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Crohn’s disease (CD) is an inflammatory bowel disease (IBD) with repeated remissions 
and relapses. As the disease progresses, fibrosis and narrowing of the intestine occur, 
leading to severe complications such as intestinal obstruction. Endoscopic balloon 
dilatation, surgical stricture plasty, and bowel resection have been performed to treat 
intestinal stenosis. The clinical issue is that some patients with CD have a recurrence of 
intestinal stenosis even after the medical treatments. On the other hand, there exist no 
established medical therapies to prevent stenosis. With the progressive intestinal 
inflammation, cytokines and growth factors, including transforming growth factor (TGF-β), 
stimulate intestinal myofibroblasts, contributing to fibrosis of the intestine, smooth muscle 
hypertrophy, and mesenteric fat hypertrophy. Therefore, chronically sustained inflammation 
has long been considered a cause of intestinal fibrosis and stenosis. Still, even after the 
advent of biologics and tighter control of inflammation, intestinal fibrosis’s surgical rate 
has not necessarily decreased. It is essential to elucidate the mechanisms involved in 
intestinal fibrosis in CD from a molecular biological level to overcome clinical issues. 
Recently, much attention has been paid to several key molecules of intestinal fibrosis: 
peroxisome proliferator-activating receptor gamma (PPARγ), toll-like receptor 4 (TLR4), 
adherent-invasive Escherichia coli (AIEC), Th17 immune response, and plasminogen 
activator inhibitor 1 (PAI-1). As a major problem in the treatment of CD, the pathophysiology 
of patients with CD is not the same and varies depending on each patient. It is necessary 
to integrate these key molecules for a better understanding of the mechanism of intestinal 
inflammation and fibrosis.
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INTRODUCTION

Crohn’s disease (CD) is a chronic inflammatory bowel disease (IBD) that progresses irreversibly, 
with more than 30% of the patients gradually developing intestinal fibrosis, which leads 
to complications, such as intestinal obstruction, perforation, and fistula (Rieder et  al., 2013). 
The general mechanism of intestinal fibrosis is acute or chronic inflammation that leads 
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to the destruction of the extracellular matrix (ECM) around 
the site of inflammation. Additionally, cytokines and growth 
factors, such as transforming growth factor (TGF-β), stimulate 
the ECM component cells, namely the intestinal myofibroblasts 
(Bettenworth and Rieder, 2017). This results in excessive 
ECM re-synthesis, which, in turn leads to intestinal fibrosis. 
In the case of CD, chronic inflammation is the main factor 
leading to intestinal fibrosis. The currently implemented 
treatments for intestinal stricture are limited to mechanical 
treatments, such as endoscopic balloon dilation, surgical 
strictureplasty, and bowel resection (Crespi et  al., 2020). 
However, some patients with CD have recurrent intestinal 
stenosis, even after the mechanical treatment (Scarpa et  al., 
2003). Minimally invasive treatment strategies, specifically 
drug administration, are desirable for CD patients at risk 
of developing intestinal stenosis. Therefore, it is important 
to understand the underlying molecular mechanisms of 
inflammation and fibrosis for developing such therapies. In 
this review, we  have attempted to provide a comprehensive 
description of the molecular mechanisms underlying intestinal 
inflammation and fibrosis in the case of CD.

PATHOLOGICAL CHARACTERISTICS OF 
CD AND INTESTINAL STENOSIS

Crohn’s disease is a chronic IBD that mainly occurs in the 
small and large intestines. Histologically, it is characterized by 
the fibrosis-induced thickening of the intestinal wall, mainly 
the submucosal layer, and an increase in smooth muscle cell 
growth (Van Assche et  al., 2004). The increased mRNA and 
protein expression of cytokines, such as TGF-β1 and insulin-
like growth factor 1 (IGF-1), in all intestinal layers coincident 
with the inflammation sites and the increased deposition of 
ECM proteins synthesized by myofibroblasts induce intestinal 
fibrosis (Lawrance et  al., 2001b; Fiocchi and Lund, 2011). 
Activated myofibroblasts are required to produce the ECM. 
These activated myofibroblasts include pre-existing myofibroblasts 
that are activated by inflammatory stimulants and 
de-differentiated mesenchymal cells [fibroblasts, smooth muscle 
cells, epithelial cells transformed by epithelial-mesenchymal 
transition (EMT), and endothelial cells transformed by 
endothelial-mesenchymal transition (EndoMT)]. There are 
patterns of differentiation of epithelial cells by EMT and 
endothelial cells by EndoMT, including stellate cells, pericytes, 
and bone marrow stem cells (Wynn, 2007). In the case of 
intestinal fibrosis caused by non-specific intestinal inflammation, 
once the inflammation subsides, the increased production of 
the fibrous matrix is suppressed, and the matrix metalloproteinase 
(MMP)-induced degradation of the fibrous matrix is promoted. 
Finally, intestinal fibrosis and the associated stenosis improve 
with a certain degree of plasticity (Rieder et al., 2007). However, 
in CD, even after the inflammation subsides, fibrosis progresses 
due to abnormal production of the fibrous matrix or reduced 
degradation of the matrix by the MMPs, both of which result 
in abnormal deposition of ECM (Lawrance et  al., 2001a; Speca 
et  al., 2012). This probably accounts for the high number of 

endoscopic or surgical treatments of stenosis in recent years, 
even after immunosuppressive therapies, such as biologics, have 
extensively improved the intestinal inflammation in CD (Rieder 
et  al., 2017). Another significant feature of CD is thickened 
mesenteric fat (“creeping fat”; Schäffler and Herfarth, 2005). 
“Fat wrapping” is defined as the condition in which more 
than 50% of the intestinal surface is covered with adipose 
tissue, and the intestinal surface on the side of the foregut is 
also covered with fat (Sheehan et  al., 1992). Creeping fat is 
predominantly found in CD patients, and it is generally absent 
in patients with ulcerative colitis (UC). The physiological 
implications of creeping fat have not yet been studied. However, 
recent reports have demonstrated that this massive fat 
(Desreumaux et al., 1999; Weisberg et al., 2003; Karmiris et al., 
2006; Acedo et  al., 2011).

PEROXISOME PROLIFERATOR- 
ACTIVATING RECEPTOR GAMMA

Peroxisome proliferator-activated receptors (PPARs) are nuclear 
receptors that regulate the expression of genes involved in 
energy metabolism, cell development, and cell differentiation. 
There are three members of PPARs, namely PPARα, peroxisome 
proliferator-activating receptor gamma (PPARγ), and PPARβ/δ. 
Upon ligand binding, the PPARs translocate into the nucleus, 
form a heterodimer with retinoid X receptors, and bind to 
peroxisome proliferator-responsive elements (PPREs) to regulate 
the transcription of target genes (Mangelsdorf et  al., 1995; 
Zhang et  al., 2007; Chan and Wells, 2009; Figure  1). There 
have been reports about several ligands (full agonists, partial 
agonists, and antagonists) targeting the PPARs, based on 
which medical research and drug discovery have been actively 
pursued (Kroker and Bruning, 2015; Mirza et  al., 2019). 
Incidentally, 5-aminosalicylic acid (5-ASA), which is widely 
used in the treatment of IBD, is also a PPARγ ligand (Rousseaux 
et  al., 2005; Iacucci et  al., 2010). The expression of PPARγ 
in the intestinal epithelium is possibly related to the intestinal 
microbiota composition. In fact, butyrate production by the 
intestinal microbiota activates PPARγ signaling in the colonic 
epithelium, thereby resulting in the β-oxidation of energy 
substrates in colonic epithelial cells (colonocytes). This, in 
turn, reduces the activity of respiratory electron receptors 
for intestinal bacteria, which may be  pathogenic (Byndloss 
et al., 2017). Additionally, toll-like receptor 4 (TLR4)-transfected 
colonocytes have been proven to prevent the abnormal growth 
of potentially pathogenic bacteria. In TLR4-transfected cancer 
coli-2 (Caco-2) cells, the TLR4 signaling pathway upregulates 
PPARγ expression as well as the expression of a PPARγ-
dependent reporter in an inhibitor of nuclear factor kappa-
light-chain-enhancer of activated B cells (Iκβ)-dependent 
manner. Similarly, PPARγ expression is decreased in the colon 
of mice devoid of functional TLR4 (Lpsd/Lpsd mice; Yamamoto-
Furusho et  al., 2014). Mucosal biopsies from patients with 
active UC reveal a decreased expression of PPARγ mRNA, 
which is negatively correlated with the endoscopic severity 
of the disease (Dubuquoy et  al., 2003; Yamamoto-Furusho 
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et  al., 2014). Although there have been no studies regarding 
the relationship between PPARγ expression and microbiota 
composition in the intestines of IBD patients, disruption of 
gut microbiota can result in inappropriate PPARγ signaling 
responses in the intestinal epithelial cells, leading to further 
growth of the pathogenic gut bacteria and contributing to 
the exacerbation of UC. Furthermore, PPARγ is associated 
with response to chemical stimuli. For instance, when mice 
with a targeted disruption of the PPARγ gene in the intestinal 
epithelial cells (generated using the villin-Cre transgene and 
floxed PPARγ allele) were treated with dextran sodium sulfate 
(DSS), the expressions of interleukin 6 (IL-6), IL-1β, and 
TGFα mRNAs were increased in their colons, as compared 
to the corresponding levels in the control mice (Adachi et al., 
2006). Interestingly, in the DSS model mice, administration 
of pioglitazone or rosiglitazone, which are full agonists of 
PPARγ, can improve intestinal inflammation (Adachi et  al., 
2006; da Rocha et  al., 2020). The novel 5-ASA analog, 
GED-0507-34 Levo (GED), is also able to activate PPARγ 
and suppress the expression of the primary protein markers 
of fibrosis, namely alpha-smooth muscle actin (α-SMA) and 
collagen I-II, by inhibiting the TGF-β/Smad pathway in the 
DSS mouse model as well as in human intestinal fibroblasts 
(Speca et  al., 2016). Hence, PPARγ agonists can function as 
therapeutic targets that can cause suppression of inflammation 
and inhibition of inflammation-related fibrosis.

On the contrary, it is interesting to note that the PPARγ 
full agonists have the ability to induce differentiation of fibroblasts 
into adipocytes (Tontonoz et  al., 1994a,b). Therefore, the use 
of PPARγ full agonists may induce submucosal fat deposition 
(SFD) due to adipocyte differentiation. The SFD is a condition 
in which a low-attenuation inner ring around the intestinal 
lumen is surrounded by a concentric, high-attenuation outer 

ring, known to radiologists as the “halo sign” on computed 
tomography (CT) imaging, and it has been implicated in the 
refractoriness of CD (Jones et al., 1986; Ahualli, 2007; Giaslakiotis 
et  al., 2008). However, SFD is not necessarily specific for CD 
(Muldowney et  al., 1995), and its correlation with creeping 
fat is unclear. Nevertheless, the adipocytes release 
pro-inflammatory and fibrotic cytokines; therefore, it would 
be desirable to use a partial agonist in PPARγ-targeted therapy 
to avoid inducing adipocyte differentiation.

To date, PPARγ-targeted therapy has been extensively 
researched for lifestyle-related diseases, such as diabetes and 
non-alcoholic fatty liver disease (NAFLD; Janani and Ranjitha 
Kumari, 2015; Cheng et  al., 2019), but human applications 
have been partly undermined by metabolic dysregulation and 
carcinogenicity issues (Peters et  al., 2012; Wright et  al., 2014; 
Aghamohammadzadeh et al., 2015). Moreover, the mechanism 
of action of PPARγ agonists is complex; particularly, the 
mechanisms by which the ligands exhibit organ-specific 
sensitivity and strength as well as the differences in the 
temporal changes in response to ligands remain unclear. 
However, for the treatment of fibrosis in CD, the side effects 
may be  improved by using localized and short- or medium-
term drug administration instead of administering systemic 
and long-term drug therapy, as in the case of treating lifestyle-
related diseases. In developing PPARγ-based treatment, the 
large number of PPARγ agonists that have already been 
discovered by computer and high-throughput screening proves 
to be  advantageous (Lewis et  al., 2010; Otake et  al., 2011; 
Liu et  al., 2015). Additionally, the newly-developed high-
throughput screening of intestinal organoid models and data 
mining of previously screened PPAR ligands might accelerate 
the research and development (Rossi et  al., 2018; Du et  al., 
2020; Lukonin et  al., 2021; Rayner et  al., 2021).

FIGURE 1 | Peroxisome proliferator-activating receptor gamma (PPARγ) suppresses fibrosis by inhibiting Smad. PPARγ promotes cellular β-oxidation and inhibits 
bacterial colonization in intestinal epithelial cells. Toll-like receptor 4 (TLR4) stimulation induces inflammation/fibrosis. Macrophages activated with TLR4 stimulation 
produce pro-inflammatory cytokines.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Hayashi and Nakase Intestinal Fibrosis and Molecular Pathways

Frontiers in Physiology | www.frontiersin.org 4 February 2022 | Volume 13 | Article 845078

TOLL-LIKE RECEPTOR 4

The TLR4 belongs to a family of single transmembrane receptor 
proteins called the TLRs that activate innate immune responses 
by recognizing bacterial and viral components. In mammals, 
11 types of TLRs have been identified (Akira and Takeda, 
2004; Figure  1). Initially, TLR4 was identified as a receptor 
for lipopolysaccharide (LPS) of Gram-negative bacilli (Hoshino 
et  al., 1999). However, further studies have revealed that it 
also functions as a receptor for other exogenous factors, such 
as heat-shock protein 60 (HSP60) from fungi (Bulut et  al., 
2002), respiratory syncytial virus (RSV)-derived fusion protein 
(Kurt-Jones et  al., 2000), and taxol from plants (Kawasaki 
et al., 2000), as well as host-derived endogenous factors (Okamura 
et al., 2001; Johnson et al., 2002), including fibrinogen (Smiley 
et  al., 2001) and HSP70 (Vabulas et  al., 2002). After TLR4 
recognizes its ligands, the major downstream signaling pathways 
that are stimulated include activation of NF-κB and activator 
protein 1 (AP1) via myeloid differentiation primary response 
88 (MyD88)-dependent toll/interleukin-1 receptor domain-
containing adapter protein (TIRAP) or activation of interferon 
regulatory factor 3 (IRF3) via MyD88-independent toll/
interleukin-1 receptor (TIR)-domain-containing adapter-inducing 
interferon-β (TRIF). The TLR4 signaling pathway can induce 
cytokine production, such as tumor necrosis factor-alpha 
(TNF-α) and type I  interferon (IFN), B cell proliferation, and 
maturation of dendritic cells to activate infection defense 
mechanisms (Verstrepen et al., 2008; Watts et al., 2010; Kawasaki 
and Kawai, 2014). In a comparison of TLR expression in 
primary intestinal epithelial cells between healthy controls and 
IBD patients, it was revealed that in the healthy controls, 
TLR3 and TLR5 were predominantly expressed, with little 
expression of TLR2 and TLR4, whereas in the CD patients, 
TLR3 expression was predominantly decreased and TLR4 
expression was increased (Cario and Podolsky, 2000; Brown 
et  al., 2014). In fact, the number of macrophages strongly 
expressing TLR4 was high in the inflamed mucosal lamina 
propria of the colon in CD patients (Hausmann et  al., 2002). 
Based on this observation, many studies focused on determining 
the association between CD and TLR4 polymorphism. However, 
the abovementioned significant association was observed only 
in European Caucasians (Arnott et  al., 2004; Franchimont 
et  al., 2004; Brand et  al., 2005; Fries et  al., 2005), but not in 
non-Caucasian individuals or in non-European countries 
(Oostenbrug et al., 2005; Zouiten-Mekki et al., 2009). Therefore, 
it is likely that there are regional differences regarding this 
association. A meta-analysis integrating the above studies 
revealed an association between TLR4 Asp  299 Gly and IBD 
susceptibility in Caucasians but not in Asians (Cheng et  al., 
2015). Additionally, the data suggested that the association of 
IBD susceptibility with TLR4 Thr 399 lle might only occur 
in Caucasians.

The relationship between TLR4 and colonic fibrosis has been 
investigated using TLR4 knockout (KO) mice with the DSS 
colitis model (Jun et  al., 2020). The results indicate that the 
TLR4 gene-deficient mice exhibit a reduced colonic inflammation 
as well as a decrease in the infiltration of macrophages into 

the colon, thereby resulting in reduced collagen deposition 
and intestinal fibrosis. Additionally, the production of TNF-α, 
IL-12p40, and TGF-β was reduced in the peritoneal macrophages 
of the mice lacking the TLR4 gene.

Certain studies have demonstrated that the direct stimulation 
of TLR4 with LPS in myofibroblasts derived from mouse 
intestine might activate the myofibroblasts via multiple 
pathways, such as phosphoinositide 3 (PI3) kinase, p38 
mitogen-activated protein kinase (MAPK), and NF-κB, 
ultimately contributing to innate immune responses (Otte 
et al., 2003; Walton et al., 2009). Furthermore, the accumulation 
of submucosal fibroblasts and collagen is reduced when 
MyD88-deficient mice are subjected to enteritis (Månsson 
et  al., 2012; Zhao et  al., 2020). However, the expressions of 
TLR2, TLR4, and TLR5 are much weaker in colonic 
myofibroblasts than in the crypt epithelial cells of IBD patients 
(Brown et  al., 2014).

ADHERENT INVASIVE Escherichia coli

Incidentally, CD patients have an abnormal intestinal microflora 
composition, and these microorganisms are closely related 
to the inflammation and intestinal stenosis observed in CD. 
Specifically, a decreased occurrence of phylum Firmicutes 
and an increased occurrence of phylum Proteobacteria, 
especially Enterobacteriaceae, have been observed in CD 
patients with refractory inflammation or intestinal stricture 
(Frank et  al., 2007; Sokol et  al., 2020). Additionally, gene 
polymorphisms, as in the genes encoding autophagy-related 
16 like 1 protein (ATG16L1) and nucleotide-binding 
oligomerization domain-containing protein 2 (NOD2; Hugot 
et  al., 2001), are associated with the risk of developing CD 
(Hampe et  al., 2007; Parkes et  al., 2007). Adherent/invasive 
Escherichia coli (AIEC) in the intestine is most frequently 
isolated from the terminal part of the ileum of CD patients, 
thereby suggesting that AIEC may contribute to fibrosis 
(Darfeuille-Michaud et  al., 2004; Small et  al., 2013; Rieder 
et  al., 2017). In fact, AIEC has been detected in 46.7% of 
CD patients compared to its occurrence in only 13.3% of 
healthy subjects (Sarabi Asiabar et  al., 2018). AIEC requires 
a type IV secretion system (T4SS) to form biofilms in the 
intestinal tract and settle on the intestinal epithelial cells 
(Figure 2). Moreover, Escherichia coli isolates from CD patients 
are rich in T4SS, which is probably involved in the disease 
activity (Elhenawy et  al., 2021). Interestingly, patients with 
serum antibodies to specific microbial peptides have an earlier 
onset of fibrostenosis and display early complications of CD 
(Dubinsky et  al., 2008). Furthermore, creeping fat, specific 
for CD, promotes interaction with gut bacteria that have 
migrated into the submucosa, thereby contributing to the 
activation of immune responses (Suau et  al., 2021). These 
data suggest that AIEC may exacerbate the inflammation 
and stenosis associated with CD. Additionally, AIEC secretes 
Yersiniabactin (Perry and Fetherston, 2011), an iron-chelating 
agent, to incorporate iron into its cells; however, this 
Yersiniabactin may help some bacteria to infect the subepithelial 
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layers of the intestine, thereby causing inflammation and 
intestinal fibrosis (Kim et  al., 2005; Ellermann et  al., 2019).

Th17 CELL IMMUNE RESPONSE

The Th17 cells are differentiated from naïve T cells upon TGF-β 
and IL-6 stimulation (Sutton et  al., 2006; Ruan et  al., 2011), 
and they produce IL-17A, IL-17F, IL-21, IL-22, IL-26, and 
TNF-α (Cua and Tato, 2010; Hundorfean et al., 2012; Figure 2). 
The IL-17 stimulation activates the SEF/IL-17R (SEFIR) domain, 
which is closely related to the TIR domain of the IL-17R 
receptor. It thereby activates NF-κB and AP-1 signaling through 
NF-κB activator 1 (ACT-1) and tumor necrosis factor receptor 
(TNFR)-associated factor 6 (TRAF-6), respectively (Moseley 
et  al., 2003; Gaffen, 2009; Wang et  al., 2013). The NF-κB and 
AP-1 signaling induce the secretion of IL-1, IL-6, TNF-α, 
MMPs, and antimicrobial peptides. Hence, IL-17 has a 
pro-inflammatory role and can protect against extracellular 
parasitic as well as bacterial infections (Ye et al., 2001; Raffatellu 
et  al., 2008; Lin et  al., 2009). Incidentally, IL-17 and IL-21 
are overexpressed in the colonic mucosa of UC patients, while 
IL-17, IL-21, and IL-22 are overexpressed in the colonic mucosa 
of CD patients (Fujino et al., 2003; Andoh et al., 2005; Monteleone 
et  al., 2005; Brand et  al., 2006). Therefore, the Th17-related 
cytokines are involved in the pathophysiology of both UC and 
CD. In CD, IL-17+ CD3+ T cells and CD68+ cells are scattered 
in the submucosa and muscularis propria, and some of these 
cells produce IFN-γ (Fujino et  al., 2003; Annunziato et  al., 

2007). Genome-wide association studies have revealed that 
IL23R and five genes involved in Th17 differentiation, namely 
the IL12B, Janus kinase 2 (JAK2), signal transducer and activator 
of transcription 3 (STAT3), C-C motif chemokine receptor 6 
(CCR6), and TNFF15, are associated with the susceptibility to 
CD (Barrett et  al., 2008).

In patients with CD, IL-17A is overexpressed in the stenotic 
intestine, as compared to its expression in the tissues of the 
non-stenotic area (Biancheri et  al., 2013). Interestingly, both 
IL-17A and HSP47 expressions are enhanced in the colons of 
patients with active CD. Moreover, IL-17A promotes the 
expression of HSP47 and collagen I  in intestinal myofibroblasts 
and CCD-18Co cells isolated from patients. In fact, knockdown 
of HSP47  in these cells inhibits IL-17A-induced collagen 
I  production (Honzawa et  al., 2014). Additionally, IL-17A 
treatment of IEC-6 cells (a rat small intestinal cell) induces 
EMT, decreases E-cadherin expression, and increases vimentin, 
snail, and α-SMA expression (Zhang et  al., 2018). It has also 
been reported that IL-21 boosts the Th1 response, which, in 
turn, stimulates the intestinal fibroblasts to secrete MMPs in 
response of CD (Monteleone et  al., 2006). Incidentally, both 
Th1 and Th17 immune responses are involved in the 
trinitrobenzene sulfonic acid (TNBS)-induced colitis mice model 
(Zhu et  al., 2012). In fact, administration of an anti-IL-17 
antibody to mice with chronic colitis, which was induced by 
repeated intra-rectal administration of TNBS, decreases the 
expression of fibrosis-related cytokines, such as collagen 3, 
TNF-α, TIMP metallopeptidase inhibitor 1 (TIMP-1), and 
MMP-2, as well as inflammatory cytokines, namely IL-1β, 

FIGURE 2 | Yersiniabactin secreted by adherent-invasive Escherichia coli (AIEC) helps bacteria to transfer to submucosa, and bacteria in submucosa have mutual 
immune response with Creeping fat. Th17 cell-related cytokines promote fibrosis by acting on myofibroblast.
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TGF-β1, and TNF-α, ultimately resulting in a suppressed fibrosis 
(Zhang et  al., 2018; Li et  al., 2020). However, anti-IL-17A 
antibody (secukinumab) and anti-IL-17-receptor antibody 
(brodalumab) failed to demonstrate efficacy in the treatment 
of CD (Hueber et  al., 2012; Mozaffari et  al., 2015). Therefore, 
rather than direct inhibition of IL-17, IL-17 downstream 
pathways, such as HSP47, and other IL-17-based cytokines, 
such as IL-21, may be  targets for avoiding intestinal fibrosis.

PLASMINOGEN ACTIVATOR INHIBITOR-1

Plasminogen activator inhibitor-1 (PAI-1) is a protein with 
a molecular weight of approximately 42,700 Da. It is mainly 
synthesized and secreted by vascular endothelial cells and 
hepatocytes. However, adipocytes and certain other cells also 
contribute to its production (Sillen and Declerck, 2021). 
Incidentally, PAI-1 is an inhibitor that regulates the fibrinolytic 
reaction by precisely forming a 1:1 irreversible bond with 
tissue plasminogen activator (tPA) and thereby inactivating 
it. Clinically, blood PAI-1 levels help to understand the 
pathogenesis of disseminated intravascular coagulation (DIC), 
a disease of the coagulation-fibrinolysis system (Gando et al., 
2016; Hoshino et al., 2020; Morrow et al., 2021). Additionally, 
the expression of PAI-1 increases with age (Yamamoto et  al., 
2005). Elevated levels of TNF-α, IL-6, and TGF-β induce 
the expression of PAI-1 (Samad et  al., 1999; Alessi et  al., 
2000; Rega et  al., 2005). Subsequently, PAI-1 suppresses tPA 
production and prevents the conversion of plasminogen into 
plasmin, thereby resulting in a decrease in MMPs and the 
consequent inhibition of tissue fiber degradation (Munakata 
et al., 2015). Incidentally, PAI-1 is a major downstream target 
of TGF-β signaling, and its transcription is directly regulated 
by Smad3 (Samarakoon and Higgins, 2008). In IBD patients 
as well as in mice colitis models, the expression of PAI-1 
is extensive inactive lesions, and PAI-1 and its direct target 
tPA play an essential role in the regulation of intestinal 
inflammation (Alkim et  al., 2011; Kaiko et  al., 2019; Su 
et  al., 2020). Moreover, in the intestinal mucosa of the 
terminal ileum of patients with active CD, TGF-β and PAI-1 

levels are elevated with a positive correlation (Imai et  al., 
2020). Mice with TNBS-induced intestinal fibrosis also exhibit 
elevated PAI-1, and administration of TM5275, which blocks 
PAI-1/tPA complex formation, in these mice leads to an 
increase in MMP9 expression that can ameliorate fibrosis 
(Ibrahim et  al., 2014; Yahata et  al., 2017; Imai et  al., 2020).

CONCLUSION AND PROSPECTS

In recent years, there has been an expansion in the knowledge 
regarding the associations between organ fibrosis and the 
underlying molecular pathways or functions. This may help 
to elucidate the molecular mechanism of intestinal fibrosis 
with respect to IBD. However, large-scale screening of the 
molecular structure, toxicity, and therapeutic efficacy of the 
potential therapeutic agents is essential. Hence, further 
development and improvement of high-throughput screening 
techniques, such as computer screening, organoid-based 
screening, and nematode-based screening (de Sousa Figueiredo 
et  al., 2021) are desirable for the development of novel 
treatment strategies for CD.
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