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Background: Although pulmonary vein isolation (PVI) gaps contribute to recurrence after 
atrial fibrillation (AF) catheter ablation, the mechanism is unclear. We used realistic 
computational human AF modeling to explore the AF wave-dynamic changes of PVI with 
gaps (PVI-gaps).

Methods: We included 40 patients (80% male, 61.0 ± 9.8 years old, 92.5% persistent 
AF) who underwent AF catheter ablation to develop our realistic computational AF model. 
We compared the effects of a complete PVI (CPVI) and PVI-gap (2-mm × 4) on the AF 
wave-dynamics by evaluating the dominant frequency (DF), spatial change of DF, maximal 
slope of the action potential duration restitution curve (Smax), and AF defragmentation 
rate (termination or change to atrial tachycardia), and tested the effects of additional virtual 
interventions and flecainide on ongoing AF with PVI-gaps.

Results: Compared with the baseline AF, CPVIs significantly reduced extra-PV DFs 
(p < 0.001), but PVI-gaps did not. COV-DFs were greater after CPVIs than PVI-gaps 
(p < 0.001). Neither CPVIs nor PVI-gaps changed the mean Smax. CPVIs resulted in higher 
AF defragmentation rates (80%) than PVI-gaps (12.5%, p < 0.001). In ongoing AF after 
PVI-gaps, the AF defragmentation rates after a wave-breaking gap ablation, extra-PV DF 
ablation, or flecainide were 60.0, 34.3, and 25.7%, respectively (p = 0.010).

Conclusion: CPVIs effectively reduced the DF, increased its spatial heterogeneity in 
extra-PV areas, and offered better anti-AF effects than extra-PV DF ablation or additional 
flecainide in PVI-gap conditions.

Keywords: atrial fibrillation, computational modeling, pulmonary vein, gap, dominant frequency

INTRODUCTION

Catheter ablation is the most effective rhythm control method for atrial fibrillation (AF; Turagam 
et  al., 2019). The cornerstone of AF catheter ablation (AFCA) is pulmonary vein isolation 
(PVI; Oral et  al., 2006). However, even after AFCA with an adequate PVI, the AF recurrence 
rate is 40–50% within 5 years (Saguner et  al., 2018). In patients with a post-AFCA recurrence 
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during a repeat procedure, the pulmonary vein (PV) reconnection 
rate, which is the leading cause of recurrence, reaches 37–95% 
(Lin et  al., 2015). PV reconnections are due to the technical 
limitations of the PVI durability (Arujuna et  al., 2012). On 
the other hand, extra-PV triggers are also an important AF 
mechanism in AF patients with significant atrial remodeling 
(Velagapudi et al., 2013). Because AF is a progressive, degenerative 
disease, an empirical extra-PV ablation has been attempted, 
especially in patients with persistent or long-standing AF 
(Haissaguerre et  al., 2005). Nevertheless, there is no evidence 
that an empirical extra-PV linear, electrogram-guided, or rotor 
ablation has a rhythm outcome superior to a complete PVI 
(CPVI) alone for ablating persistent AF (Verma et  al., 2015). 
Indeed, the mechanism by which a CPVI and additional 
extra-PV ablation provide equivalent rhythm control is unknown. 
Little is known about the optimal procedure for AF patients 
with recurrence and an incomplete PVI (Park et  al., 2019).

Therefore, this study used realistic human AF computational 
modeling to explore how a CPVI affects the extra-PV AF 
wave-dynamics and how a PVI-gap affects the recurrence 
mechanism. Current AF computational modeling takes advantage 
of recent improvements in the computational power to precisely 
simulate human AF by applying a personalized anatomy, 
histology, and electrophysiology (Lim et  al., 2020a). Various 
virtual interventions and virtual anti-arrhythmic drug tests have 
become possible using controlled in silico conditions (Shim 
et  al., 2017; Kim et  al., 2019). In this study, we  hypothesized 
that a CPVI would affect the extra-PV AF wave-dynamics. In 
addition, we  evaluated the effects of a PVI with-gaps on the 
AF maintenance and compared the interventions and drug 
challenges to find the optimal anti-AF outcomes.

MATERIALS AND METHODS

Ethical Approval
The study protocol followed the Declaration of Helsinki and 
was approved by the Institutional Review Board of Severance 
Cardiovascular Hospital, Yonsei University Health System. All 
participants were included in the Yonsei AF Ablation Cohort 
Database (ClinicalTrials.gov Identifier: NCT02138695) and 
provided written informed consent for us to use their cardiac 
CT images and clinical electrophysiological mapping data for 
computational modeling studies.

3D Computational Model of the Left Atrium
Figure  1 illustrates the protocol for the computational atrial 
modeling and AF simulations used in this study. We developed 
an ionic currents model according to the human atrial action 
potential model proposed by Courtemanche et  al. (1998). For 
AF atrial ionic remodeling, the sodium current (INa), transient 
outward potassium current (Ito), L-type calcium current (ICaL), 
and ultrarapid outward current (IKur) decreased by 10, 70, 50, 
and 50%, respectively, and the inwardly rectifying potassium 
current (IK1) and Na+/Ca2+ exchanger (INCX) increased by 100 
and 40%, respectively (Lee et  al., 2016). The surface of the 
left atrial (LA) 3D model was composed of triangular meshes 

containing 400,000–500,000 geometric elements, and the mean 
distance between adjacent elements was 235.1 ± 32.1 μm. 
Interpolated voltage data were generated from bipolar 
electrograms recorded from >500 points on the atrial surface 
using a circular mapping catheter and CT images (Figure 1A). 
Artifact caused by the patient’s breathing was removed by 
trimming the ostial positions on the PVs and mitral valve. 
The coordinates of the electroanatomical map (NavX, Abbott, 
Inc., Chicago, IL, United  States; CARTO System, Biosense 
Webster, Diamond Bar, CA, United States) were precisely aligned 
with the patients’ clinical heart CT images, and then the 
registration between the electroanatomical maps and clinical 
CT data was completed. We used the inverse distance weighting 
method (Ugarte et  al., 2015) to represent the interpolation of 
the electroanatomical map values during the simulation 
procedures. Our graphical user interface software (Model: SH01, 
CUVIA ver. 2.5; Laonmed Inc., Seoul, Korea) integrated the 
fibrosis formation and fiber orientation into the LA surface 
and enabled a virtual AF induction and AF wave-dynamic 
changes by using the dominant frequency (DF) and maximal 
slope of the action potential duration restitution curve (Smax; 
Lim et  al., 2017). The fiber orientations were defined in the 
meshes of each patient’s geometry and adjusted based on the 
clinical local activation time map (Pashakhanloo et  al., 2016). 
Bipolar voltage data obtained from catheter ablation mapping 
were matched onto the computational nodes of the LA 3D 
model, and the locations of the fibrotic areas were determined 
using the map (Figure  1B). The fibrosis status of each node 
was numerically defined (Hwang et  al., 2019). We  simulated 
the clinical local activation data by using the model, which 
reflected the cardiac structural orientation and fiber orientation 
(Figure  1C). The conductivity of the model was based on the 
status and shape of the fibrosis (Zahid et  al., 2016). For the 
ion currents of fibrotic cells, the inward rectifier potassium 
current (IK1), L-type calcium current (ICaL), and sodium current 
(INa) were decreased by 50, 50, and 40%, respectively, as compared 
to normal cells (Zahid et  al., 2016). The reaction–diffusion 
equation for the cardiac wave propagation was solved numerically 
and adjusted based on the specific conduction velocity in each 
case to represent personalized AF simulations (Lee et al., 2016).

AF Simulation
Figure  1F shows the process used in the study protocol. 
We  induced AF in each case using AF pacing from 200 to 
120 ms with eight beats per cycle lasting a total of 11,520 ms, 
based on appropriate ion current settings. Each virtual pacing 
location corresponded to the clinical activation time map for a 
realistic LA modeling, and the pacing sites were matched precisely 
to reflect the personalized LA models. AF maintenance was 
observed for 32 s. We defined a successful AF induction according 
to the electrograms in each LA model. AF defragmentation 
involved AF termination and AF conversion to atrial tachycardia.

Virtual Interventions
We applied a virtual ablation and virtual anti-arrhythmia 
drug to our realistic AF model. For the virtual ablation, the 
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membrane potential of the ablated regions was set as zero 
to produce a permanent conduction block interrupting the 
cardiac wave propagation. First, we  performed a virtual PV 
isolation with four gaps located on the anterior and posterior 
sides of each pulmonary vein isolation line (Figure  1D). 
Then we  ablated all those gaps to perform a circumferential 
pulmonary vein isolation. The size of each gap was 2 mm. 
We  initiated AF induction after performing each ablation. 
We  applied high dose virtual flecainide (15 μm) to the failed 
AF defragmentation cases. With the Courtemanche-Ramirez-
Nattel model (Courtemanche et  al., 1998; Sossalla et  al., 
2010; Grandi et  al., 2011) as the baseline, the effects of 
flecainide were implemented by applying the percent changes 
for the specific ion channels. Compared with baseline AF, 
the Ito, ICaL, IKr, and INa were decreased by 5, 5, 30 and 45%, 
respectively (Wang et  al., 1993; Hilliard et  al., 2010; Kramer 
et  al., 2013; Crumb et  al., 2016; Geng et  al., 2018; Sutanto 
et  al., 2019).

Analysis of the Spatial Changes in the AF 
Wave-Dynamics
We analyzed the wave-dynamics of the DF and Smax from 
17 to 23 s. The DF was defined as the frequency with the 
highest power. It was analyzed using a Fourier transform for 
6 s of action potentials at each node and the power spectra 
density function (Lim et  al., 2017). We  calculated the DF 
values for all nodes in the 3D LA model (Figure  1E). To 
examine the stability of the DF after each intervention, the 
coefficient of variation (COV) of the high-DF was calculated 
as the standard deviation divided by the mean. The Smax 
values were defined at every node in the LA regions of 
each patient.

Statistical Analysis
The continuous variables are represented as the median and 
range. The proportion of categorical variables was compared 
among the groups using a Fisher’s exact test. Comparisons of 
the DF, Smax, and COV-DF were conducted using t-testing 
or Mann–Whitney testing, depending on the distribution. A 
value of p <0.05 was considered statistically significant. Statistical 
analyses were conducted using SPSS (Statistical Package for 
Social Sciences, Chicago, IL, United States) software for Windows 
(version 26.0).

RESULTS

Wave-Dynamic Changes After the PVI
We induced virtual AF in realistic computational models obtained 
from 40 patients (Supplementary Table S1). PV interventions 
(40 CPVI and 40 PVI-gap) significantly increased the mean 
AF cycle-lengths (140.9 ms [129.9, 153.3] to 147.1 ms [131.6, 
200.3], p = 0.045), but they did not change the mean DF (7.69 Hz 
[7.31, 8.47] to 7.65 Hz [6.27, 8.30], p = 0.150) or Smax (0.97 
[0.81, 1.26] to 0.88 [0.66, 1.13], p = 0.144). The AF termination 
and defragmentation rates after the PV interventions were 20 
and 46.3%, respectively. Any episode terminated before 17 s 
was excluded from the AF cycle-length, DF, and Smax analyses.

Effects of the CPVI vs. PVI-Gaps on the 
Extra-PV Area
Table  1 compares the AF wave-dynamic changes between 
the CPVI and PVI-gap procedures. Compared with baseline 
AF, the CPVI significantly increased the mean AF cycle-
lengths (p < 0.001), but the PVI-gap did not (p = 0.581). The 

A

F

B C D E

FIGURE 1 | Study protocol of the computational atrial modeling and AF simulation. (A) CT merged 3D-clinical electroanatomical map. (B) Clinical map integrated 
computational modeling. (C) Baseline AF induction in activation map. (D) Application of CPVI and PVI-gap. The yellow arrows indicate gaps in the PVI. (E) DF-based 
wave-dynamics analyses. (F) Study protocol. CT indicates computed tomography; EP, electrophysiology; LAT, local activation time; PVI-gap, pulmonary vein 
isolation with gap; CPVI, complete pulmonary vein isolation; DF, dominant frequency; AF, atrial fibrillation; AT, atrial tachycardia.
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CPVI also reduced the mean DF (p < 0.001), but the PVI-gap 
did not (p = 0.354, Figure 2). The amount of the DF reduction 
was significantly greater in the CPVI group than PVI-gap 
group (p < 0.001). The COV-DF, which reflected the spatial 
instability of the DF, was significantly greater in the CPVI 
group than PVI-gap group (p < 0.001). However, neither the 
CPVI (p = 0.445) nor PVI-gap (p = 0.078) changed the mean 
Smax (Table  1).

Defragmentation Rates After the CPVI vs. 
PVI-Gap and Flecainide
The AF defragmentation and termination rates after the PVI 
are listed in Table  1. There was no AF termination or 
defragmentation during the 32 s waiting period during the 
baseline AF. The AF termination rate after the CPVI was 

32.5%, and it was 7.5% after the PVI-gap (p = 0.010). The 
AF defragmentation rates were also higher in the CPVI group 
(80.0%) than PVI-gap group (5%, p < 0.001). This finding was 
consistent after changing the location and number of PVI-gaps 
(Supplementary Table S2).

We added virtual flecainide to the failed defragmented 
episodes after the CPVI (n = 8) and PVI-gap (n = 35). The post-
flecainide termination rate in the group after the CPVI (25.0%) 
tended to be  higher than that in the PVI-gap group without 
statistical significance (2.9%, p = 0.084, Table  2).

Mechanism of the AF Maintenance After 
the PVI-Gap
We evaluated the PV and extra-PV wave-dynamic 
interactions in 35 ongoing AF episodes after the PVI-gap 

TABLE 1 | Wave-dynamic changes and defragmentation after virtual PV interventions.

Baseline PVI-gap CPVI
p value

(n = 40) (n = 40) (n = 40)

Mean AFCL
140.87

[129.87,153.26]

138.89

[128.21,149.25]

212.77*,†

[148.76,242.45]
<0.001

Mean DF (Hz)
7.690

[7.306,8.474]

8.061

[7.566,8.524]

5.760*,†

[4.984,7.847]
<0.001

ΔMean DF NA
0.171

[−0.099,0.441]

−1.482†

[−3.184,−0.044]
NA

COV-DF (%) NA
2.026

[1.190,4.555]

17.162†

[1.849,34.705]
NA

Mean Smax
0.974

[0.805,1.259]

0.847

[0.643,1.047]

0.943

[0.707,1.304]
0.208

ΔMean Smax NA
−0.154

[−0.350,−0.034]

−0.102

[−0.350,0.181]
NA

Defragmentation, % (n) 0%(0/40) 12.5%(5/40) 80.0%(32/40)*,† <0.001
Termination, % (n) 0%(0/40) 7.5%(3/40) 32.5%(13/40)*,‡ <0.001
Converted to AT, % (n) 0%(0/40) 5.0%(2/40) 47.5%(19/40)*,† <0.001

Smax, The maximal slope of the restitution curves; DF, Dominant frequency; COV-DF, Coefficient of variation-dominant frequency; AFCL, Atrial fibrillation cycle lengths. The median 
(IQ1, IQ3) is displayed in the table. *p < 0.001 vs. Baseline. †p < 0.001 vs. PVI-gap. ‡p = 0.010 vs. PVI-gap.

A B C

FIGURE 2 | Wave-dynamic changes after the virtual PVI-gap and CPVI. (A) The ECGs were obtained at the blue * sites in the DF maps. (B) The red arrows indicate 
gaps in the PVI. (C) The 3D DF maps and ECGs indicate that the CPVI reduced the mean DF, increased the AF cycle lengths, and defragmented the AF, but the 
PVI-gap did not. However, neither the CPVI nor PVI-gap changed the Smax. DF indicates dominant frequency; Smax, the maximal slope of the restitution curves; 
PVI-gap, pulmonary vein isolation with gaps; CPVI, complete pulmonary vein isolation; AF, atrial fibrillation; AT, atrial tachycardia; ECG, electrocardiogram.
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intervention (Figure 3). The extra-PV DF was greater than 
the PV-DF in 28 of those episodes (80%), and the inside 
PV-DF was greater than the extra-PV DF in 7 episodes 
(20%). The wavelet interactions were maintained through 
the PVI-gaps for as long as the AF was maintained. The 
wave-breaks generally appeared at the wavelet exit of the 
gaps by a source-sink mismatch (Figure  4). The rate of 
a wave-break did not differ between the episodes in which 
the wavelet moved from the higher DF site to the 
lower DF site and that in which it moved from the 
lower DF site to the higher DF site (48.8% vs. 50%, 
p = 1.000).

Among the 35 episodes of ongoing AF after the PVI-gap, 
filling the wave-breaking PVI-gaps (total 91 gaps), ablation 
of the highest DF site without touching the PVI-gaps (112 
extra-PV and 51 intra-PV sites), and additional virtual flecainide 
defragmented the AF in 60.0, 34.3, and 25.7% of cases, 
respectively (p = 0.010, Figure  5). The AF termination rate 
was significantly greater after filling the PVI-gaps than after 
ablating the highest DF or administering flecainide (p = 0.010, 
Table  3).

DISCUSSION

Main Findings
In this study, we used realistic human AF computational modeling 
to explore how a CPVI affected the extra-PV wave-dynamics 
and PVI-gaps as a mechanism for AF recurrence. The CPVI 
significantly reduced the mean extra-PV DF and its spatial 
stability (increased COV-DF), but it had no effect on the Smax, 
an index of wave-breakability. In the episodes of ongoing AF 
after the PVI-gap, wave-breaks commonly occurred at the wavelet 
exit of the gaps. Additional ablation of wave-breaking PVI-gaps 
had a greater defragmentation effect than extra-PV DF ablation 
or virtual flecainide. Therefore, the CPVI effectively reduced 
the mean DF in the extra-PV area, and under the PVI-gap 
condition, filling the PVI-gaps had anti-AF effects superior to 
those of an extra-PV DF ablation or additional flecainide.

Extra-PV Effects of the CPVI
The CPVI has traditionally been the cornerstone of AFCA 
(Oral et  al., 2006), and it has several potential anti-AF 

TABLE 2 | Flecainide-induced defragmentation rates of ongoing AF after the CPVI vs. PVI-gap.

PVI-gap CPVI
p value

(n = 35) (n = 8)

Defragmentation, % (n) 25.7%(9/35) 62.5%(5/8) 0.089
Termination, % (n) 2.9%(1/35) 25.0%(2/8) 0.084
Converted to AT, % (n) 22.9%(8/35) 37.5%(3/8) 0.401

PVI-gap, Pulmonary vein isolation with gap; CPVI, Complete pulmonary vein isolation; AT, Atrial tachycardia.

FIGURE 3 | Wave-dynamic interactions between the PVs and extra-PVs in 35 ongoing AF episodes after the PVI-gap intervention. DF indicates dominant 
frequency; PV, pulmonary vein.
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mechanisms. First, the CPVI blocks the PV triggers (Oral 
et  al., 2006). Second, the CPVI partially denervates cardiac 
autonomic nerves, including the ganglionated plexi around 
the PV antrum (Po et  al., 2009). Third, a wide CPVI 
significantly reduces the atrial critical mass (Hwang et  al., 
2012). We  have here identified another novel mechanism by 
which the CPVI significantly reduces the mean DF and spatial 
heterogeneity of the DF at extra-PV sites. Among the 40 
patients who were included in this study, 93% had persistent 
AF, and we  integrated their voltage-activation maps into our 
realistic computational models. We  found that the CPVI still 
plays an important role in the extra-PV AF maintenance 
mechanism, even in AF patients with atrial substrate 
remodeling. To date, no empirical extra-PV LA ablation, 
including linear, electrogram-guided, or rotor ablation, has 
shown equivalent rhythm outcomes in patients with a CPVI, 
despite multiple randomized clinical trials (Verma et  al., 
2015). Our results reconfirm the importance of a CPVI in 
the LA, even though extra-PV areas, including the right 
atrium, contribute to the maintenance mechanisms of AF 
(Lim et  al., 2020b).

Role of PV-Gaps as a Mechanism of 
Recurrence After a PVI
Irrespective of the uncertain unifying mechanisms of AF, a 
PV electrical isolation is an objective, standard, and widely 
accepted minimal requirement for AFCA (Calkins et al., 2012). 
However, despite advances in the catheter efficiency, a long-
term durable PVI still has technical limitations. The rate of 
PV reconnections during a repeat ablation has been reported 
to range from 36% to more than 95% in repeat procedures 
(Lin et  al., 2015). Many studies have reported that PV 
reconnections are the leading cause of arrhythmia recurrences. 
However, PV reconnections have also been observed in patients 
without AF recurrence (Nilsson et  al., 2006). In this study, 
we  evaluated how PV gaps affected the AF maintenance 
mechanisms. Of the four 2-mm PV gaps that remained in 
our model, 65% (91/140) were accompanied by wave-breaks 
and 19.3% (27/140) contributed to wave-breaks in the PV to 
LA direction. The PV gap size also had an essential influence 
on the AF maintenance. Following Herweg’s report, we applied 
2-mm gaps, which were suitable for generating wave-breaks 
by a source-sink mismatch (Herweg et  al., 2021).

A

B

FIGURE 4 | Wave-break at the wavelet exit of the gaps by a source-sink mismatch. (A) The 3D DF map indicates that the extra-PV DFs was greater than the PV-
DFs. The activation map and ECG indicate that a regular wavelet turned into a wave-break when moving from the posterior wall of the LA to inside the PV through 
the gap. (B) The 3D DF map indicates that the inside PV-DF was greater than the extra-PV DF. The activation map and ECG indicate that a regular wavelet turned 
into a wave-break when moving from inside the PV to the lateral wall of the LA through the gap. DF indicates dominant frequency; PV, pulmonary vein; LA, left 
atrium; LSPV, left superior pulmonary vein; LIPV, left inferior pulmonary vein; ECG, Electrocardiogram.
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Appropriate Management of Recurrent AF 
After AFCA
The most effective repeat procedures for patients with 
recurrence after AFCA is not yet known. Depending on 
the recurrent AF burden or the operators’ discretion, gap 
fillings for the reconnected PVs or an empirical extra-PV 
ablation, such as a posterior wall isolation, have been 
performed (Lee et al., 2019). In patients with a well-maintained 
PVI during redo-mapping, extra-PV triggers play a significant 
role in AF recurrence, and the outcomes of a repeat ablation 
are worse than in patients with PV reconnections (Kim 
et al., 2021). In this study, we examined the AF maintenance 
mechanism during the PVI-gap state by using computational 
models made with the electroanatomical maps of 40 patients, 
most of whom had persistent AF. Under those controlled 
conditions, filling the wave-breaking gap produced a more 
effective AF defragmentation than ablation of the extra-PV 
DF sites or using antiarrhythmic drugs. That was consistent 
with the results of a recent randomized clinical trial, 
suggesting that a durable PVI is more effective than an 

empirical extra-PV ablation as a repeat AF ablation procedure 
(Kim et al., 2022).

Limitations
This study had some limitations in its computational simulations. 
First, bi-atrial modeling manifesting interatrial conduction was 
not applied in this study. Second, we  did not consider the 
LA wall thickness in our LA model. Third, because we applied 
fibrosis based on voltage-map, not a magnetic resonance image 
(Boyle et  al., 2019; Baek et  al., 2021), it is not clear whether 
the detailed structure of cardiac fibrosis with microchannels 
is adequately reflected in our morel. Fourth, our personalized 
LA model consisted of a monolayer, not bilayers representing 
the endocardial and epicardial layers. Fifth, the rate-dependent 
effect of flecainide on INa may not be  reflected sufficiently in 
this study (Moreno et  al., 2011).

Conclusion
The CPVI effectively reduced the mean DF and increased its 
spatial heterogeneity in the extra-PV areas. Filling the PVI-gaps 

A B C

FIGURE 5 | Wave-dynamic changes after filling the wave-breaking PVI-gaps, ablating the highest DF sites, and adding virtual flecainide. ECGs were obtained at the 
green * sites in the DF map, and the green arrows indicate the gaps in the PVI. (A) AF terminated after ablating the two gaps on the posterior wall of the LA. (B) AF 
terminated after ablating the high DF site (white areas indicated by black arrows). (C) AF converted to AT after adding virtual flecainide without additional ablation. 
PVI-gap indicates pulmonary vein isolation with gaps; PV, pulmonary vein; DF, dominant frequency; AF, atrial fibrillation; AT, atrial tachycardia; ECG, 
Electrocardiogram.

TABLE 3 | Defragmentation rates after interventions for 35 AF PVI-gap episodes.

Wave-break gap ablation Highest DF sites ablation Add virtual flecainide
P value

(n = 35) (n = 35) (n = 35)

AF Defragmentation, % (n) 60.0%(21/35)* 34.3%(12/35) 25.7%(9/35) 0.010
AF termination, % (n) 25.7%(9/35)† 8.6%(3/35) 2.9%(1/35) 0.010
AF converted to AT, % (n) 34.3%(12/35) 25.7%(9/35) 22.9%(8/35) 0.538

AF, Atrial fibrillation; DF, Dominant frequency; AT, Atrial tachycardia. *p = 0.007 vs. Add virtual flecainide. †p = 0.013 vs. Add virtual flecainide.
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had anti-AF effects superior to those of an extra-PV DF ablation 
or additional flecainide under the PVI-gap condition.
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