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Acanthoscelides obtectus Say (Coleoptera: Chrysomelidae: Bruchinae), is one of the
most important pests of the common bean Phaseolus vulgaris L. Without appropriate
management it may cause significant seed loss in storages. In search for means of
environmentally safe and effective protection of beans we assessed biological activity of
thymol, an oxygenated monoterpene present in essential oils of many aromatic plants.
We studied contact toxicity of thymol on bean seeds and its effects on adult longevity
and emergence in F1 generation. Furthermore, we determined acetylcholinesterase
(AChE), superoxide dismutase (SOD), catalase (CAT), mixed-function oxidase (MFO),
carboxylesterases (CarE) and glutathione S-transferase (GST) activities in response
to 24 h exposure of beetles to sublethal and lethal thymol concentrations. Our
results showed that thymol decreased adult survival, longevity and percentage of
adult emergence. Higher median lethal concentration (LC50) was recorded in females
indicating their higher tolerance comparing to males. Overall, activities of SOD, CAT and
CarE increased at sublethal and MFO increased at both sublethal and lethal thymol
concentrations. On the other hand, GST and AChE activities decreased along with
the increase in thymol concentrations from sublethal (1/5 of LC50, 1/2 of LC50) to
lethal (LC50). Enzyme responses to the presence of thymol on bean seed were sex-
specific. In the control group females had lower CarE and higher SOD, CAT and GST
activity than males. In treatment groups, females had much higher CAT activity and
much lower CarE activity than males. Our results contribute to deeper understanding
of physiological mechanisms underlying thymol toxicity and tolerance which should be
taken into account in future formulation of a thymol-based insecticide.

Keywords: Acanthoscelides obtectus, seed protection, thymol, insecticidal activity, antioxidative defense,
detoxification, sexual dimorphism
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Lazarević et al. Thymol Toxicity to Bean Weevil

INTRODUCTION

The bean weevil Acanthoscelides obtectus Say (Coleoptera:
Chrysomelidae: Bruchine) is an economically important pest
of leguminous crops. Beside the primary host common bean
Phaseolus vulgaris L. it can also feed on other crops belonging
to 11 different genera (Johnson, 1981; Labeyrie, 1990). In a study
of Szentesi (2021) 18 legume species are shown to be acceptable,
and nine of them support complete development to adults even
if seed coat was intact. A. obtectus originates from South America
but widened its areal of distribution to Europe, North America,
Australia and Africa due to human-mediated migrations and
tolerance to broad range of environmental conditions (Alvarez
et al., 2005). Bean infestation starts in fields by female oviposition
into pods and then spreads in storages causing rapid destruction
of bean seeds in subsequent generations (Schmale et al., 2002).
Larvae feed inside the seeds leading to changes in their mass and
nutritional quality (Keszthelyi et al., 2018). Quantitative post-
harvest losses in storages due to insect infestation may reach value
of 30% in developing countries (Nayak and Daglish, 2018).

Chemical fumigants and contact insecticides are still the
main method for storage seed protection (Obeng-Ofori, 2010).
However, environmental pollution and threats to human health
due to insecticide residues as well as the risk of pest resistance
evolution (Guedes et al., 2017; Dar et al., 2020) forced searching
for alternative management tools (reviewed in Mohapatra et al.,
2015; Daglish et al., 2018; Rajendran, 2020). For example,
recent studies on A. obtectus have evaluated efficacy of hermetic
storage (Freitas et al., 2016), inert dusts (Floros et al., 2018;
Lazarević et al., 2018; Prasantha et al., 2019), predators and
parasitoids (Iturralde-García et al., 2020), insecticidal products of
entomopatogenic bacteria and fungi (Rodríguez-González et al.,
2018, 2020), as well as plant-derived products (Kısa et al., 2018;
Jevremović et al., 2019; Hategekimana and Erler, 2020; Lazarević
et al., 2020).

Among plant-derived products, essential oils (EOs) and their
compounds terpenoids and phenylpropanoids exhibit various
biological activities against stored product insects including
toxicity and sublethal effects on behavior and physiology
(reviewed in Nerio et al., 2010; Zibaee, 2011; Kim S. I. et al.,
2012; Ebadollahi and Sendi, 2015; Chaudhari et al., 2021). The
complex nature of essential oils and artificial blends of their
compounds may slow down evolution of pest resistance, whereas
low persistence of the volatiles minimizes harmful impact on
the environment (Pavela, 2016; Isman, 2020). Additionally, these
natural products may contribute to sustainable plant protection
through synergy with chemical insecticides (Norris et al., 2018;
Reynoso et al., 2018; Ruttanaphan et al., 2019).

Physiological mechanisms of EOs and EOs compounds
activity against insects involve neurotoxic interference on
cholinergic, GABA-ergic and octopamine pathways (Jankowska
et al., 2018), and metabolic reorganization mostly at the
level of xenobiotic detoxification, mitochondrial function and
antioxidative defense (Liao et al., 2016; Huang et al., 2018; Gao
et al., 2020). The activity of acetylcholinesterase (AChE), the
enzyme which degrades neurotransmitter acethylcholine, can be
inhibited by many terpenoids (López and Pascual-Villalobos,

2010, 2015; Herrera et al., 2015; Al-Nagar et al., 2020; Liu et al.,
2021). EOs and EOs compounds may also decrease the activity
of enzymes in the mitochondrial electron transport chain, which
further provoke increase in free radicals and oxidative damage
to macromolecules (Pinho et al., 2014; da Cunha et al., 2015;
Kiran et al., 2017; Liao et al., 2018). To defend from oxidative
stress, insects induce various enzymatic and non-enzymatic
antioxidants (da Cunha et al., 2015; Kiran and Prakash, 2015a,b;
Agliassa and Maffei, 2018; Chen et al., 2021). For example,
dietary α-pinene, trans-anethole and thymol elevate activities
of superoxide dismutase (SOD), catalase (CAT) and glutathione
S-transferase (GST) in Ephestia kuehniella Zeller larvae (Shahriari
et al., 2018). SOD catalyzes the conversion of superoxide anion
radical (O2

−) into oxygen (O2) and hydrogen peroxide (H2O2)
after which CAT decomposes H2O2 to water and O2. GST
metabolizes lipid peroxides and as a major phase II detoxification
enzyme catalyzes conjugation of electrophilic xenobiotics with
low-molecular antioxidant glutathione. Formed conjugates are
less toxic and more water soluble which facilitates their excretion.
Mixed-function oxidase (MFO) and carboxylesterase (CarE),
phase I detoxification enzymes involved in decomposition of
exogenous toxins, can be also induced in the presence of
terpenoids (Yotavong et al., 2015; Vasantha-Srinivasan et al.,
2018; Gao et al., 2020; Piri et al., 2020; Subaharan et al., 2021).
However, inhibition of detoxification enzymes by EOs and EOs
compounds has also been reported in insects (Liao et al., 2017;
Tak et al., 2017; de Souza et al., 2019; Hu et al., 2019; Shang et al.,
2019; Chen et al., 2021; Gaire et al., 2021).

The present study evaluates insecticidal potential of thymol, a
natural monoterpenoid phenol, against A. obtectus. Thymol (2-
isopropyl-5-methylphenol) is the major ingredient of essential
oils extracted from aromatic plants belonging to families of
Lamiaceae, Apiaceae, Verbenaceae, Asteraceae, Ranunculaceae,
Scrophulariaceae and Saururaceae (Escobar et al., 2020). Many
of these plants are used as seasonings in human nutrition
and as medicinal herbs with anti-inflammatory, analgesic,
antimicrobial, antioxidant and other properties (Peter and
Shylaja, 2012; Mancini et al., 2015). FEMA expert panel included
thymol and thymol containing essential oils in a list of “generally
recognized as safe” (GRAS) natural flavors (Cohen et al., 2021).
These compounds also show low toxicity to non-target organisms
(Charpentier et al., 2014; Yotavong et al., 2015; Pavela et al.,
2020) and various adverse effects on fitness of pest insects
(Abdelgaleil et al., 2021b).

In A. obtectus thymol applied as fumigant induced high
mortality and decreased adult longevity, fecundity, penetration
of larvae into bean seeds and adult emergence (Regnault-Roger
and Hamraoui, 1995). Our study was aimed to determine residual
contact toxicity of thymol by monitoring adult survival and
progeny production and to explore the physiological basis of
thymol toxicity by measuring activities of AChE, SOD, CAT,
MFO, CarE, and GST. Additionally, since females and males of
this species differently responded to various chemical stressors
(Papachristos and Stamopoulos, 2002; Papachristos et al., 2004;
Lazarević et al., 2013, 2018, 2020; Šešlija Jovanović et al., 2014)
we assessed if changes in survival and enzyme activities were sex-
specific.
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MATERIALS AND METHODS

Insects and Rearing Conditions
Acanthoscelides obtectus used in this study originated from
the laboratory population maintained on the common bean
(Phaseolus vulgaris c.v. “gradištanac”) seeds for more than 250
generations. During the experiment, beetles were kept in heating
incubators at 27 ± 1◦C, 12 h:12 h light:dark photoperiod
and 55 ± 10% relative humidity. Bean seeds were chemically
untreated and frozen prior to usage to avoid any possible
infestation with external pests.

Residual Contact Toxicity of Thymol on
Bean Seeds
Thymol purchased from Sigma-Aldrich (cat. no. W306606) was
dissolved in acetone. Bean seeds (10 g) were put in 90 mL glass
jars and treated with 300 µL of either thymol solutions or solvent
(control). Five thymol concentrations were applied for females
(60, 90, 105, 120, and 150 mg/kg of beans) and males (30, 45, 60,
75, and 90 mg/kg of beans). Treated seeds were mixed manually
for 5 min and left in open jars for 20 min to evaporate the solvent.
Then, 10 adult females or males (one day old) were introduced
into the jar, covered with a piece of cloth fixed with rubber. Eight
replicates per sex per thymol concentration and control (acetone)
were analyzed. The number of dead insects was estimated daily
until all insects died. Percentage of dead insects after 24 h of
treatment was used to determine lethal thymol concentrations.
Beetle longevity and age-specific mortality were also observed.

Thymol Effects on F1 Progeny
Production
Bean seeds (20 g) were put in 200 mL glass jars and treated with
600 µL of either thymol solution or solvent (control). Applied
thymol concentrations were 30, 45, 60, 75, 90, 105, and 120 mg/kg
of beans. After 5 min of treated seed mixing and 20 min of
solvent evaporation, five pairs of one day old bean weevils, i.e.,
five females and five males, were introduced into each jar, covered
with a piece of cloth fixed with rubber and kept in heating
incubators until the emergence of the progeny. Emerged adults
were counted daily until the end of emergence. Total number
of emerged insects as well as the number of emerged females
and males were used to determine the inhibition rate (IR%) of
emergence according to the formula:

IR% =
Nc− Nt

Nc
× 100

where Nc and Nt were total numbers of emerged adults in control
and treatment jars, respectively.

Enzyme Assays
Activities of enzymes (AChE, SOD, CAT, MFO, CarE, GST)
were determined in female and male beetles exposed to sublethal
(1/5 of LC50, 1/2 of LC50) and lethal concentrations (LC50)
of thymol for 24 h. The enzyme extracts were prepared by
pulverization of batches of 20 frozen beetles under liquid nitrogen
in a mortar with the pestle. After the addition of cold 50 mM

K-phosphate buffer pH 7.4 containing 1 mM EDTA and 1 mM
PMSF (1:10 tissue to buffer ratio), homogenates were sonicated
(2 × 15 s) and centrifuged at 4◦C, 16,000 × g for 30 min. The
supernatants were collected and used for the determination of
enzymes activities and total protein content. All enzyme assays
were performed at 30◦C. The total protein content was quantified
according to Bradford (1976) with bovine serum albumin (BSA)
as the standard and enzyme activities were expressed in units (U)
per mg of proteins.

The activity of AChE was determined according to the method
of Ellman et al. (1961). During the reaction, thiol groups released
from substrate acetyl-thiocholine iodide (ACTH) bind to 5,5′-
dithio-bis(2-nitrobenzoic acid) (DTNB) and form yellow 5-thio-
2-nitrobenzene (TNB). The reaction was carried out in 50 mM
phosphate buffer pH 7.9 and the change in absorbance was
monitored at 406 nm (ε = 13,330 M−1 cm−1). One enzyme
unit (U) was defined as the amount of enzyme that forms
1 nmol TNB per min.

The activity of SOD was assayed by the method of Misra
and Fridovich (1972), which is based on the capacity of SOD to
inhibit autoxidation of adrenaline to adrenochrome at pH 10.2
(50 mM sodium carbonate buffer). The change in absorbance
was monitored at 480 nm. One unit of SOD activity was
defined as the amount of enzyme causing 50 % inhibition of the
adrenaline autoxidation.

CAT activity was determined by the method of Claiborne
(1984). The rate of hydrogen peroxide (H2O2) decomposition
in 50 mM phosphate buffer pH 7.0 was determined according
to the change in absorbance at 240 nm (ε = 43.6 M−1 cm−1).
One unit of CAT activity was defined as the amount of
enzyme that catalyzed the decomposition of 1 µmol of
H2O2 per min.

FIGURE 1 | Impact of different concentrations of thymol on Acanthoscelides
obtectus mortality after 24 h of exposure to thymol treated bean seeds
(means ± SE for 8 replicates). Significant differences among experimental
groups within each sex are marked with different letters (a – e) (Duncan’s
post-hoc test, p < 0.05).
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TABLE 1 | Residual contact toxicity of thymol against adult females and males of Acanthoscelides obtectus.

Slope
(CI)

LC30

(CI)
LC50

(CI)
LC99

(CI)
χ2 p

Females 8.73 ± 0.79
(7.17, 10.28)

85.8
(80.7, 89.7)

98.4
(94.2, 102.3)

181.8
(165.6, 207.0)

3.84 0.279

Males 8.68 ± 0.80
(7.11, 10.25)

55.2
(51.3, 58.5)

66.0
(62.7, 69.0)

108.9
(100.8, 120.9)

1.02 0.795

LC – lethal thymol concentrations expressed in mg/kg of beans leading to 30, 50 and 99% beetle mortality (LC30, LC50, and LC99, respectively); CI – 95% confidence
interval; χ2 and P – Pearson’s goodness-of-fit test (df = 3).

The activity of MFO was quantified indirectly by the heme
peroxidation method (Brogdon et al., 1997). TMBZ (3, 3′, 5,
5′-tetra-methylbenzidine) dissolved in methanol and sodium
acetate buffer pH 5.0 was used as a hydrogen donor substrate.
The reaction started with adding a drop of hydrogen peroxide.
After 5 minutes of incubation absorbance was read at 630 nm.
Cytochrome c was used as an internal standard and the enzyme
unit was expressed as pmol of cytochrome c equivalents per min.

CarE activity was determined by the method of Wu et al.
(1998) by using p-nitrophenyl acetate (p-NA) as a substrate. The
enzyme hydrolyzes acetate ester and forms p-nitrophenol (p-NP)
which absorbs at 405 nm (ε = 12,800 M−1 cm−1). The enzyme
unit was defined as the amount of enzyme which generates 1
nmol of p-NP per min.

The activity of GST was determined by the method of Habig
et al. (1974). The method is based on the reaction of CDNB with
the SH group of GSH which was performed in 100 mM potassium
phosphate buffer pH 6.5. The change in absorbance was measured
at 340 nm (ε = 9,600 M−1 cm−1) and the enzyme unit was defined
as the amount of enzyme that generate 1 nmol of CDNB-GSH
conjugate per min.

Statistical Methods
Lethal thymol concentrations after 24 h of exposure were
estimated by probit analysis (Finney, 1971) and their values were
compared between females and males according to overlapping
confidence intervals. Based on mortality data during the beetles
life time Kaplan-Meier survival probability was calculated,
survival analysis was performed and survival distribution was
compared among thymol concentrations by log-rank test.
Parameters a (initial mortality) and b (exponential increase in
mortality over time) of the Gompertz model (instantaneous
mortality at age x = a × ebx) were determined by using
WinModest software and compared between control and thymol
treated beetles by using the log-likelihood-ratio test (Pletcher,
1999). Also, Gompertz parameters were compared between
females and males of the control group and group treated with
60 mg of thymol/kg of beans.

Kolmogorov-Smirnov test of normality and Bartlett’s test for
homogeneity of variances were applied on data transformed
in order to achieve assumptions for parametric ANOVA.
Arcus sinus square root transformation was used for the
percentage of 24 h adult mortality and the percentage of adult
emergence inhibition. Data on the number of emerged adults
and adult longevity were square root transformed. Assumption
of normality of distribution was violated for square root

transformed female and male longevities. Accordingly, to assess
the impact of thymol concentration on adult longevity we
used non-parametric Kruskal-Wallis ANOVA and Dunn’s post-
hoc test, whereas 24 h mortality and adult emergence were
analyzed by parametric 1-way ANOVA and Duncan’s post-hoc
test. To reveal the significance of the differences in the number
of emerged females and males we performed 1-way repeated
measures ANOVA with sex as within-subject factor and thymol
concentration as between-subject factor.

Enzyme activities were analyzed by 2-way ANOVA with
thymol concentration and sex as fixed factors. Carboxylesterase
activity was log-transformed whereas untransformed data
on other enzyme activities satisfied parametric ANOVA
assumptions. A posteriori comparisons (least square means
contrasts) were applied to assess the significance of enzyme
activity differences between sexes within each thymol
concentration. Also, 1-way ANOVAs followed by Duncan’s
post-hoc test were carried out to reveal the significance of thymol
concentration effects on enzyme activities separately in females
and males. All analyses were carried out with the software
Statistica 7.0 (StatSoft, Inc., Tulsa, OK, United States).

RESULTS

Acute Thymol Toxicity Against
Acanthoscelides obtectus
Thymol concentration significantly affected the percentage of
A. obtectus mortality both in females (F4,35 = 24.81, p < 0.001)
and males (F5,42 = 43.17, p < 0.001). Mortality of females
and males was significantly increased at concentrations equal or
higher than 90 and 45 mg/kg of beans, respectively (Figure 1).
Concentration-mortality response fitted the probit distribution
(Pearson’s test in Table 1). Higher resistance of females than
males to thymol was confirmed by higher low lethal (LC30)
and lethal concentrations (LC50, LC99) with non-overlapping
confidence intervals.

Acanthoscelides obtectus Longevity and
Time-Mortality Responses to Thymol
Exposure to thymol negatively affected A. obtectus adult
longevity. Both females and males lived shorter comparing
to control beetles (Kruskal-Wallis ANOVA, females:
H4,399 = 227.68, p < 0.001; males: H5,479 = 125.48,
p < 0.001). Significant longevity decrease can be observed
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FIGURE 2 | Changes in longevity of Acanthoscelides obtectus females and
males (means ± SE for 8 replicates) in response to chronic exposure to
thymol treated bean seeds. Significant differences among experimental
groups within each sex are marked with different letters (a - d) (Dunn’s
post-hoc test, p < 0.05).

at concentrations ≥ 90 mg/kg of beans in females and 60 mg/kg
of beans in males (Figure 2).

As revealed by Kaplan-Meier analysis thymol applied on bean
seeds also affected survival distribution over time in females
(χ2 = 368.12, df = 5, p < 0.001) and males (χ2 = 58.35, df = 5,
p < 0.001). Beetles from the treatment groups started to die
earlier than control beetles (Figure 3) and had higher initial
mortality at thymol concentrations ≥ 90 mg/kg of beans in
females and 30 mg/kg of beans in males (Gompertz parameter
a in Table 2). This higher initial mortality was related to slower
mortality increase with advanced age and higher maximum
longevity (Figure 3, Gompertz parameter b in Table 2). In the
control group males lived shorter due to accelerated aging rate,
whereas in beetles exposed to 60 mg of thymol / kg of beans
shorter life of males was a consequence of much higher initial
mortality (higher parameter a) which could not be compensated
by retarded aging (lower parameter b) (Table 2).

Thymol Impact on Acanthoscelides
obtectus Adult Emergence
Results presented in Table 3 show that the number of emerged
adults decreased significantly at concentrations ≥ 60 mg/kg
of beans (female emergence: F5,42 = 21.12, p < 0.001;
male emergence: F5,42 = 21.14, p < 0.001; total emergence:
F5,42 = 22.19, p < 0.001). Similarly, the percentage of emergence
inhibition was significantly affected by thymol concentration
(females: F4,35 = 19.51, p < 0.001; males: F4,35 = 16.81, p < 0.001;
females+males: F4,35 = 18.80, p < 0.001). The concentration
that provoked 50% emergence inhibition was estimated to be
57.3 mg/kg of beans (CI = 0.179; 0.201). Significant influence
of thymol concentration on adult emergence and emergence
inhibition was also confirmed by repeated measures ANOVA

(F5,42 = 22.32, p < 0.001 and F4,35 = 19.05, p < 0.001,
respectively). On average, more males than females emerged
in F1 generation (within-subject sex: F1,42 = 8.20, p = 0.007)
but emergence inhibition was not sex specific (F1,35 = 0.04,
p = 0.846). Additionally, slope of thymol concentration –
F1 progeny number and thymol concentration – emergence
inhibition response did not differ between females and males
(concentration × sex interaction: F5,42 = 0.19, p = 0.964 and
F4,35 = 0.50, p = 0.734, respectively).

Enzyme Activities in Acanthoscelides
obtectus Exposed to Sublethal and
Lethal Thymol Concentrations
The neurotoxic effect of thymol on A. obtectus adults was revealed
by inhibition of AChE activity both at sublethal and lethal
concentrations (Figure 4; significant “concentration” term in
Table 4). The slope of AChE inhibition differed between females
and males (significant “sex × concentration” term in Table 4).
Influence of thymol concentration was highly significant in
females (F3,16 = 18.77, p < 0.001), and males (F3,16 = 3.40,
p = 0.044). At median lethal concentration LC50 AchE was
inhibited about 38% in females and 15% in males (Figure 4).

On average, activities of antioxidative enzymes SOD and
CAT were elevated in the presence of thymol (Figure 5;
significant “concentration” term in Table 4). Shape of thymol
concentration – activity response depended on sex (significant
“sex × concentration” terms in Table 4) although both females
(SOD: F3,16 = 4.6, p = 0.017; CAT: F3,16 = 8.35, p = 0.001)
and males (SOD: F3,16 = 10.97, p < 0.001; CAT: F3,16 = 19.47,
p < 0.001) were significantly affected by thymol concentration.
Activity of catalase was about 2.5 times higher in females
than males across all examined concentrations. In contrast,
differences in SOD activity were recorded only in control (higher
activity in females) and LC50 group (higher activity in males)
(Figures 5A,B).

Activity of mixed-function oxidases was elevated in treated
beetles (Figure 6A; significant “concentration” term in Table 4).
Both females (F3,16 = 21.93, p < 0.001) and males (F3,16 = 22.88,
p < 0.001) were significantly affected by thymol concentration
but female MFO was less sensitive (Figure 6A; significant
“sex× concentration” term in Table 4). Males exposed to thymol
had higher MFO activity than females (Figure 6A; significant
“sex” term in Table 4).

Carboxylesterase activity was induced at sublethal thymol
concentrations (Figure 6B; significant “concentration” term in
Table 4). Significant thymol influence was detected both in
females (F3,16 = 5.38, p = 0.009) and males (F3,16 = 17.49,
p < 0.001) but induction was more expressed in males than
females (Figure 6B; significant “sex × concentration” term in
Table 4). At all examined concentrations CarE activity was higher
in males than females (Figure 6B; significant “sex” term in
Table 4).

Inhibition of glutathione S-transferase activity by thymol is
another possible mechanism of its toxicity (Figure 6C; significant
“concentration” term in Table 4). Both females (F3,16 = 136.13,
p < 0.001) and males (F3,16 = 30.73, p < 0.001) were significantly
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FIGURE 3 | Survival curves for female (A) and male Acanthoscelides obtectus (B) exposed to different thymol concentrations.

affected by thymol concentration but inhibition was steeper in
females than males (Figure 6C; significant “sex× concentration”
term in Table 4). Control and 1/5 of LC50 females had about 40%
higher GST activity than males, whereas no difference could be
recorded at LC50 (Figure 6C).

DISCUSSION

Adverse Effects of Thymol on Adult
Fitness Traits
Similar to the results on residual contact toxicity of thyme EO
against the bean weevil (Lazarević et al., 2020) we found that its
major compound thymol also significantly affected 24 h mortality
and longevity of females and males, and progeny production
in F1 generation. The ratio of median lethal concentrations
obtained for thymol and thyme EO (98.4 vs. 255.0 mg/kg of
beans in females and 66.0 vs. 172.2 mg/kg of beans in males)
corresponds to thymol concentration of 43.52% in thyme EO
(Jevremović et al., 2019) and suggests that thymol was the major
determinant of bean weevil mortality induced by thyme EO. It
appeared that other EO compounds either had negligible impact
on the acute toxicity of EO or some compounds contribution

counteracted the antagonistic effects of others. In difference to
our results studies on fumigant toxicity of thyme EO containing
47.5% thymol (Regnault-Roger et al., 1993) and pure thymol
(Regnault-Roger and Hamraoui, 1995) point to the significant
contribution of other compounds. Using different bean weevil
populations and different modes of botanical application may
account for disagreement between results of the studies. Besides,
although both EOs were extracted from thyme belonging to
thymol chemotype their composition was different. For example,
thyme EO from the study of Regnault-Roger and colaborators
contained caryophyllene, bicyclic sesquiterpene, which had both
fumigant and residual toxic effects on stored product insects (Lee
et al., 2008; Sun et al., 2020).

On the other hand, ratio of median effective concentration
(EC50) for adult emergence inhibition rate on thymol (57.3 mg/kg
of beans) and thyme EO (65.7 mg/kg of beans, Lazarević et al.,
2020) suggests an important role of other compounds in reducing
adult emergence. Since pure thymol seems to affect F1 progeny
number mainly through the adverse effect on male survival
(similarity of EC50 value for adult emergence inhibition to LC50
for males on thymol) it is possible that other compounds in thyme
EO additionally reduced emergence through adverse effects on
mating, fecundity, larval penetration into seeds and/or preadult
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Lazarević et al. Thymol Toxicity to Bean Weevil

survival. Even sublethal concentrations of monoterpenes could
have a significant impact on fitness traits and behavior of the
bean weevil (Regnault-Roger and Hamraoui, 1995; Jevremović
et al., 2019; Hategekimana and Erler, 2020) and other pests
(Hummelbrunner and Isman, 2001; Wang et al., 2009; Tak and
Isman, 2017; de Melo et al., 2018; Abdelgaleil et al., 2021a;
Barbosa et al., 2021; de Andrade Brito et al., 2021; Ruiz et al.,
2021). Because thymol also affects bean weevil fitness traits
(Regnault-Roger and Hamraoui, 1995) and deters oviposition
(Jevremović et al., 2019) we suppose that various synergistic
and antagonistic interactions of thymol with other monoterpenes
might take part in determining the number of emerged adults.
In other pest species such interactions can affect repellence,
feeding deterrence, female attraction to males, egg viability, adult
emergence and locomotion (Singh et al., 2009; Tak and Isman,
2017; Youssefi et al., 2019; Ataide et al., 2020; López et al.,
2021).

Insecticidal, repellent, antifeedant, oviposition deterrent and
growth reducing effects of thymol have been confirmed in
stored products (Kim et al., 2010; Szczepanik et al., 2012; Brari
and Thakur, 2015; Oliveira et al., 2017, 2018; Shahriari et al.,
2017; Wahba et al., 2018; da Camara et al., 2022), agricultural
(Hummelbrunner and Isman, 2001; Wilson and Isman, 2006;
Pavela, 2011a; Koul et al., 2013; Lima et al., 2020; Valcárcel
et al., 2021) and medically important pest insects (Pavela, 2011b;
Zahran and Abdelgaleil, 2011; Govindarajan et al., 2013; Youssefi
et al., 2019). Influence of thymol on stored products insects
depends on insect species, mode of application and sex. For
example, in residual contact assays, Tribolium castaneum was
more sensitive than Sitophilus oryzae (Kanda et al., 2017),
whereas in fumigant assays efficacy of thymol was equal in these
species (Brari and Thakur, 2015). Relative ranking of terpene
efficacy also depended on the mode of application. Comparisons
of thymol and linalool revealed similar toxicity and oviposition
inhibition effect of thymol against the bean weevil in fumigant
assay (Regnault-Roger and Hamraoui, 1995), whereas in residual
contact assays thymol was more effective in reducing survival
and oviposition (Jevremović et al., 2019). About ten times higher
vapor pressure of linalool than thymol (0.157 and 0.016 mmHg,
respectively) may account for such a relationship. This result
is consistent with the findings of other authors that thymol
bioactivity is superior in contact assays (Waliwitiya et al., 2005;
Hieu et al., 2014; Wahba et al., 2018).

Thymol Toxicity Is Sex-Specific
Bean weevil females are more tolerant to monoterpenes and
essential oils (Regnault-Roger and Hamraoui, 1995; Papachristos
and Stamopoulos, 2002; Papachristos et al., 2004; Lazarević et al.,
2020), which is confirmed in our study with residual contact
toxicity of thymol where we recorded higher median lethal
concentration and lower initial mortality in females than males.
In other insect species, females are usually more tolerant to
plant-derived compounds (Yeom et al., 2012; Theou et al., 2013;
Jang et al., 2017; Park et al., 2017; Pavela et al., 2021). Sex
differences depend on applied compounds and the method of
application. Jang et al. (2017) detected higher tolerance of female
Drosophila suzuki to topically applied citronellal, citronellol and

TABLE 2 | Gompertz mortality parameters (a – initial mortality; b – exponential
increase in mortality with age) and 95% confidence intervals (CI) in
Acanthoscelides obtectus females and males exposed to different thymol
concentrations.

Gompertz mortality parameters

Concentration
(mg/kg of beans)

a (× 10−2) (CI) b (CI)

Females

0 1.09 (0.61, 1.95) 0.40 (0.34, 0.47)

60 1.35 (0.74, 2.46) 0.30* (0.25, 0.37)

90 9.48* (6.08, 14.77) 0.15* (0.10, 0.25)

105 61.63* (46.24, 82.14) 0.19* (0.09, 0.41)

Males

0 0.72 (0.33, 1.57) 0.70C (0.58, 0.84)

30 2.49* (1.41, 4.40) 0.41* (0.33, 0.51)

45 3.60* (1.96, 6.61) 0.45* (0.34, 0.58)

60 16.47∗,C (11.01, 24.66) 0.14∗,B (0.08, 0.26)

Significant differences from the control group are marked with asterisks (log-
likelihood ratio test, df = 1, p < 0.05). Significant differences between females and
males of control and 60 mg of thymol / kg of beans treatment group are marked
with B (p < 0.01) and C (p < 0.001).

isopulegol, but not after fumigant application. Only essential
oils rich in α-pinene were more toxic to Musca domestica males
(Pavela et al., 2021). In the bean weevil, females were about 3.5
times more resistant to α-terpineol and only 1.2 times more
resistant to α-pinene (Papachristos et al., 2004). Likewise, bean
weevil females were about 5 times more resistant to Mentha
microphylla EO and 1.5 times more resistant to Lavandula
hybrida EO (Papachristos and Stamopoulos, 2002) and thymol
(present results). Possible explanations of sexual dimorphism
in toxicity of plant-derived compounds against bean weevil are
differences in body size and cuticle composition (Tucić et al.,
1996; Gołebiowski et al., 2008) as well as differences in physiology
(Šešlija et al., 1999; Lazarević et al., 2012, 2020; Arnqvist
et al., 2017; Zhang et al., 2020) that may affect compound
bioavailability and bean weevils’ innate ability to cope with
chemical stressors.

Our results showing a lower exponential increase in
mortality with age in thymol treatment groups and higher
maximum longevity at sublethal thymol concentrations imply
that individuals that survived after 24 h of exposure possibly
had and/or induced some kind of defense responses. To explore
mechanisms of thymol toxicity and tolerance, we determined the
activity of six enzymes and found that thymol gradually inhibited
activities of AChE and GST, elevated activities of SOD, CAT
and CarE at sublethal concentrations and MFO at both sublethal
and lethal concentrations. Generally, insects resistant to chemical
insecticides and plant-derived compounds have higher activities
of AChE, SOD and detoxification enzymes (Attia et al., 2017;
Roy and Prasad, 2018; Akami et al., 2019; Senthil-Nathan, 2020).
In agreement with this, we found that in the absence of thymol
females, the more tolerant sex, contained a higher level of low-
molecular thiols (Lazarević et al., 2020) and had higher activities
of SOD, CAT and GST (present results).
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TABLE 3 | Adult emergence in F1 generation and emergence inhibition (means ± SE for 8 replicates) in Acanthoscelides obtectus depending on thymol concentration
(Conc) in parental generation.

Thymol Number of emerged adults Emergence inhibition (%)

Conc (mg/kg of beans) Females Males Total Females Males Total

0 43.5 ± 6.6c 47.5 ± 5.2c 91.0 ± 11.3c

30 48.4 ± 3.4c 55.1 ± 6.3c 103.5 ± 9.3c
−11.2 ± 7.8a

−16.1 ± 13.3a
−13.7 ± 10.2a

45 33.9 ± 4.6c 35.5 ± 4.0c 69.4 ± 8.3c 22.1 ± 10.5b 25.3 ± 8.4b 23.8 ± 9.1b

60 18.6 ± 5.9b 19.5 ± 5.8b 38.1 ± 11.6b 57.2 ± 13.6c 58.9 ± 12.1bc 58.1 ± 12.7b

75 5.8 ± 2.9a 8.9 ± 4.1a 14.6 ± 6.7a 86.8 ± 6.7d 81.3 ± 8.7cd 83.9 ± 7.4c

90 3.4 ± 1.9a 3.9 ± 1.8a 7.3 ± 3.7a 92.2 ± 4.4d 91.8 ± 3.9d 92.0 ± 4.0c

Values marked with different letters (a, b, c, d) within columns indicate significant differences among treatments (Duncan’s post-hoc test, p < 0.05).

FIGURE 4 | Activity of acetylcholinesterase (mean ± SE for 5 replicates) in
females and males of Acanthoscelides obtectus exposed to different thymol
concentrations. Different lowercase letters (a, b, c) mark significant differences
among concentrations within each sex (Duncan’s post-hoc test, p < 0.05),
whereas different uppercase letters (A, B) show significant differences
between females and males within each thymol concentration (LSM contrasts,
p < 0.05).

Role of Antioxidative Enzymes in
Tolerance to Thymol
After exposure to sublethal thymol concentrations, SOD
increased both in females and males whereas at lethal
concentration it was increased only in males. SOD responds
first to oxidative stress induced by xenobiotics and protects cells
from dangerous free radicals. Without efficient scavenging of
its product of reaction H2O2 by catalase and other peroxidases,
it may damage macromolecules, accelerate aging and reduce
insect survival and longevity. For instance, bean weevil females
exposed to thyme essential oil had lower a level of damaged lipids
(Lazarević et al., 2020). In consistence with our results, SOD
and CAT were elevated by thymol in Ephestia kuehniella larvae
(Shahriari et al., 2018), by carvacrol, p-cymene and γ-terpinene
in S. littoralis larvae (Agliassa and Maffei, 2018), by carvacrol in

Lymantria dispar larvae (Chen et al., 2021), by ethanolic extract
of Acalypha wilkesiana leaves in Callosobruchus maculatus adults
(Oni et al., 2019) and by Boswellia carterii EO in adults of
two Callosobruchus species (Kiran et al., 2017). SOD and CAT
responses to botanicals may vary depending on insect species,
duration of exposure, botanical type and concentration. Several
studies have shown that more resistant species had higher SOD
and CAT activity, higher induction of activity and/or higher CAT
to SOD ratio (Kiran et al., 2017; Petrović et al., 2019). Also, in
some species, botanicals can reduce SOD and/or CAT activity at
high concentrations (Oni et al., 2019; Rajkumar et al., 2019).

Here we recorded higher CAT activity and CAT to
SOD activity ratio in females across all examined thymol
concentrations that could account for sex-specific differences in
tolerance to thymol. Similar result was obtained in A. obtectus
populations selected for early and late reproduction (Šešlija et al.,
1999) indicating that a higher CAT and CAT to SOD ratio
is characteristic of this species. Tasaki et al. (2017) suggested
that females of eusocial Isoptera and Hymenoptera have high
CAT activity whereas in solitary insects CAT activity is lower
in females than males. However, there are also examples of
higher CAT activity in females of solitary species under control
(Sharma et al., 1995) and stressful conditions (Rovenko et al.,
2015; Manna et al., 2020; Wang et al., 2020). Several studies
have shown that CAT accumulates in insect ovaries providing
protection to developing oocytes from oxidative damage (e.g.,
de Jong et al., 2007; Diaz-Albiter et al., 2011). We speculate
that such mechanism might contribute to higher CAT activity
in A. obtectus females which emerge with about 30 mature
chorionated eggs in the lateral oviduct (Leroi, 1981). In the
absence of mating antioxidants accumulated in eggs would be
fully available for defense against xenobiotics.

Thymol Inhibits Activities of AChE and
GST
Our observation about inhibition of neurotransmitter enzyme
AChE and detoxification enzyme GST by thymol in bean weevil
females and males agrees with findings of other studies on
physiological mechanisms of monoterpenes and essential oils
toxicity (Mojarab-Mahboubkar et al., 2015; Liao et al., 2016,
2017; Agliassa and Maffei, 2018; Yang et al., 2018; Chen et al.,
2021; Fouad and Abotaleb, 2021). Inhibition of AChE leads
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TABLE 4 | F and p values from 2-way ANOVA testing significance of main and interaction effects of sex and thymol concentration on activities of acetylcholinesterase
(AChE), superoxide dismutase (SOD), catalase (CAT), mixed-function oxidase (MFO), carboxylesterase (CarE), and glutathione S-transferase (GST) in Acanthoscelides
obtectus.

Source of AChE SOD CAT MFO CarE GST

variation F p F p F p F p F p F p

Sex
(df: 1, 32)

3.2 0.082 0.0 0.935 2366.0 <0.001 31.4 <0.001 682.7 <0.001 22.5 <0.001

Concentration
(df: 3, 32)

17.6 <0.001 9.7 <0.001 19.8 <0.001 41.6 <0.001 21.3 <0.001 150.1 <0.001

Sex × Concentration
(df: 3, 32)

4.6 0.009 8.6 <0.001 1.2 0.329 3.4 0.029 7.0 <0.001 43.6 <0.001

Significant effects are marked in bold.

to accumulation of acetylcholine at nerve synapses, and thus
permanent conduction of nerve impulses, ataxia, convulsions
and death (Rattan, 2010). AChE activity was more reduced in
females than males so that males had higher activity at thymol
concentration 1/2 of LC50 and LC50. In difference to our results,
AChE of female adults of Blatella germanica and Drosophila
suzuki were less sensitive to in vitro inhibition with thymol
(Yeom et al., 2012; Park et al., 2016). The discrepancy between
toxicity and AChE inhibition by botanical insecticides suggests
differences in other neurological or enzymatic target sites. A weak
correlation has been found between AChE activity and insecticide
resistance in D. melanogaster (Charpentier and Fournier, 2001).
Therefore, the relationship between AChE activity and resistance
to chemical stress may depend on insect species and population
or applied compound. For example, although more resistant
to fumigation with lemongrass essential oil AChE activity in
treated females of Callosobrucus maculatus was lower than in
males (de Souza et al., 2019). To fully understand AChE-thymol
resistance relationship further researches are needed to reveal
how thymol affects the level of cholinergic and non-cholinergic
AChE isoforms. Non-cholinergic AChE is important for insect
fecundity and defense against xenobiotics, and, compared to
cholinergic isoform, exhibits lower catalytic efficiency and higher
resistance to inhibiton by insecticides (Kim Y. H. et al., 2012; Kim
et al., 2014; Lu et al., 2012; Hwang et al., 2014; Lee et al., 2015;
Kim and Lee, 2018). Therefore, a higher level of protective non-
cholinergic isoform might provide higher thymol resistance to
females despite the lower activity. Several studies have shown sex-
dependant relative expression of genes encoding the two isoforms
(Zhao et al., 2013; Salim et al., 2017).

Inhibition of GST by thymol is an important feature from
the pest management point of view because it could interfere
with the detoxification in insects and lead to enhanced activity
of conventional insecticides (Ismail, 2021). In Trichoplusia ni
larvae, topical application of thymol inhibited GST activity by
41% (Tak et al., 2017), whereas topical application of thymol
on larvae of Plutella xylostella (Kumrungsee et al., 2014), and
oral administration in Ephestia kuehniella (Shahriari et al., 2018)
and Tuta absoluta (Piri et al., 2020) increased GST activity. At
LC50 of thymol we obtained that there was no difference in
GST activity between females and males. However, because initial
activity in control females was higher, a higher percentage of
inhibition was recorded in females than males (58 vs. 35%).

Sexual dimorphism in detoxification enzyme activity has also
been revealed in other studies where pest insects were exposed to
plant-derived compounds. In C. maculatus GST, p-NPA esterase
and α-esterase were not affected by lemongrass oil, whereas
β-esterase was inhibited only in females (de Souza et al., 2019).

Thymol Increases Activities of Phase I
Detoxification Enzymes
Two enzymes involved in the phase I detoxification, CarE and
MFO, increased the activity in response to thymol suggesting
that they could have an important role in thymol metabolism
in the bean weevil females and males. Further investigations
are needed to elucidate how bean weevils detoxify thymol. In
mammals, the majority of thymol is rapidly excreted unchanged
or as a conjugate but oxidation of methyl and isopropyl groups
also occurred (Austgulen et al., 1987). In difference to our
results, thymol did not change the activity of CarE and MFO in
Trichoplusia ni (Tak et al., 2017) which larvae excreted thymol
bound to glucose without the change in its monoterpenoid
structure (Passreiter et al., 2004). Highly diverse results have been
obtained in other insect species where thymol had insignificant
effect on esterase and MFO activities (Yotavong et al., 2015) or
provoked their induction (Boncristiani et al., 2012; Kumrungsee
et al., 2014; Piri et al., 2020) or inhibition (Waliwitiya et al., 2012;
Shahriari et al., 2017; Gaire et al., 2021).

Comparison between thymol treated females and males
revealed that males had higher CarE and MFO activity and
provoked activity increase at lower thymol concentrations
than females. It is not clear how detoxification enzyme
activity variation contributes to the higher tolerance of
females to insecticides. For example, females of Helopeltis
theivora that are more tolerant to organophosphates had
similar MFO activity to males and higher activity of α-
esterase and GST (Roy and Prasad, 2018). Females of tortricid
species Lobesia botrana and Grapholita molesta that are
more tolerant to neonicotinoid insecticide thiacloprid and less
tolerant to organophosphate insecticide chloropyrifos, exhibited
sex-specific differences in detoxification enzymes (Navarro-
Roldán et al., 2017, 2020). Namely, females of L. botrana
had higher activities of MFO and GST and lower sensitivity
of esterase to specific inhibitor DEF, whereas G. molesta
females exhibited faster inhibition of MFO with specific
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FIGURE 5 | Activity of superoxide dismutase (A) and catalase (B) in females
and males of Acanthoscelides obtectus exposed to different thymol
concentrations (mean ± SE for 5 replicates). Different lowercase letters (a, b,
c) mark significant differences among concentrations within each sex
(Duncan’s post-hoc test, p < 0.05), whereas different uppercase letters (A, B)
show significant differences between females and males within each thymol
concentration (LSM contrasts, p < 0.01).

inhibitor PBO. In C. macullatus treated with lemongrass
oil females had higher p-NPA esterase activity (de Souza
et al., 2019). Evidently, our results on lower activity of
detoxification enzymes in more tolerant sex disagree with
other studies on chemical and botanical insecticides. This
may suggest an involvement of other mechanisms of tolerance
such as better behavioral avoidance of a toxic compound or
cuticle structure which slows-down thymol penetration (Panini
et al., 2016). Besides, esterases and MFO are multifunctional
enzymes encoded by a large number of genes organized into
families (Feyereisen, 2012; Montella et al., 2012). Change in

FIGURE 6 | Activity of mixed-function oxidases (A), carboxylesterase (B) and
glutathione S-transferase (C) in females and males of Acanthoscelides
obtectus exposed to different thymol concentrations (means ± SE for 5
replicates). Different lowercase letters (a, b, c) mark significant differences
among concentrations within each sex (Duncan’s post-hoc test, p < 0.05),
whereas different uppercase letters (A, B) show significant differences
between females and males within each thymol concentration (LSM contrasts,
p < 0.05).
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detoxification gene expression in response to xenobiotics is sex-
biased and can be related to sex-specific differences in xenobiotic
metabolism or other sex-specific physiological functions such
as the production of pheromones and hormones by MFO and
odorant degradation by esterases (Le Goff et al., 2006; Robert
et al., 2013; Liu et al., 2019). High CarE activity that we recorded
in male weevils might be related to its role in reproduction.
It is known that carboxylesterases are overexpressed in the
male reproductive tract of insects where they provide protection
against xenobiotics and take part in sperm differentiation,
maturation and function (Mikhailov and Torrado, 1999, 2000). In
agreement with our results much higher esterase activity in males
than females have been detected in whole body homogenates
of Lygus hesperus (Zhu and Brindley, 1990) and abdomens of
Grapholita molesta (de Lame et al., 2001) and Cydia pomonella
(Fuentes-Contreras et al., 2007).

Conclusion
In conclusion, we showed insecticidal activity of thymol against
the bean weevil. Since thymol has been approved by the
Environmental protection agency for use on food crops (EPA
Code 080402, 2021) and has many human health promoting
effects (de Alvarenga et al., 2021) it can be safely used as a contact
insecticide on bean seeds. Results on bean weevil physiological
responses have implications for designing of future thymol-based
insecticides. Inhibition of AChE is responsible for fast mortality
response. However, thymol-induced inhibition was weak and
thus involvement of other neurotoxicity and/or metabolic targets
cannot be excluded. Due to inhibition of GST thymol can be used
to synergize effects of chemical insecticides for which GST activity
is crucial and thus reduce applied doses of these dangerous

compounds. Since thymol induce the activity of MFO and
CarE future formulations of thymol-based insecticides should
involve inhibitors of these enzymes. Sex-specific differences in
tolerance to thymol and sex-specific physiological responses to
thymol exposure (especially high CAT and CAT to SOD activity
ratio in females, and high CarE activity in males) should be
also taken into account in bean weevil management. Further
studies are needed to fully elucidate mechanisms of thymol
toxicity and tolerance.
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Lazarević et al. Thymol Toxicity to Bean Weevil

Tak, J. H., and Isman, M. B. (2017). Acaricidal and repellent activity of
plant essential oil-derived terpenes and the effect of binary mixtures against
Tetranychus urticae Koch (Acari: Tetranychidae). Ind. Crops Prod. 108, 786–
792. doi: 10.1016/j.indcrop.2017.08.003

Tak, J. H., Jovel, E., and Isman, M. B. (2017). Effects of rosemary, thyme and
lemongrass oils and their major constituents on detoxifying enzyme activity
and insecticidal activity in Trichoplusia ni. Pestic. Biochem. Physiol. 140, 9–16.
doi: 10.1016/j.pestbp.2017.01.012

Tasaki, E., Kobayashi, K., Matsuura, K., and Iuchi, Y. (2017). An efficient
antioxidant system in a long-lived termite queen. PLoS One 12:e0167412. doi:
10.1371/journal.pone.0167412

Theou, G., Papachristos, D. P., and Stamopoulos, D. C. (2013). Fumigant toxicity
of six essential oils to the immature stages and adults of Tribolium confusum.
Hell. Plant Prot. J. 6, 29–39.
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