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Vitiligo is an autoimmune disease characterized by progressive skin depigmentation and
the appearance of white patches throughout the body caused by significant apoptosis
of epidermal melanocytes. Despite not causing any physical pain, vitiligo can originate
several psychosocial disorders, drastically reducing patients’ quality of life. Emerging
evidence has shown that vitiligo is associated with several genetic polymorphisms
related to auto-reactivity from the immune system to melanocytes. Melanocytes
from vitiligo patients suffer from excess reactive oxygen species (ROS) produced by
defective mitochondria besides a poor endogenous antioxidant system (EAS). This
redox imbalance results in dramatic melanocyte oxidative stress (OS), causing significant
damage in proteins, lipid membranes, and DNA. The damaged melanocytes secret
damage-associated molecular pattern (DAMPs), inducing and increasing inflammatory
gene expression response that ultimately leads to melanocytes apoptosis. Vitiligo
severity has been also associated with increasing the prevalence and incidence of
metabolic syndrome (MetS) or associated disorders such as insulin resistance and
hypercholesterolemia. Thus, suggesting that in genetically predisposed individuals, the
environmental context that triggers MetS (i.e., sedentary lifestyle) may also be an
important trigger for the development and severity of vitiligo disease. This paper will
discuss the relationship between the immune system and epidermal melanocytes and
their interplay with the redox system. Based on state-of-the-art evidence from the vitiligo
research, physical exercise (PE) immunology, and redox system literature, we will also
propose chronic PE as a potential therapeutic strategy to treat and prevent vitiligo
disease progression. We will present evidence that chronic PE can change the balance
of inflammatory to an anti-inflammatory state, improve both EAS and the mitochondrial
structure and function (resulting in the decrease of OS). Finally, we will highlight clinically
relevant markers that can be analyzed in a new research avenue to test the potential
applicability of chronic PE in vitiligo disease.
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INTRODUCTION

Vitiligo is an autoimmune disease characterized by progressive
skin depigmentation and the appearance of white patches
throughout the body, caused by significant apoptosis of
epidermal melanocytes (Bergqvist and Ezzedine, 2020).
Currently, it is estimated that vitiligo affects 0.5–2% of the
global population, being the most prevalent skin disease
(Krüger and Schallreuter, 2012), and despite not causing
any physical pain, vitiligo can generate several psychosocial
disorders reducing drastically patients’ quality of life
(Krüger and Schallreuter, 2013).

There is no known cure for vitiligo, but there are several
management strategies to reduce the spread of white skin
patches and to attempt to re-pigmentate the affected areas. The
most used treatments are immunosuppressive drugs such as
corticosteroids, calcineurin inhibitors, antioxidant supplements,
and phototherapies. However, these therapeutics are not 100%
effective and do not prevent the disease reappearance (Bergqvist
and Ezzedine, 2020). Therefore, it is still needed cost-effective
strategies to prevent the resurgence of vitiligo wounds and
effectively stop the spread of white patches. Knowing the
underlying molecular mechanisms and patients ‘environmental
context is essential to develop effective treatments.

Emerging evidence has shown that vitiligo is associated
with several genetic polymorphisms related to auto-reactivity
from the immune system (IS) to melanocytes. Melanocytes
from vitiligo patients suffer from excess reactive oxygen
species (ROS) produced by defective mitochondria besides a
poor endogenous antioxidant system (EAS) (Bergqvist and
Ezzedine, 2020). This redox imbalance results in dramatic
melanocyte oxidative stress (OS), causing significant damage in
proteins, lipid membranes, and DNA. The damaged melanocytes
secret damage-associated molecular pattern (DAMPs), inducing
and increasing inflammatory gene expression response that
ultimately leads to cell apoptosis (Bergqvist and Ezzedine, 2020).

Vitiligo severity has also been associated with metabolic
syndrome (MetS), increasing the prevalence and incidence of
MetS or associated disorders such as insulin resistance and
hypercholesterolemia (Ataş and Gönül, 2017; Sharma et al., 2017;
Tanacan and Atakan, 2020; Verma et al., 2021). Etiologically,
MetS are associated with a sedentary lifestyle (Edwardson
et al., 2012), cellular inflammation, and OS mechanisms
(Bonomini et al., 2015) that may be involved in the onset of
vitiligo. Therefore, we speculate that in genetically predisposed
individuals, the environmental context that triggers MetS (i.e.,
sedentary lifestyle) may also be an important trigger for the
development and severity of vitiligo disease.

In this paper, we will discuss the molecular mechanisms
and the role of patients’ environmental context for the onset
of vitiligo. Specifically, we will discuss the relationship between
the immune system and epidermal melanocytes and their
interplay with the redox system. Based on state-of-the-art
evidence from the vitiligo research, physical exercise (PE)
immunology, and redox system literature, we also propose
PE as a potential therapeutic strategy to fight vitiligo adverse
events (e.g., spreading new white skin wounds and associated
comorbidities). We hypothesize that three potential changes

induced by chronic PE can occur in vitiligo patients: (i) a
positive immunomodulatory response (change the balance of
inflammatory to an anti-inflammatory state), (ii) improvement
in EAS, and (iii) improvement in the mitochondrial structure
and function (resulting in the decrease of OS). Clinically,
these biochemistry/metabolic/structural changes promoted by
chronic PE training can stabilize the vitiligo, prevent the
spread or reappearance of vitiligo after its stabilization and
potentially promote the repigmentation of affected areas.
Therefore, this paper highlights the clinical applicability of
a structured PE training in vitiligo disease development and
proposes a new research avenue to explore the potential role
of PE training in vitiligo pathophysiological mechanisms and as
treatment strategy.

OVERVIEW OF VITILIGO DEVELOPMENT

Several genetic polymorphisms have been identified in vitiligo
development; such alterations come from the innate and
adaptive IS and melanocytes morphology and metabolism
(Bergqvist and Ezzedine, 2020).

In 2007, alterations in the NALP1 genomic region were
identified in vitiligo patients (Jin et al., 2007). NALP1 encodes
the NACHT Leucine-rich repeat protein 1 (a cytosolic pattern
recognition receptors, which are highly expressed in T cells and
Langerhans cells) that detect infection or cell damage in the
cytosol (e.g., DAMPs). NACHT Leucine-rich repeat protein 1
recognize pathogen-associated molecular patterns and DAMPs
and recruit other proteins to form signaling complexes that
promote inflammation or type I interferon production (Jin
et al., 2007; Abbas et al., 2019b). Posteriorly, an upregulation in
interferon-gamma (IFN-γ) gene expression has been identified
in the serum from vitiligo patients (Dwivedi et al., 2013).
Further, low expression of CTLA-4 (cytotoxic T lymphocyte
antigen-4) in T cells was also associated with higher vitiligo
disease susceptibility (Ni et al., 2014). It is well established that
NACHT actively promotes IL-1β and IFN-γ gene expression.
IFN-γ, in turn, induces B7 gene expression in antigen-presenting
cells (APC) in the epidermis (also known as Langerhans’ cells)
(Deng et al., 2018). Thus, low CTLA-4 expression in cytotoxic
T cells (Song et al., 2013) increases the incidence of APC
antigen presentation and cytotoxic T cells activation via B7 (from
APC) to CD28 cytotoxic T cell binding (Abbas et al., 2019a,
see Figure 1). Consequently, when this immunometabolism
occurs with antigen from melanocytes, immune self-tolerance
is lost, and melanocytes apoptosis occurs via accessory pathway
activation. In contrast, in a vitiligo mouse model, it was
demonstrated that an increase in regulatory T cells (Tregs)
suppresses autoreactive cytotoxic T cells responses (Le Poole
and Mehrotra, 2017). However, compared to healthy peers,
vitiligo patients have low Tregs gene expression (and CTLA-4,
as previously mentioned), which has a significant role in vitiligo
development (Giri et al., 2020). Future studies are needed to
explore a better strategy to promote increases in Tregs from
vitiligo patients as illustrated in Figure 1B.

In vitiligo patients, high IFN-γ expression has been implicated
in an aggressive and permanent IS response (IFN-γ→ CXCL10
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FIGURE 1 | Immune system profile in melanocytes from vitiligo patients. (A) Vitiligo patients have genetic polymorphisms that downregulate CTLA-4 from CD8+ T
cell and a mutation of the NALP1 gene (which results in a higher IFN-γ gene expression). These alterations might result in a greater IFN- γ gene expression
upregulating the costimulatory molecule B7 from APC. Upon antigen presentation, the APC activates CD8+ T cell via B7-CD28 interaction (in contrast, if B7 binds to
CTLA-4 receptor, the CD8+ T cell remains inactivated albeit antigen presentation). Upon activation, CD8+ T cell secrets large amounts of IFN-γ, stimulating
keratinocytes (via JAK/STAT pathway) to secret chemokines (CXCL9 and CXCL10) that recruit recirculation effector CD8+ T cell in injured melanocytes inducing its

(Continued)
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FIGURE 1 | apoptosis. In addition, activated CD8+ T cells secrets large amounts of TNF-α, resulting in further downregulation in CTLA-4 receptors. (B) A theoretical
model describing the potential role of chronic physical exercise on cytotoxic T cells suppressing. Chronic physical exercise (PE) decreases pro-inflammatory
cytokines such as IL-β, IFN-γ, and TNF-α and increases anti-inflammatory IL-10. Inhibiting IL-1-β and TNF-α, there are no negative feedback for CTL-4 expression in
cytotoxic T cell or regulatory T cell. When the CTL-4 receptor interacts with costimulatory molecule B7 from APC (because costimulatory molecule B7 has a greater
affinity for CTLA-4 than the CD28 receptor), the regulatory T cell suppresses CD8+ T cell activation. Also, due to chronic PE, the increase in IL-10, FOXP3, and
TGF-β can stimulate regulatory T cells’ transcription, differentiation, and proliferation. An increase in regulatory T cells suppresses autoreactive cytotoxic T cells
responses. The increase in regulatory T cells can consume IL-2, which is important for maintaining memory T cells, thus potentiating the decrease in the excessive
memory T cell as discussed in the paper. APC, antigen-presenting cell; CD28, Cluster of Differentiation 28; CTLA-4, cytotoxic T lymphocyte antigen-4; CXCL, C-X-C
motif chemokine ligand; CXCR, C-X-C motif chemokine receptor; DAMPs, damage-associated molecular pattern; JAK/STAT, Janus kinase/signal transducer and
activator of transcription; IFN-γ, interferon-gamma; IL, interleukin; MHC, major histocompatibility complex; TGF-β, transforming growth factor, TNF-α, tumor necrosis
factor-alpha. Figure created with images from smart.servier.com and storyset.com.

(C-X-C Motif Chemokine Ligand 10) → CD8+ T cells) (Xie
et al., 2016) targeting the population of epithelial cells throughout
the body causing visual (Agarwala and Malkud, 2020), hearing
(Ma et al., 2021) and vascular dysfunction (Azzazi et al., 2021).
Nonetheless, one of the main visible features of this clinical
condition is noted when the IS attacks epidermal melanocytes
(Dwivedi et al., 2013), leading them to apoptosis without
replacement, a phenotypic trait of vitiligo, identified by white
spots in the skin, which signalize the absence of melanocytes
at the site (Rashighi et al., 2014). The mechanistic trigger
for loss of immune self-tolerance (which induces melanocytes
apoptosis) is dysfunctional mitochondria resident in epidermal
melanocytes (Dell’Anna et al., 2007) and also in CD8+ T cells
(Dell’Anna et al., 2003). These defective mitochondria have
low concentration and abnormal cardiolipin distribution in the
mitochondrial electron transport chain (mETC), which cause
defects in complex I formation, impairing the stability and
creation of mitochondria supercomplexes (essential for normal
ATP production and low mitochondrial ROS emission (see
scheme in Figure 2; Dell’Anna et al., 2003, 2007; Dell’Anna
et al., 2017). Interestingly, in an in vitro study, cardiolipin
replacement rescued normal mitochondria function from vitiligo
patients (Dell’Anna et al., 2017). However, more studies are
needed to determine the cause of low cardiolipin concentration
in mitochondria from melanocytes and CD8+ T cells and how to
restore the normal concentrations of this lipid in vivo.

In addition to high mitochondrial ROS emission, vitiligo
patients have a deficient EAS, with low activity and low gene
expression of catalase (CAT), glutathione peroxidase (GPx), and
thioredoxin reductase (TrxR) (Laddha et al., 2013; Xie et al.,
2016), leading to a chronic OS state (Schallreuter, 2014). The
low EAS effectiveness in vitiligo patients is related to its disabling
caused by the chronic OS (Schallreuter et al., 1991a; Schallreuter,
2014). High OS causes cell damage leading melanocytes to secrete
autoantigens such as calreticulin and heat shock protein 70
(Hsp70) acting as DAMPs (Mosenson, 2013; Zhang et al., 2014;
Xie et al., 2016), which induces an adaptive immune response,
via cytokines such as interleukin (IL)-1β, IL-6, IL-12, interferon
(IFN)-α, IFN-γ, and tumor necrosis factor-alpha (TNF-α) (Asea,
2007; Xie et al., 2016).

A Possible Link Between Vitiligo Onset
and Progression With Sedentary Lifestyle
As with other diseases, patients’ environmental context
modulates their genetic predisposition. Despite the consensus on

the role of genetic predisposition and the greater susceptibility
of vitiligo development, in monozygotic twins, vitiligo develops
in only 23% of both twins (Alkhateeb et al., 2003), suggesting
that the environment can induce or suppress the genes
related to vitiligo development via DNA methylation, histone
modifications and alteration of circulating microRNA (Zhou
et al., 2019). For example, it has been identified that there is
global hypermethylation of DNA in PBMCs, particularly in
regions related to the increase of IL-10 in vitiligo patients (Zhao
et al., 2010). Also, when compared to their healthy peers, vitiligo
patients have a high serological concentration (Shi et al., 2016)
and different miRNA profile expression in PBMC (Shi et al.,
2013) that can characterize this population. The vitiligo miRNAs
profile is related to melanocyte metabolism (Shi et al., 2016)
and immune system regulation (Wang et al., 2015), such as
cytokine profile to CD8+ T cell upregulation in PBMCs (Zhou
et al., 2019; Zhang et al., 2021) and melanocytes degeneration
(Wang et al., 2015). It is well known that chronic PE also
imposes strong epigenetic alteration on the immune system
(Antrobus et al., 2021), EAS enzymes (Dimauro et al., 2020),
and mitochondrial structure and function (Pareja-Galeano et al.,
2014) throughout DNA methylation, post-translational histone
modification, and microRNA transcripts. For example, data
from the literature demonstrate that acute exercise induces
PBMCs hypomethylation (Horsburgh et al., 2015), which might
upregulate IL-10 expression in vitiligo patients (Zhao et al.,
2010). In fact, vitiligo development has an epigenetic background
that leads to its development, and it is plausible that chronic PE
can recover it. Therefore, future studies deepening discussing this
topic (if chronic PE is capable of rescuing the healthy epigenetic
profile of vitiligo patients) is guaranteed and highly needed.

Today, little attention has been paid to the role of
environmental factors like diet or PE training or the level of
habitual physical activity in vitiligo disease. In fact, to the best of
our knowledge, there are no studies focused on PE or habitual
physical activity level and vitiligo disease, although several
studies with similar etiological factors have consistently identified
significant associations between vitiligo (as well as its severity)
with MetS (Ataş and Gönül, 2017; Sharma et al., 2017; Tanacan
and Atakan, 2020; Verma et al., 2021) or related dysfunctions
such as higher blood plasma concentrations of low-density
lipoprotein (LDL- cholesterol), low high-density lipoprotein
(HDL-cholesterol), and insulin resistance (Karadag et al., 2011;
Azzazi et al., 2021; Demirbaş et al., 2021; D’Arino et al., 2021).
It is well established that a mainly sedentary lifestyle behavior
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FIGURE 2 | Redox balance in melanocytes from vitiligo patients. Mitochondria of melanocytes from vitiligo patients have significant defects in complex I, which
generate high amounts of ROS. Lower production and distribution of cardiolipin, which plays an essential role in complex I (and supercomplexes) structure and
function, are responsible for the high mitochondrial superoxide production. However, superoxide production is efficiently amortized by SOD activity, converting them
into hydrogen peroxide. In Vitiligo patients, NOX4 produces significant amounts of hydrogen peroxide (from oxygen); however, the higher NOX4 activity consumes
NADPH molecules used as CAT, GPx, and TrxR cofactors in the hydrogen peroxide buffer activity. Also, hydrogen peroxide excess impairs CAT, GPx, and TrxR buffer
activity. Thus, the hydrogen peroxide can reach critical values undergoing significant Fento reactions producing large amounts of hydroxyl radical, leading proteins,
membranes (mitochondrial and cellular), and DNA peroxidation (oxidative stress). In melanocytes from vitiligo patients, the oxidative stress leads to a loss of calcium
metabolism, which will imply a worsening in the mitochondrial structuring and function (i.e., further increase the ROS production associated with lower ATP levels).
Such conditions lead melanocyte organelles to significant damage and release calreticulin and HSP70, acting as DAMPs and activating the immune response
described in Figure 1 (references are provided throughout the text). OH, hydroxyl radical; mitochondrial membrane potential; ATP, adenosine triphosphate; CAT,
catalase; DAMPs, damage-associated molecular patterns; GPx, glutathione peroxidase, Fe2+, iron ferrous; H2O, water; H2O2, hydrogen peroxide; HSP70, Heat
shock protein 70; NAD+, oxidized form of nicotinamide adenine dinucleotide; NADH, reduced form of nicotinamide adenine dinucleotide; NADPH, reduced form of
nicotinamide adenine dinucleotide phosphate; NOX2, NADPH oxidase isoform 2; NOX4, NADPH oxidase isoform 4; O2-, superoxide, PE, physical exercise; ROS,
reactive oxygen species; SOD, superoxide dismutase; TrxR, thioredoxin reductase.

and poor nutritional patterns are the most important risk factors
for the onset of MetS or cholesterol disorders (Lira et al., 2010;
Edwardson et al., 2012). Further, OS and the predominance
of pro-inflammatory cytokines are also established mechanistic
factors involved in MetS development (Bonomini et al., 2015).
There is no study identifying a cause/effect relationship between
MetS and vitiligo although vitiligo severity is associated with
MetS. However, the incidence and prevalence of MetS or
associated risk factors such as insulin resistance, hypertension,
LDL-cholesterol, obesity, or large abdominal circumference are
higher in vitiligo patients (Ataş and Gönül, 2017; Sharma et al.,
2017; Tanacan and Atakan, 2020; Namazi et al., 2021). It is
plausible that excessive ROS from other metabolic disorders
(such as obesity, insulin resistance, and elevated LDL-cholesterol
and low HDL-cholesterol) can induce a state of chronic low-
grade inflammation (e.g., raising IFN-γ and TNF-α), possibly
aggravating or activating vitiligo in genetically predisposed
individuals, as illustrated in Figure 1. As discussed, and partially
supporting this rationale, high levels of OS and IFN-γ are the
mechanistic trigger for vitiligo manifestation (Laddha et al., 2014;
Xie et al., 2016). Also, data from vitiligo patients in Dell’Anna
et al. (2007, 2010), in vitro mechanistic study (Hauff et al., 2009),

and animal model (Han et al., 2007) indicated that higher
demand for cholesterol synthesis (e.g., for cell grow or LDL-
cholesterol increases) is detrimental to mitochondrial cardiolipin
content. This rationale is supported by data who statin mitigating
the vitiligo spreading (Hasan et al., 2021). Statins have a lower
effect on LDL-cholesterol via HMG-CoA reductase inhibition.
HMG-CoA reductase is the rate limit for cholesterol synthesis
and competes with cardiolipin for the cardiolipin synthase
function (Hauff et al., 2009). Therefore, a link between lifestyle
and vitiligo exists, and future experimental studies are needed to
verify these hypotheses.

In vitiligo patients, these three factors (hyper-reactive IS,
chronic OS, and deficient EAS) interact in an interdependent
and reciprocal way. For instance, the increase in OS through
an augment in defective mitochondria and an inefficient EAS
trigger and maintain a specific and chronic inflammatory
response in vitiligo patients (via IFN-y→ CXCL10→ CD8+ T
cells) (Laddha et al., 2013; Xie et al., 2016). The increase
of this pro-inflammatory state, in turn, also maintains OS
and disables the EAS in a loop process that will remain
active indefinitely, inducing apoptosis of melanocytes without
its proper replacement leading to vitiligo scars and disease
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progression through time (Ortona et al., 2014; Lotti et al.,
2015; Xie et al., 2016). Along with this metabolic profile in
vitiligo patients, a lifestyle whose etiological factors are also based
on low-chronic inflammation, OS, and inefficient EAS lead to
the development of disorders within MetS scope and worsen
vitiligo’s condition.

To stop vitiligo progression and promote a favorable
environment for repigmentation (maturation of melanocytes),
is necessary an intervention that reduces ROS production,
improves the EAS, and reduces the pro-inflammatory
profile (Lotti et al., 2015). The use of antioxidants or
immunosuppressant drugs to reduce ROS production is
already widely used in clinical practice (Bergqvist and Ezzedine,
2020). However, these therapeutic strategies do not treat the
source of ROS, being a temporary solution that does not prevent
vitiligo reappearance. Further, there is no proposed intervention
to improve EAS in vitiligo patients. In item 2.2, we will discuss
how OS is established in vitiligo patients and how they trigger
the IS response to melanocytes. We will use this information
to suggest the structured physical training program (item 3) to
reduce the OS condition, improve EAS, and modulate the IS.

Origin of Oxidative Stress and Vulnerable
Antioxidant System: Mechanistic Factors
in Vitiligo Development
It is well known in vitiligo patients that dramatic imbalance
between the oxidant system (high) and EAS (deficient) leads
to a predominant state of OS (Schallreuter, 2014). A higher
rate of lipid peroxidation (LP) exists in individuals with
vitiligo compared to healthy counterparts or generalized vitiligo
compared to individuals with localized vitiligo; also, individuals
with active vitiligo compared to individuals with stable vitiligo
has a higher LP (Laddha et al., 2013, 2014). Thus, a greater
OS results in more aggressive and severe vitiligo disease for
these patients. As presented in Figure 2, the magnitude of
ROS production in melanocytes in vitiligo patients is due
to a high electrical potential in mitochondrial intermembrane
space (Dell’Anna et al., 2017). These individuals have an
altered mETC with a reduced distribution of cardiolipin, which
leads to a defective complex I formation (Dell’Anna et al.,
2017). Cardiolipins are responsible for configuring and forming
mETC complexes and supercomplexes assembly (Schlame and
Greenberg, 2017). Complex I is the rate-limiting step of aerobic
respiration and has a central role in energy production for
metabolism (Sharma et al., 2009). Therefore, disturbance in
cardiolipin concentrations or distribution will lead mitochondria
to inefficient energy production.

Dell’Anna et al. (2007) showed that cardiolipin concentration
and distribution disturbances lead to inefficient mitochondrial
melanocytes’ ATP production, low glucose consumption, and
high ROS emission (Dell’Anna et al., 2007). Recently, another
research group (Martins et al., 2021) also showed that vitiligo
skin T cells induce melanocytes to produce higher oxygen
consumption and ROS emission without increasing the glycolysis
flux. In their experiments, the melanocytes’ ROS production was
blunted when N-acetylcysteine was used as an antioxidant in the

cell culture. More importantly, the excess of oxygen consumption
and ROS production was blunted when ruxolitinib, a Janus
kinase (jak)1/2 inhibitor, was administered in the cell culture.
Taken together, these data indicated that vitiligo skin T cells
induce melanocytes to increase oxygen consumption to produce
ROS, overwhelming its antioxidant system. Interestingly, the
lack of change in glycolysis flux in melanocytes interaction
with vitiligo skin T cells (via jak/STAT signaling described in
Figure 1A) suggests that ROS production (with the extra oxygen
consumption) over to ATP production (as illustrated in Figure 2),
as discussed in this paper, is a profile to activating cell apoptosis
in epidermal from vitiligo patients.

The major ROS product found in vitiligo patients is
hydrogen peroxide (H2O2) which plays a crucial role in LP
and in disease development (Schallreuter, 2014). The enzymatic
complex superoxide dismutase (SOD) and Reduced nicotinamide
adenine dinucleotide phosphate- oxidase (NADPH-oxidase,
specifically, the NOX4 isoform localized in the mitochondria)
have been identified as the main source of H2O2 (Laddha
et al., 2013; Barygina et al., 2015). The SOD complex has a
high gene expression and enzymatic activity in individuals with
active vitiligo (Glassman, 2014), probably due to elevated ROS
emission from defective mitochondria (Dell’Anna et al., 2010).
Elevated H2O2 production by SOD activity leads to an early
inhibition of EAS enzymes activity such as TrxR (Schallreuter
et al., 1991a), CAT and GPx, which in turn, leads to an
increase in Fenton reaction, increasing hydroxyl concentrations
(Fe2+

+ H2O2 → Fe3+
+ OH− + •OH) to a toxic level,

that ultimately, leads to a significant peroxidation in several
cellular components (membranes, proteins, mitochondria, and
DNA) (Schallreuter, 2014). To remove H2O2 excess, GPx, TrxR,
and CAT (i.e., enzymes involved in EAS) are dependent on
reduced nicotinamide adenine dinucleotide phosphate (NAPDH)
for the renewal of its substrate, thereby enabling the clearance
of ROS. However, the NADPH-oxidase activity (which also
uses NADPH as a cofactor) is increased (producing H2O2)
during active vitiligo, therefore increasing ROS and promoting
an active competition with EAS enzymes for NADPH molecules,
a molecule already reduced in active vitiligo patients (Shajil
and Begum, 2006). Thus, with the significant increases in
H2O2 concentrations, the NADPH binding site is inhibited
with EAS enzymes (Schallreuter, 2014). Therefore, the EAS
enzymes are crucial for preventing systemic OS, i.e., containing
H2O2 extravasation from the mitochondria and their respective
melanocyte cells to the other sites (Lu and Holmgren, 2014);
however, EAS enzymes are deactivated due to chronic elevated
H2O2 induced by defective mitochondria (Schallreuter, 2014).
Together, these studies demonstrate that the removal of ROS in
vitiligo patients is a deficient process.

The increase in H2O2 drastically impairs calcium metabolism
in the epidermis (both cell influx and efflux, as well as the
structure of L-type calcium channels) (Schallreuter, 2014).
This process also causes inhibition in the ROS removal
processes, regulation of melanin biosynthesis, and DNA repair
via allosteric regulation of TrxR by calcium metabolism
(Schallreuter et al., 1991a; Gafter et al., 1997; Schallreuter,
2014). The TrxR proper functions are calcium-dependent
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(TrxR + Ca2+ = TrxS2 + NADPH Trx(SH)2 + NADP+);
thus, both pigmentation and ROS removal may be compromised
if the melanocytes do not have a stable calcium metabolism
(Schallreuter and Wood, 1991). It has been demonstrated that
the areas of the epidermis affected by vitiligo have a poor
calcium metabolism, with low calcium uptake by melanocytes
or an absence of L-type calcium channels (Schallreuter-Wood
et al., 1996; Schallreuter et al., 2012). With dysfunctional
calcium metabolism, patients with vitiligo also have low
melatonin, serotonin (consequently, increased tryptophan), and
high noradrenaline concentrations in the epidermis, which
further increases the OS (Schallreuter, 2014).

The absence of calcium in the mitochondria due to
chronic higher H2O2 production causes mitochondrial swelling
(Schallreuter, 2014; Tsai et al., 2014; Ding et al., 2015). Notably,
melanocytes from vitiligo patients are known to have altered
mitochondria morphology that does not undergo the mitophagy
process. These mitochondria are swollen with obscure and
vacuolated ridges, especially in individuals with active vitiligo
(Ding et al., 2015). These mitochondrial morphological changes
may be related to high gene expression and the ability to stimulate
the activity of the P53 tumor suppressor protein (Teulings et al.,
2013) and SOD enzymes (Laddha et al., 2013); and also to
suppress the mitophagy process in this pathology (Lionaki et al.,
2015). The lack of melanocytes’ mitophagy process suggests that
highly damaged mitochondria continue to produce high amounts
of ROS, which will lead cell to apoptosis (Figure 3). Collectively,
these studies suggest that chronic high H2O2 concentration, per
se, disable EAS enzymes, calcium metabolism and inhibits the
mitophagy process in melanocytes; in turn, these mechanisms
lead to melanocytes destruction (via IS stimulation) and to the
impossibility of their maturation and resynthesis.

In summary, this evidence suggests that the origin of excess
ROS production is the result of (1) defective mitochondria
(due to the abnormal and reduced distribution of cardiolipins)

with high intermembrane electrical potential and (2) reduced
mitophagy process (due to high expression and activity of P53
protein). Furthermore, there appears to be a vulnerability or
depletion of EAS enzymes to limit the excess ROS produced by
the defective’s mitochondria.

Reciprocal Action of Oxidative Stress and Immune
System in Vitiligo
Laddha et al. (2014) verified for the first time the relationship
between OS and IS in the development of vitiligo and found
that melanocytes ROS overproduction precedes the immune
response. Vitiligo melanocytes’ have a vulnerable EAS, as
previously discussed, its chronic exposure to OS promotes the
increase of several autoantigen markers (DAMPs), such as the
exposure of calreticulin on the cell surface and the secretion
of Hsp70 to the extracellular matrix triggering a IS response
(Zhang et al., 2014; Xie et al., 2016). An animal model study
has been shown that Hsp70 secretion by melanocytes induces the
progression of vitiligo (Mosenson, 2013). Extracellular Hsp70 is
a potent inducer of the innate and adaptive immune response.
For instance, it induces the release of cytokines such as TNF-
α, IL-1β, IL-6, and IL-12. In contrast, intracellular Hsp70
has a cytoprotective, anti-apoptotic, and anti-inflammatory
role (Asea, 2007). Situations of psychological stress or trauma
(cellular damage), pre-apoptotic cells (necrosis) secrete high
concentrations of IFN-γ and ROS, which stimulates Hsp70
released to the extracellular environment (Asea, 2007). This
rationale is partially supported by the fact that individuals with
vitiligo in the active phase develop depigmentation in areas that
suffer mechanical trauma (Lee et al., 2004).

A case study showed that the increase in IFN-γ (as a form
of treatment for other pathologies) caused the appearance of
vitiligo (Kocer et al., 2009), and treatment with anti-IFN-
γ significantly decreased vitiligo progression (Skurkovich and
Skurkovich, 2006). Both in humans and in rats, IFN-γ modulates

FIGURE 3 | Blunted mitophagy in melanocytes of vitiligo patients. The mitophagy process of defective mitochondria is inhibited by the high activity of P53, which is
stimulated by the high production of hydrogen peroxide. Thus, defective mitochondria continue to produce reactive oxygen species, causing oxidative stress until the
cellular apoptosis process is induced via mitochondrial cytochrome c release or via the cytotoxic T cell pathway recruitment (described in Figure 1A). The process of
mitophagy destroys defective mitochondria releasing amino acids into the cellular cytosol that can be used for other cellular functions. H2O2, hydrogen peroxide;
p53, tumor suppressor p53.
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the pigmentation state of melanocytes, but in high concentrations
limits melanocyte’s maturation and differentiation (Natarajan
et al., 2014). Dwivedi et al. (2013) showed that in patients with
active vitiligo (appearance of recent spots), there is a higher IFN-
γ gene expression than in individuals without vitiligo or with
stable vitiligo (individuals without the occurrence of new spots
in the last six months). Furthermore, in animal models (rats)
and in perilesional skin from vitiligo patients, the increase in
IFN-γ, IFN-α, TNF-α, cytotoxic granulation marker (CD107a)
(You et al., 2013; Bertolotti et al., 2014) were positively correlated
with CD8+ T cells activation in melanocytes and with vitiligo
severity (melanocytes destruction without their replacement).
This evidence suggests a feedback loop between innate and
adaptative immune responses in melanocyte’s skin in active
vitiligo. As previously referred, this loop is fed by melanocytes OS,
which leads melanocytes to secret DAMPs and stimulating IFN-γ
production, a pivotal cytokine to recruit and guide recirculating
CD8+ T cells to melanocytes via IFN-γ–CXCL9/10–CXCR3
axis (Figure 1).

Elevated concentrations of specific melanocytes CD8+
memory T cells (secreting high IFN-γ) were found in vitiligo
patients, mainly during active disease state (Riding and
Harris, 2019). The maintenance of memory CD8+ T cells in
depigmented areas prevents repigmentation and is responsible
for the disease recurrence after treatment interruption. It has
been described that the progression and recurrence of vitiligo
occur when memory CD8+ T cells residing in the epidermis
secrete IFN- γ (in response to DAMPs from melanocytes), which
induces the recruitment of recirculating memory CD8+ T cells
(Riding and Harris, 2019). It is important to refer that this
mechanism of melanocytes apoptosis seems to occur in a low
rate of Tregs/CD8+ T cells, i.e., insufficient Tregs suppressing
melanocyte-specific CD8+ T cells, putting in anergy state or
suppressing (Riding and Harris, 2019). It has been suggested
that successful treatments need to neutralize the activity of
recirculating memory CD8+ T cells or memory cells residing in
melanocytes (e.g., by immunosuppression) to prevent disease
progression (Rashighi et al., 2014; Riding and Harris, 2019).

Vitiligo patients can be characterized by a pro-inflammatory
profile with high expression of T helper (Th) 1 and Th17
populations and low expression of Treg and Th2 populations.
The literature reports a higher concentration of inflammatory
cytokines markers such as IL-2, IL-6, IL-15, TNF-α, and IFN- γ

and, in contrast, decreased anti-inflammatory cytokines like IL-4
and IL-10 (Lotti et al., 2015; Riding and Harris, 2019).

Overall, continued OS production can sustain chronic
inflammation indefinitely (Lotti et al., 2015). This chronic
inflammation plays a key role in the repigmentation process
of vitiligo wounds (Lotti et al., 2015). It has been long known
that the repigmentation process of the affected areas needs
the migration and proliferation of immature melanocytes as
well as the reestablishment of calcium metabolism. However,
these cell renewal processes do not occur when high levels
of pro-inflammatory cytokines and/or OS are predominant
in depigmented areas (Schallreuter, 2014). Taken together, an
effective treatment to limit vitiligo progression and recurrence
needs to improve i) the EAS enzymes (i.e., GPx, TrxR, and

CAT); ii) the function and quality of mitochondria structure in
melanocytes and CD8+ T cells; and iii) change the profile of
the immune system.

POTENTIAL ROLE OF CHRONIC
PHYSICAL EXERCISE ON VITILIGO
DEVELOPMENT

Chronic PE has great potential to improve EAS (consequently
decreasing OS), mitochondrial function and decrease the
inflammatory profile (Table 1). Hypothetically, this modulation
can prevent vitiligo progression and probably facilitate vitiligo
wound healing. Nonetheless, to date, there are no studies
analyzing the clinical applicability of PE training or physical
activity level in vitiligo disease. Therefore, based on state-of-the-
art evidence from PE literature (redox system, mitochondrial
function/structure, and immunology), we will propose PE as a
potential therapeutic strategy on vitiligo disease as summarized
in Table 1.

Potential Role of Chronic Physical
Exercise on Redox System Modulation:
Implications on Vitiligo Development
Vitiligo Patients have an associated high rate of inflammatory
comorbidities such as MetS and cardiovascular diseases (Lotti
and D’Erme, 2014). These diseases are also etiologically related
to a higher OS. Notably, accumulating evidence has shown that
structured chronic PE training or high cardiorespiratory fitness
(CRF) decreases the risk of OS-related pathologies (Farrell et al.,
2012; de Sousa et al., 2016; Lu et al., 2021).

Initially, acute PE (mainly the aerobic-type) was believed to be
a bad approach once it increases 20 times oxygen consumption
and sharply increases ROS and reactive nitrogen species (RNS)
production (Leeuwenburgh and Heinecke, 2001). Paradoxically,
chronic PE was known to induce a positive decrease in ROS
production during acute exercise and at rest (Leeuwenburgh and
Heinecke, 2001). Today, it is well established that skeletal muscle
ROS produced during acute PE is responsible for several positive
adaptations in skeletal muscle and other tissues. Each bout
of PE (resistance or aerobic-type) induces putative ROS/RNS
homeostasis, which is necessary to induce gene translation related
to aerobic metabolism (e.g., mitochondrial proteins) and to
muscle protein synthesis (e.g., EAS enzymes) (Carlos Henríquez-
Olguín et al., 2019; Vargas-Mendoza et al., 2019). Therefore,
the well-established concept that individuals with high CRF
have low ROS levels (when compared to individuals with low
CRF) is a direct result of acute ROS stimulation by PE bouts.
For instance, improved mitochondrial function due to aerobic
training results in decreased mitochondrial electrical potential.
In physically trained individuals, OS becomes smaller both at rest
and during acute PE when compared with sedentary individuals
(Venditti et al., 1999). Further, the hormetic effect of chronic
PE (Radak et al., 2014; Margaritelis et al., 2018; Aguiar et al.,
2021) is an efficient tool to promote improvement in EAS,
especially in susceptible individuals to a greater situation of OS
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TABLE 1 | The potential role of physical exercise training on vitiligo patients.

Modifiable vitiligo profile Potential from acute exercise Potential from physical training

Metabolic profile

It is associated to MetS and ↑ insulin
resistance, adipose tissue, blood pressure,
LDL-C, and ↓ HDL-C.

↑ gene transcription to glucose
uptake, fat oxidation, cardiac and

vascular remodeling.

↓ insulin resistance.
↓ LDL-C and blood pressure.

↑HDL-C.
Improvement in several MetS markers.

↓ adipose tissue.

Redox system profile

↑ ROS/RNS.
↓ EAS enzyme (GPx, TrxR, and CAT).
Chronic ↑ NADPH-oxidase and SOD
activity.
↑Lipid, protein, and DNA peroxidation.

Acute ↑ NADPH-oxidase activity
induces EAS enzymes gene

transcription (via NF-κB pathway).
↑ Nrf2-ARE/HO-1 pathway

activation.

↑ EAS enzymes capacity and ↓ lipid, protein, and
DNA peroxidation.

↓ROS.
↓ NADPH-oxidase activity-induced ROS.

↑ NADPH synthesis.

Mitochondrial structure and function profile

↓ mitochondrial mitophagy in melanocytes.
↓ cardiolipin quality and quantity; ↓
melanocytes mitochondrial ATP production
and mitochondrial complexes and
supercomplex activity.
↑ mitochondrial ROS emission.

↑ gene transcription for
mitochondrial biogenesis and

remodeling.
↑ IGF-1/PI3K/AKT/ACL pathway

activation to cardiolipin
biosynthesis.

↑ mitochondrial mitophagy and remodeling
(mitofision, mitofusion).

↑ ATP mitochondrial (increase in complex 1) and
mitochondrial mass.

↑ cardiolipin content and supercomplex formation
and ATP content.

↓ mitochondrial ROS emission.

Immune function profile

↑ IL-2, IL-6, and IL-15.
↓ IL-4 and IL-10.
↑ TNF-α, IFNα, and IFN- γ.
↑ memory CD8+ T cell.
↓Tregs.
↑ extracellular HSP.

CD8+ T cells mobilization to
bloodstream removing

hyper-reactive senescent cells.
↑ acute increase in IFN-α, IL-6, and
IL-1β inducing a regulatory effect in

IL-4, IL-10, and IL-1RA.

↓ IL-2, IL-6, and ↑ IL-15
↑ IL-10 and IL-4.
↓ TNF-α and IFN- γ.

↓ total lymphocytes, CD8+ T cell proliferation,
memory CD8+ T cell, and ↑ senescent CD8+ T cell

apoptosis.
↑ Tregs.

↓ extracellular HSP and ↑ intracellular HSP

References from this table are provided as Supplementary Material. ↑, increase; ↓, decrease; ATP, adenosine triphosphate; CAT, catalase; EAS, endogenous antioxidant
system; GPx, glutathione peroxidase; HSP, heat shock protein; HDL-C, high-density lipoprotein- cholesterol; HSP, heat shock protein; IFN, interferon; IGF-1, insulin-like
growth factor 1; IL, interleukin; LP, lipid peroxidation; LDL-C, low-density lipoprotein- cholesterol; MetS, metabolic syndrome; Nrf2-ARE/HO-1, Nuclear Factor E2 related
to Factor 2-antioxidant/heme oxygenase 1 response element; ROS/RNS, reactive oxygen species/reactive nitrogen species; SOD, superoxide dismutase; TNF, tumor
necrose factor; Tregs, regulatory T cells; TrxR, thioredoxin reductase.

such as obesity, type 2 diabetes (T2D) or with cardiovascular
disease (Radak et al., 2014; de Sousa et al., 2016). Even in healthy
individuals, chronic PE (especially aerobic types) leads to redox
system adaptations that decrease OS levels (Margaritelis et al.,
2018; Aguiar et al., 2021). Finally, it is important to mention the
conclusions of a meta-analysis (de Sousa et al., 2016; Aguiar et al.,
2021), supporting that chronic PE tends to decrease OS markers
and increase the antioxidant system, without a redox imbalance
after a well-designed PE program.

An elegant study (Gifford et al., 2016) showed that individuals
with high CRF (VO2max, ∼59 ml·kg−1

·min−1) have high
amounts of mitochondria (i.e., “excess”), and are far from
saturating mitochondrial work capacity even in high-intensity
PE. In contrast, in individuals with low CRF (VO2max,
∼38 ml·kg−1

·min−1) easily exceeded mitochondrial work
capacity. According to the authors (Gifford et al., 2016), this
mitochondrial “excess” or reserve mitochondria can work as
ROS removal system, thus, preventing mitochondria’s mass from
reaching its maximal respiratory capacity, which can damage
their structures (Sansbury et al., 2011).

Vitiligo patients have a deficient endogenous EAS
with low CAT activity (Maresca et al., 1997) both in the

epidermis (Schallreuter et al., 1991b) and in the blood plasma
(Shajil and Begum, 2006). In addition, GPx and TrxR have low
activity in vitiligo patients (Schallreuter et al., 1991b; Shajil
and Begum, 2006). The nuclear factor E2 related to factor
2-antioxidant/heme oxygenase 1 response element (Nrf2-
ARE/HO-1), a key metabolic pathway for genetic signaling
transduction of enzymes related to the antioxidant system, is
impaired in vitiligo patients (Jian et al., 2014). The upregulation
of the Nrf2-ARE/HO-1 axis is necessary to improve melanocytes’
tolerance to ROS stressors (mainly from H2O2). Notably, if
the Nrf2-ARE/HO-1 axis metabolic pathway is stimulated in
melanocytes, the ability to remove ROS in these cells is restored
(Jian et al., 2014). Further, animal studies have shown that there
is an increase in Nrf2 expression, increasing the expression of
antioxidant enzymes after acute (Muthusamy et al., 2012) and
chronic PE (Gounder et al., 2012).

Acute PE also increases signaling pathways of the enzymatic
antioxidant system by NADPH-oxidase→ NF-κB (Carlos
Henríquez-Olguín et al., 2019). Although NADPH-oxidase
activity during acute PE is the main source of ROS, this
increase in ROS is necessary to induce GPx, CAT and SOD
enzymes gene expression as well as mitochondrial biogenesis via
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NF-κB (Henríquez-Olguín et al., 2016). On the other hand, in
animal models, chronic aerobic-exercise training reduces ROS
produced by NADPH-oxidase isoforms (NOX2 and NOX4) (Qi
et al., 2020). However, more studies are needed to determine
if chronic PE training decreases NADPH-oxidase isoforms (i.e.,
NOX4) activity from immune cells infiltrated in melanocytes
from vitiligo patients (Barygina et al., 2015). Moreover, as the
decrease in NADPH-oxidase activity results in reduced ROS
levels emission (Adams et al., 2005) more studies are also needed
to verify if the decrease in ROS production induced by chronic
PE has clinical significance in vitiligo patients.

Another mechanism by which chronic PE can improve
ROS production in vitiligo disease is the increase of NADPH
availability (a molecule with reduced concentrations in vitiligo
patients) (Shajil and Begum, 2006). The decrease in NADPH-
oxidase activity in response to chronic PE can increase the
availability of NADPH for glutathione reductase to renew GSH
and TRx (SH)2 (Jenkins and Goldfarb, 1993; Pannala and Dash,
2014). So, the H2O2 produced by SOD (an enzyme with high
activity in vitiligo) can be properly removed by GPx and TrxR
(Leeuwenburgh and Heinecke, 2001; Pannala and Dash, 2014).
A schematic overview of potential role of PE on redox system
modulation is illustrated in Figure 4.

Potential Role of Chronic Physical
Exercise on Immune System Modulation:
Implications on Vitiligo Development
It has been well established that structured chronic PE has
an anti-inflammatory effect (Gjevestad et al., 2015), especially
in MetS (Alizaei Yousefabadi et al., 2020). A recent meta-
analysis shows a decrease in pro-inflammatory cytokines such
as IFN-γ, TNF-α, and IL-8 and increase in anti-inflammatory
IL-10 after chronic PE (Alizaei Yousefabadi et al., 2020). In
addition, an early systematic review pointed that chronic PE
induces a decrease in Th1 cell lineage gene expression (Gjevestad
et al., 2015). The Th1 gene expression is responsible for the
production of IFN- γ, which induces the activation of a set
of chemokines, including CXCL10, that in vitiligo patients is
responsible for the chemotaxis of CD8+ T cells to melanocytes
and to start the process of destruction of these cells (Rashighi
et al., 2014). On the other hand, it is well established the
anti-inflammatory role of IL-10, which induces up-regulation
of Th2 that, in turn, inhibits Th1 cytokines (for example,
increases Tregs cells and downregulates IFN-γ). IL-10 also
inhibits antigen presentation by APC (Abbas et al., 2019a;
see Figure 1B).

FIGURE 4 | Potential role of chronic PE on redox system in vitiligo patients. Muscle contraction and mitochondrial activity produce large amounts of hydrogen
peroxide during physical exercise, acting as an activation signal for the NF-κB, Nrf2, and, PGC1-α metabolic pathway downstream. ATP degradation and calcium
release caused by muscle contraction also significantly induce the AMP/AMPK/PGC1-α axis. During acute exercise, gene transcription of EAS enzymes is
significantly induced by the NF-κB and Nrf2o pathways; genes encode enzymes in the pentose phosphate pathway (i.e., for NADPH synthesis) is induced by the
Nrf2 pathway; mitochondrial gene transcription is induced by the NF-κB, Nrf2, and PGC1-α pathways. Only chronic physical exercise will significantly induce the
synthesis of mitochondria, EAS enzymes, and NADPH synthesis. Muscle contraction also releases a large amount of IL-6 and hydrogen peroxide to the extracellular
medium, which may exert systemic signaling. Future research is needed to identify whether IL-6 and hydrogen peroxide from muscle tissue can exert significant
signaling in the epidermis. Also, further research will be needed to assess whether the increase in mitochondria in muscle tissue can buffer the ROS produced by
melanocytes in the epidermis of patients with vitiligo and whether this has clinical relevance. ADP, adenosine diphosphate; AMP, adenosine monophosphate; AMPK,
adenosine monophosphate-activated protein kinase; ATP, adenosine triphosphate; H2O2, hydrogen peroxide; NF-κB, nuclear factor kappa-light-chain-enhancer of
activated B cells; Nrf2, Nuclear factor-erythroid factor 2-related factor 2; IL-6, interleukin-6; NOX2, NADPH oxidase isoform 2; PE, physical exercise; ROS, reactive
oxygen species.
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FIGURE 5 | Potential role of chronic physical exercise on immune system modulation in vitiligo patients. Physical exercise can induce skeletal muscle to release huge
amounts of IL-6, which has the potential to reach the skin and induce a local adaptation of the immune system (anti-inflammatory profile). For example,
hypothetically high amounts of IL-6 in the skin can be detected by skin-resident APC and regulatory T cells that, in turn, give negative feedback releasing IL-10. IL-10
can inhibit the local production of IL-1, IFN-γ, and TNF-α. Inhibiting IL-1-β and TNF-α, there is no negative feedback for CTLA-4 expression in cytotoxic T cells (the
interaction between CTL-4 from CD8+ T cell with costimulatory molecule B7 from APC suppress CD8+ T cell activation). Also, IL-10 could inhibit CD8+ T cells by
inhibiting the expression of costimulatory class II MHC molecules from APC. IL-6 also induces significant TGF-β expression, resulting in upregulation of FoxP3. APC,
antigen-presenting cell; CD28, Cluster of Differentiation 28; CTLA-4, cytotoxic T lymphocyte antigen-4; CXCL, C-X-C motif chemokine ligand; CXCR, C-X-C motif
chemokine receptor; DAMPs, damage-associated molecular pattern; JAK/STAT, Janus kinase/signal transducer and activator of transcription; IFN-γ,
interferon-gamma; IL, interleukin; MHC, major histocompatibility complex; TGF-β, transforming growth factor, TNF-α, tumor necrosis factor-alpha. Figure created
with images from smart.servier.com.

It is well known that the main anti-inflammatory effect from
chronic PE derives from the acute large release of muscle IL-6
(during acute exercise bouts) to the bloodstream, which exerts a
paracrine effect in several tissues and organs such as the brain,
bones, and digestive tract (Ellingsgaard et al., 2019). IL-6 from
muscle tissues stimulated by acute PE modulates the Treg and
Th17 cells ratio via IL-10 (Figure 5). This process decreases IS
autoreactive potential by increasing Treg and decreasing Th17
ratio, which is a process opposite to vitiligo onset (Lotti et al.,
2015; Xie et al., 2016). Also, it appears that muscle release of
IL-6 plays an important role in the PBMCs hypomethylation
(Horsburgh et al., 2015).

The decrease in Th1 and Th17 expression, and the increase in
Treg and Th2 population, is also related to a powerful effect that
chronic PE exerts on Hsp70. It was recently shown that acute PE
increases extracellular Hsp70 concentrations (more specifically
in blood plasma); however, it was followed by a concomitant
increase in intracellular Hsp70 concentration (more specifically
in peripheral blood mononuclear cells- PBMCs) (Lee et al., 2015).
As a chronic effect of PE training on Hsp70 in PBMCs, there is
an increase in intracellular at basal levels associated with their
decrease in extracellular sites (Périard et al., 2016).

Also, acute PE mobilizes high concentrations of CD8+ T
cells (part of them from the skin) in response to the increase
in catecholamines during its practice (Turner et al., 2016).
This IS cells mobilization into the bloodstream during PE
plays a significant role in removing hyper-reactive IS cells
(Krüger and Mooren, 2014). For example, a session of high-
intensity resistance exercise (60% 1RM; each set to concentric
failure) is enough to induce temporary immunosuppression
(i.e., a reduction in the ratio of CD4:CD8 T cells below 1:1;
when the normal value is 1:4) (Jin et al., 2015). Also, 6-weeks
(3x/week; 8–10 sets of 60s at 100% VO2peak) of high-intensity
interval training (HIIT) can promote an anti-inflammatory state,
attenuating the proliferation of a subset CD8+ T cell (CD8low,
which produces high levels of IFN- γ and TNF-α) (Shiu, 2016).
In addition, eight weeks of HIIT (5km running; work: rest ratio
1:1 ratio, 1 min. at 100% vVO2max interspersed with 1 min.
of passive recovery) plus resistance training (4 sets of squats
at 80% 1RM to concentric failure) promoted an increase in
IL-10 and IL-6 (Monteiro et al., 2017). These studies suggest
that if this training routine (high volume or high intensity)
is sustained for weeks, it will induce a sustained IS alteration,
triggering a state of temporary immunosuppression in response
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FIGURE 6 | Potential role of chronic PE on cardiolipin metabolism, mitochondrial function, and structure in vitiligo patients. Muscle contraction during acute physical
exercise activates and releases large amounts of IGF-1 into the bloodstream. Muscle contraction or insulin action is required to activate IGF-1 and the
PI3K/AKT/ACL downstream metabolic pathway. ACL activation is necessary for cardiolipin synthesis and gene transcription. As a consequence of ACL activity,
mitochondria increase the mitochondrial complexes and supercomplexes content and activity, enhancing ATP production (i.e., improving the Mitochondrial structure
and function). Nox2 activation by acute physical exercise improves insulin-sensitive, increasing GLUT-4 translocation to the cellular membrane). This hypothetically
facilitates the IGF-1 metabolic pathway downstream, consequently improving mitochondrial structure and function and preventing insulin resistance. ACL, Adenosine
triphosphate-citrate lyase; ADP, adenosine diphosphate; AKT, protein kinase; GLUT4, glucose transport 4; IGF1, insulin-like growth factor-1; NOX2, NADPH oxidase
isoform 2; PE, physical exercise; PI3K, phosphatidylinositol 3-kinase; ROS, reactive oxygen species.

to this type of PE training (Shaw et al., 2017). Theoretically, this
immunosuppression state imposed by high-load chronic PE can
be seen as a protective factor to reduce the risk of developing
autoimmune diseases (Shiu, 2016).

An interesting study observed that lifelong aerobic-trained
individuals (with 40 ml·kg−1

·min−1 VO2max) had higher
blood Tregs markers concentrations (IL-10, forkhead box P3,
and transforming growth factor-β), low ↓TNF-α/IL-10↑ ratio
associated with lower memory CD8+ T cells when compared
to sedentary counterparts (with 29 ml·kg−1

·min−1 VO2max)
(Minuzzi et al., 2017, 2018). Furthermore, IL-2, which is
responsible for T cell proliferation and differentiation, and
maturation of CD8+ memory T cells is decreased after chronic
PE (Rhind et al., 1996). Notably, vitiligo patients have high IL-2
concentrations due to a high stimulation of T cells (Jian et al.,
2014); and lower Tregs markers (IL-10 and forkhead box P3)
(Lotti et al., 2015; Bhardwaj et al., 2020). A theoretical schematic
model of the potential role of chronic PE on IS from vitiligo
patients is pointed out in Figures 1B, 5.

Potential Role of Chronic Physical
Exercise on Mitochondrial Function and
Structure: Implications on Vitiligo
Development
Melanocytes and PBMCs from vitiligo patients have deficient
energy metabolism due to the low concentration and abnormal

distribution of cardiolipin in the mETC, which prevents the
stability and creation of supercomplexes (Dell’Anna et al., 2007).
Due to decreased cardiolipin metabolism, melanocytes from
vitiligo patients have low energy production from glycolytic
phosphorylation (due to defects in complex 1), resulting in
low ATP production and high mitochondrial ROS production
(Figure 2; Dell’Anna et al., 2017). Recently it was demonstrated
that skeletal muscle increases mitochondrial cardiolipin quality
and concentrations in response to IGF-1/PI3K/AKT/ACL
pathway activation, which is induced by chronic physical aerobic
exercise (Figure 6; Das et al., 2015). Interestingly, HIIT is a potent
inducer of complex 1 enhancement in skeletal muscle (Bishop
et al., 2014), leading to a greater mitochondrial ATP production
and increase carbohydrate phosphorylation (Nilsson et al.,
2019), which is impaired in melanocytes from vitiligo patients
(Dell’Anna et al., 2017). On the other hand, in skeletal muscle,
continuous aerobic-exercise training increases mitochondrial
tissue volume (Bishop et al., 2014), which is a morphological
change important to improve ROS clearance (Sansbury et al.,
2011; Gifford et al., 2016).

In animal models developing T2D, a drastic decrease in
cardiolipin levels in striated muscle was identified (Han et al.,
2007). Therefore, hypothetically, insulin resistance (or T2D) may
increase the risk of vitiligo developing in genetically predisposed
individuals. In Figure 6, it is shown that PE improves insulin
sensitivity via NOX2 (Carlos Henríquez-Olguín et al., 2019),
and consequently, insulin signaling increases IGF-1activation
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FIGURE 7 | Potential role of chronic PE on mitochondrial function and structure. ATP degradation and calcium release caused by muscle contraction also
significantly induce the PGC1-α and ULK1 downstream pathways. Also, muscle contraction stimulates large ROS released (by NOX2 and mitochondria activity),
further activating the PGC1-α downstream. Acute PGC1-α activation results in gene transcription related to mitochondrial remodeling (mitofusin, mitofission, and
mETC proteins) and mitophagy induction. Chronic PE will decrease the mitofission pathway and significantly enhance the mitofusion and mitophagy pathways.
Consequently, the mitochondrial apoptosis pathway, which can induce cell death (due to the release of cytochrome C), decreases due to chronic PE. Acute PE also
activates P38, an important stimulator of PGC1-α. For example, the lack of activity of this protein can decrease PGC1-α activation, even when there are other stimuli
(e.g., only AMPK stimulation). Also, P38 is activated by insulin; in turn, p38 increases cell glucose uptake upregulating GLUT1. Hypothetically, a sedentary lifestyle
and insulin resistance decrease the pulsative activation of p38, thus decreasing mitochondrial remodeling potential. ADP, adenosine diphosphate; AMP, adenosine
monophosphate; AMPK, adenosine monophosphate-activated protein kinase; ATP, adenosine triphosphate; GLUT1, glucose transport 1; mETC, mitochondrial
electron transport chain; NOX2, NADPH oxidase isoform 2; p38, mitogen-activated protein kinase; PE, physical exercise; PGC1-α, peroxisome proliferator-activated
receptor γ coactivator-1α; ROS, reactive oxygen species; ULK1, Unc-51 Like Autophagy Activating Kinase 1; UPR, unfolded protein response.

(Das et al., 2015). It is well-known that chronic PE (HIIT) can
reverse insulin resistance and the development of T2D and
improve muscle mitochondrial capacity (Little et al., 2011).
Therefore, future studies should investigate the relationship
between insulin resistance and vitiligo development (if it is
a cause-effect relationship or a common pathway). Also, the
potential benefits of PE in improving insulin sensitivity and
the IGF-1/PI3K/AKT/ACL metabolic pathway in vitiligo patients
deserve further investigation. Moreover, both insulin and PE
also activates P38 in skeletal muscle, an vital molecule to
activate PGC1-α downstream pathway (see Figure 7) to promote
mitochondrial remodeling resulting in improvement in glucose
and fat metabolism (Hood et al., 2015). The pulsative activation
of p38 in skeletal muscle is required for whole-body energy
expenditures, which can prevent obesity and D2T (Bengal et al.,
2020). However, P38 has a pleiotropic effect and opposite effect
in different cell lines and cell environment (Stramucci et al.,
2018). For instance, chronic high H2O2 levels can activate p38
continuously, inducing melanocytes to premature senescence
(dysfunctional) and susceptible to apoptosis (Hou et al., 2022).
The same pattern is found in skeletal muscle, the continuous p38
activation induces proinflammatory cytokines expression, insulin
resistance (GLUT4 downregulation) and pathological muscle

atrophy (Bengal et al., 2020). Therefore, further studies is needed
to determine the role of chorionic PE on P38 activation and
signaling in melanocyte of vitiligo development.

Vitiligo patients have a reduced mitophagy process in
epidermal melanocytes (Ding et al., 2015). It is speculated
that vitiligo is a systemic pathology (Lotti and D’Erme, 2014);
however, it is not known whether this condition (decreased
mitophagy) extends to other tissues. In the animal model (during
acute PE), the impaired mitophagy process is characterized
by low resistance to endurance exercise and a high metabolic
acidosis (Vainshtein et al., 2015). Therefore, we can speculate
that during acute PE, vitiligo patients produce higher lactate
concentrations when compared to their healthy peers (with
the same CRF values). It is also well established that PE
(mainly aerobic type) is a potent inductor of the mitophagy
process and mitochondrial turnover/remodeling (Hood et al.,
2015; Tarpey et al., 2017). As chronic PE induces tissue
changes that go beyond skeletal muscle tissue (e.g., increase
in mitochondria in adipose tissue), it is plausible that changes
such as improvement in mitochondrial metabolism (improves
their structure and function) in the epidermis also could occur
in response to physical training practice (see Figure 6). (Also,
Table 1 summarizes the potential role of acute and chronic PE on
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vitiligo disease, which deserves future research in the epidermis
of vitiligo patients).

CONCLUSION AND FUTURE
DIRECTIONS

To the best of our knowledge, there are no studies in the literature
that analyze the clinical applicability of chronic PE as a treatment
strategy to improve vitiligo adverse events. According to the
evidence discussed in this paper, we can hypothesize that chronic
PE can modulate the etiological factors related to the onset of this
condition which involves a high and chronic ROS production,
a deficient EAS enzymatic activity, and a pro-inflammatory
autoimmune response (Xie et al., 2016). Further, if confirmed,
the improvement in these molecular mechanisms can lead
to important clinical implications in vitiligo phenotypic traits
and disease prognostic, that ultimately, may improve patient’s
self-image, body confidence, and reduce psychological distress
associated with this disease (Bonotis et al., 2016). Therefore,
structured PE training may have a significant clinical impact not
only in disease prognostic but also in patients’ quality of life.

The literature has shown that chronic PE plays a significant
role in EAS enzymatic metabolism, IS modulation, and
mitochondrial quality and function. However, more research
is highly required from both observational and experimental
studies to investigate the role of chronic PE training in vitiligo
disease on four spheres: (i) disease prevention; (ii) during active
disease development; (iii) during its stable/management phase;
and (iv) during the repigmentation phase.

Observational studies comparing the general population with
this clinical population should verify the relationship of daily
physical activity with vitiligo development or severity. For
instance, studies that investigate if CRF level or daily step count is
associated with vitiligo’s disease. Further, experimental studies, in
turn, should evaluate in more controlled settings, several aspects:
(i) the role of acute and chronic PE in the molecular mechanisms
that are underlying the onset of the disease and thus, test whether
these positive changes in mitochondria, EAS enzymes and IS
modulation reflects on the epidermis and in the melanocytes
from vitiligo patients; (ii) test the dose-response of different PE
types, volumes, and frequencies in vitiligo patients. Therefore, we
suggest some clinically relevant markers that can be analyzed to
test the potential applicability of chronic PE in vitiligo disease:

3 Investigate if exercise training improves EAS and
decreases LP rates in vitiligo patients.

3 Investigate whether exercise training improves the
inflammatory profile on vitiligo patients (i.e., the Th1/Th2
ratio), as well as extracellular Hsp70 concentrations.

3 Check whether exercise training alters the
pigmentation/depigmentation process progression in
patients with vitiligo.

3 Check whether the energy metabolism (respiratory
quotient and plasma lactate concentrations) of patients
with vitiligo differs from healthy peers, i.e., check whether
these changes extend to muscle tissue. Currently, there
are no studies associating the level of physical activity
or CRF and the incidence of vitiligo in genetically
susceptible individuals.

3 Check whether PE training alters the melanocytes
mitochondria morphology of vitiligo patients.
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