, since its heritability
score, studied through genome wide association analysis, is
close to zero (Page et al., 2021). Moreover, a recent proteomic
study in stored RBC membranes and EVs linked the levels of
membrane transporters, as well as the binding of proteostatic
molecules and immunoglobins to the membrane, with the
Hb cargo of EVs (Tzounakas et al., 2021b). The release of
Hb (either in vesicles or as a free molecule) has been also
associated with a variety of protein biomarkers, pertinent to the
categories of antioxidants and metabolic enzymes (D’Alessandro
et al., 2016). Naturally, hemolysis and vesiculation are affected
by the storage strategy and component production of choice
(Almizraq et al., 2018). The weaker correlation outcome in the
leukoreduced CPD/SAGM units compared to the other storage
conditions implies the influential effect of mannitol – known for
its antioxidant and membrane-protective effects (Hess, 2006) –
and of residual WBCs and platelets on the distribution of Hb
in vesicles. Of note, whole blood filtered red cell concentrates
contain higher numbers of EVs when compared to red cell
filtered ones (Almizraq et al., 2018). In addition, it would be
of great interest to perform a respective correlation analysis
in irradiated blood products that are known to extensively
hemolyze, in such a degree that changes the maximum allowed
storage time, while at the same time present significant amounts
of RBCs with echinocytic morphology and heterogenous size
distributions (Lopez-Canizales et al., 2021). In the same context,
the narrow range of storage hemolysis variation in the units
of whole blood and CPD/SAGM RBCs (attributed probably to
the presence of plasma or mannitol), in contrast with the wide
range observed in the CPDA units may justify the inability
to determine a threshold in the first two groups of units. To
support, even though a direct comparison between different
storage strategies is not 100% possible in terms of correlation, (a)
only a few whole blood and CPD/SAGM RBC units exceeded the
currently reported (in CPDA-1 RBC units) hemolysis threshold
rendering the determination of possible cut-off points very
difficult and, (b) if such a threshold is dictated by the degree of
RBC integrity as in our hypothesis, it is logical to acknowledge
that the transition from the one way of Hb loss to the other
cannot be widely achieved in extremely low hemolysis levels
when the structurally competent RBCs preserve their main
physiological characteristics. Nevertheless, another factor that
might contribute to the inability to find a cut-off value in all three
conditions, is the fewer units included in the CPD/SAGM and
whole blood groups – a limitation of the present study.

Our findings provide evidence regarding the fate of Hb during
RBC accelerated aging and the possible presence of thresholds
that might represent the critical point after which ordered
survival pathways give their place to irregular rapture. Apart from
the quantitative side, which currently represents the gold quality
criterion for storage systems, storage hemolysis has qualitative

aspects as well, in respect to the differential Hb distribution in
vesicles as a function of the storage time. This finding, along
with the observed heterogeneity in the composition of RBC-
derived micro- and nano-particles (Bosman et al., 2008) and
their function as biological response modifiers, suggest a possible
differential clinical impact to the recipient. It is known that
microparticles containing even low amounts of Hb can reduce
nitric oxide bioavailability and potentially affect vasodilation
as in the case of free Hb (Liu et al., 2013). However, vesicles
represent organized structures with the potential to interact
with recipient cells and modify several processes and response
phenotypes through both surface molecules and internal loads
(Meldolesi, 2018). To what extent and which biological pathway
their differential Hb cargo may direct their bioactivity remains
to be determined. On this basis, more targeted research on
the mechanistic basis of these physiological procedures in
additional storage strategies, blood manufacturing methods and
distinct donor groups will help to elucidate the extent of the
observed associations.
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