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Adenosine 5'-triphosphate (ATP), other nucleotides, and the nucleoside analogue, 
adenosine, all have the capacity to modulate cellular signaling pathways. The cellular 
processes linked to extracellular purinergic signaling are crucial in the initiation, evolution, 
and resolution of inflammation. Injured or dying cells in the pancreatobiliary tract secrete 
or release ATP, which results in sustained purinergic signaling mediated through ATP 
type-2 purinergic receptors (P2R). This process can result in chronic inflammation, fibrosis, 
and tumor development. In contrast, signaling via the extracellular nucleoside derivative 
adenosine via type-1 purinergic receptors (P1R) is largely anti-inflammatory, promoting 
healing. Failure to resolve inflammation, as in the context of primary sclerosing cholangitis 
or chronic pancreatitis, is a risk factor for parenchymal and end-organ scarring with the 
associated risk of pancreatobiliary malignancies. Emerging immunotherapeutic strategies 
suggest that targeting purinergic and adenosinergic signaling can impact the growth and 
invasive properties of cancer cells, potentiate anti-tumor immunity, and also block 
angiogenesis. In this review, we dissect out implications of disordered purinergic responses 
in scar formation, end-organ injury, and in tumor development. We conclude by addressing 
promising opportunities for modulation of purinergic/adenosinergic signaling in the 
prevention and treatment of pancreatobiliary diseases, inclusive of cancer.
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INTRODUCTION

Relationships between inflammation, wound-healing, scarring, and cancer were first proposed 
in the middle of the 19th century by Virchow (Dvorak, 1986). Currently, inflammation is 
recognized as a canonical hallmark of cancer given roles linked to the various stages of 
tumor development and in impacting responses to therapy (Greten and Grivennikov, 2019). 
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Inflammation appears tightly regulated by the release of 
inflammatory mediators inclusive of extracellular purines, 
heterocyclic aromatic organic compounds, and fundamental 
biochemical constituents of purinergic signaling (Miller and 
Urey, 1959). ATP is the vital purine nucleotide generated 
by glycolysis and oxidative phosphorylation and provides 
the intracellular energy currency fundamental for biological 
processes. Typical intracellular stores of ATP are in the range 
of 5–8 mM; however, several stimuli trigger heightened levels 
of ATP release by various cell types. This process increases 
local extracellular ATP concentrations to tens or even hundreds 
of micromoles per liter in inflamed or hypoxic tissues, such 
as in the tumor microenvironment (Di Virgilio et al., 2018a). 
Elevated extracellular ATP levels during pathophysiological 
conditions, such as tissue stress, necrosis, hypoxia, platelet 
activation, and vascular thrombosis, directly modulate 
recruitment and function of innate immune cells by exerting 
signals through purinergic receptors (Di Virgilio et al., 2018a). 
In this review, we  consider the implications of dysregulated 
purinergic signaling in the evolution of pancreatobiliary 
diseases and in cancer.

DELETERIOUS VS. BENEFICIAL 
ELEMENTS OF PURINERGIC AND 
ADENOSINE SIGNALING

Decades of research have indicated extracellular ATP is 
pro-inflammatory, whereas the primary metabolite, adenosine, 
is largely anti-inflammatory. Integrated ATP-directed purinergic 
and adenosine-mediated signaling pathways appear imperative 
for appropriate responses to injury, healing, and subsequent 
tissue repair (Figure  1A).

Seminal work by Dr. Burnstock described novel ATP 
receptors, which were denoted Purinergic-type 2 receptors 
(P2R; Burnstock, 2006). In the extracellular environment, 
ATP-mediated purinergic signaling is initiated when ATP binds 
and activates P2R resulting in context and cell type-dependent 
responses. To date, eight P2YR (P2Y1/2/4/6/11/12/13/14) and seven 
P2XR (P2X1-7) members have been identified in this family 
(Figure  1B).

P2YRs are metabotropic receptors that act as G protein-
coupled receptors (GPCR), while P2XRs are nucleotide-gated 
ion channels and are more commonly known as ionotropic 
receptors (Idzko et  al., 2014). Unlike P2YR that can bind 
several nucleoside tri- and di-phosphates, P2XR are 
ATP-selective. P2XR affinity is generally in the low micromolar 
range and highly sensitive to sudden changes in  local ATP 
concentrations. P2X7R is the exception and has a remarkably 
high tetrabasic ATP activation threshold in the millimolar 
range (North and Surprenant, 2000; Magistroni et al., 2019). 
Active release of ATP to the extracellular compartment is 
tightly mediated by connexins, pannexins, and exocytosis, 
which are predominantly regulated by P2XR-dependent 
feedback loops (Di Virgilio et  al., 2020; Li et  al., 2020). 
Heightened ATP stimulation of P2X7 triggers opening of 
a non-selective plasma membrane pore, known as a macropore, 

which promotes the release of large hydrophilic molecules 
(Di Virgilio et  al., 2018b). Macropore activation and 
conductance occur as a pathophysiological function of P2X7 
(Pippel et al., 2017) and can result in membrane depolarization 
and cell death (Harkat et  al., 2017). Isoforms of P2X7R 
have been described that impact macropore formation 
including nfP2X7, an isoform with conformational changes 
resulting in loss of the capacity for macropore formation 
(Pegoraro et  al., 2021). This isoform is localized to the 
cytosol but can be  translocated to the plasma membrane 
after cellular exposure to high ATP concentrations (Barden 
et  al., 2003). Strategies to rescue macropore formation 
are promising therapeutic avenues as these adaptations 
are proposed to occur in tumor microenvironments 
(Lara et  al., 2020).

Adenosine, once available in the extracellular space, signals 
through the Purinergic-type 1 receptor (P1R) family, 
which consists of four GPCR: ADORA (A1R, A2AR, A2BR, 
and A3R; Figure  1A; Borea et  al., 2018). P1 receptor 
activation on epithelial or immune cells modulates intracellular 
cAMP levels and contributes to anti-inflammatory and 
immunosuppressive responses, dampening ATP-triggered 
responses by P2 receptors and contributing to resolution of 
injury (Figure  1B; Colgan, 2015).

Under homeostatic conditions, low levels of extracellular 
ATP are rapidly converted through the catalytic actions of 
ectonucleotidases. Tandem-linked enzymatic activities of 
ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1/
CD39) decrease extracellular ATP and ADP levels through 
conversion to AMP, followed by ecto-5′-nucleotidase (CD73) 
catalyzed adenosine generation. Under hypoxic conditions, 
adenosine signaling elicits tissue-protective effects and 
coordinates reparative mechanisms through inhibition of 
leukocyte cell recruitment and reduced production of 
pro-inflammatory cytokines. Adenosine levels are in turn 
regulated by cellular uptake by equilibrative nucleoside 
transporters (ENTs; Eltzschig et  al., 2005; Rose et  al., 2011; 
Wang et  al., 2021a). In humans, nucleoside transporters are 
encoded by SLC28 and SLC29. The SLC28 family includes 
three human Concentrative Nucleoside Transporters (hCNT1, 
hCNT2, and hCNT3) which have characteristic transporter 
properties, whereas the SLC29 family comprises four human 
Equilibrative Nucleoside Transporters (hENT1, hENT2, 
hENT3, and hENT4) which are regulators of nucleoside 
pools and purinergic signaling (Pastor-Anglada and Pérez-
Torras, 2018). In addition to cellular uptake, adenosine levels 
are regulated by the catalytic activity of adenosine deaminase 
(ADA) that terminates extracellular and intracellular adenosine 
signaling by irreversibly degrading adenosine to inosine 
(Wiginton et  al., 1981; Idzko et  al., 2014). However, when 
these processes are overwhelmed, sustained adenosine-
mediated signaling exacerbates immunosuppressive states, 
resulting in immune exhaustion. Tumors arising in the 
pancreatobiliary tract have elevated CD39 and CD73, placing 
CD39 or CD73 inhibitors as high priority candidates for 
reversing immune suppression in these lethal malignancies 
(Sciarra et  al., 2019).
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FIGURE 1 | Purinergic signaling mechanisms—receptors and ecto-enzymes. (A) Extracellular nucleotides, nucleosides and specific receptors. Extracellular ATP 
initiates vascular and immune cellular signaling through purinergic-type 2 receptors (classified as P2X ligand-gated channels and P2Y—G protein-coupled 
receptors). Enzymatic conversion of extracellular ATP to ADP/AMP by ENTPD1/CD39 modulates nucleotide/nucleoside signaling via ADP generation with binding 
and activation of selective P2Ys receptors and/or followed by AMP conversion to adenosine (ADO) by NT5E/CD73. ADO initiates adenosinergic/nucleoside-
mediated signaling through purinergic-type 1 receptors P1R or can be degraded by ADA to inosine, resulting in termination of adenosine signaling. (B) Beneficial vs. 
Deleterious Purinergic Signaling Responses in Physiological and Pathological States. With physiological quiescent conditions, low-level nanomolar concentrations of 
extracellular ATP in the microenvironment are essential to fine-tune and preserve cell functionality. Tightly controlled ATP conversion and purinergic signaling enable 
co-ordination of signals in the extracellular compartment allowing tissue-specific homeostatic functions (Left). In the setting of inflammation and other pathological 
states, injured cells increase ATP release, which then achieve millimolar concentrations in the extracellular compartment, promoting cellular activation and strong 
pro-inflammatory responses. Sustained inflammation alters the nature of purinergic signaling through P2 and P1 receptors and may promote chronic injury. In this 
context, ADO generation can at first exhibit beneficial cytoprotective and anti-inflammatory functions through P1 receptors to help mitigate ATP exacerbated 
signaling; however, in the presence of high CD39/CD73 expression and high substrate levels of extracellular nucleotides, consequent ADO signaling triggers tumor 
immune escape, angiogenesis, excessive fibrosis and detrimental immunosuppression (Right).

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Faraoni et al. Adenosinergic Signaling in Pancreatobiliary Diseases

Frontiers in Physiology | www.frontiersin.org 4 March 2022 | Volume 13 | Article 849258

HYPOXIA-DRIVEN ADENOSINERGIC 
SIGNALING

Pancreatobiliary malignancies including cholangiocarcinoma 
and pancreatic ductal adenocarcinoma have profoundly 
hypoxic and immunosuppressive tumor microenvironments. 
Hypoxia has been shown to enhance the invasive and 
malignant properties of these malignant cells (Lee et al., 2016; 
Yu et  al., 2020). Their hypoxic microenvironments are 
important in the context of nucleoside signaling as 
hypoxia-mediated adenosine signaling is central for 
immunosuppression and immune escape (Bastid et  al., 2015; 
Hayes et  al., 2015). Under hypoxic conditions, P1-mediated 
adenosine signaling is boosted by the concerted and 
upregulated ecto-enzymatic activity of CD39 and CD73 on 
epithelial cells. CD73 transcriptional activity is regulated by 
a Hypoxia Response Element (HRE) located in the promoter 
region of NT5E (CD73). This HRE element allows HIF-1α 
to directly regulate CD73  in epithelial cells under hypoxic 
conditions (Synnestvedt et  al., 2002). In addition, under 
hypoxic conditions in epithelial cells, HIF-1α cooperates with 
Sp1 to elevate expression of CD39 (Hart et  al., 2010), which 
is also regulated by HIF-1β/ARNT and AhR receptor responses 
(Mascanfroni et  al., 2015).

Hypoxia-dependent adenosine signaling also promotes 
angiogenesis, which has implications for invasion and metastasis. 
In human endothelial cells, hypoxic conditions enable HIF-2α 
to directly regulate adenosine A2AR, and HIF-1α to regulate 
A2BR, ENTs, and associated receptors. This mechanism promotes 
autonomous adenosine signaling and increased tissue 
vascularization (Li et al., 2020). In addition, adenosine impacts 
barrier-protective functions and RhoA activation in endothelial 
cells (Hassanian et  al., 2014). Hence, in pancreatobiliary 
tumors, the adenosine rich stromal environment generated 
by elevated CD39 and CD73 enables neoplastic cells to escape 
CD8+ T-cell and NK cell immune surveillance (Ohta et  al., 
2006) and may facilitate cell invasion and metastatic 
dissemination by transiently increasing tumor vascularity 
(Ohta et  al., 2006; Sun et  al., 2010; Chiu et  al., 2017; 
Kjaergaard et  al., 2018).

Controversial roles of tumor-derived extracellular adenosine 
are emphasized at the interface of inflammation and cancer 
where transient or chronic hypoxic events play key roles in 
both inflamed areas of normal tissue and solid tumors. In 
this regard, the A2AR has been shown to protect normal 
tissues by promoting termination of inflammation but also 
support tumor promotion by protecting cancerous tissues 
from anti-tumor T cells. Tissue-protective mechanisms involve 
the hypoxia-driven accumulation of adenosine which, via 
cAMP, enhances A2AR expression downregulating the 
inflammatory response and preventing exacerbated tissue 
damage after injury. An important characteristic of this 
beneficial hypoxia-adenosinergic downregulation of activated 
immune cells is that it acts in a delayed-negative feedback 
manner, which is crucial for avoiding damaging ischemic 
events and for the protection of normal tissues from overactive 
immune cells (Ohta and Sitkovsky, 2001; Sitkovsky, 2009). 

Conversely, deleterious effects of A2AR signaling have been 
described that rely on diminished TCR signaling and 
IFN-gamma production (Ohta et  al., 2006). Both events are 
triggered by hypoxic-driven elevated intracellular levels of 
cAMP which ends up misguiding anti-tumor T cells (Ohta 
et  al., 2006).

Hypoxic conditions haves remarkable influences in the 
purinergic system by regulating CD39, CD73, and both the 
P1 and P2 receptors; thus, it is important to highlight potential 
therapeutic implications of weakening the hypoxia-A2-
adenosinergic immunosuppressive pathway in the TME 
(Hatfield and Sitkovsky, 2020). Studies have shown that 
modulating hypoxic conditions improves anti-tumor effects 
in a metastatic model of orthotopically grown breast tumors 
(Hatfield et  al., 2015). Moreover, increased oxygenation 
decreases levels of tumor-protecting extracellular adenosine 
and reduces expression of HIF-1α dependent tumor-protecting 
proteins (Hatfield et  al., 2014).

INFLAMMATORY BILE DUCT DISEASES

Primary Sclerosing Cholangitis (PSC) is a cholestatic form of 
liver disease, characterized by inflammation, thickening, and 
abnormal fibrosis of the intrahepatic and extrahepatic bile 
ducts. Risk factors for PSC include gut dysbiosis and inflammatory 
bowel disease. PSC has the potential to evolve into biliary 
cirrhosis and is a preneoplastic condition, predisposing to 
cholangiocarcinoma, and colorectal cancer (Razumilava 
et  al., 2011).

The role of CD39  in PSC was recently highlighted in a 
murine model of biliary injury and sclerosing cholangitis 
induced by multidrug resistance protein 2 (Mdr2) deficiency 
(Peng et  al., 2017). Here, genetic deletion of CD39 resulted 
in higher levels of hepatic CD8+ T cells, liver injury, ductular 
reaction, and scarring. Loss of CD39 resulted in elevated 
ATP release in the gut, which activated DC and CD8+ T 
cells. Activated DC and CD8+ T cells then trafficked to the 
liver to target biliary epithelia, resulting in cholangitis and 
periductular fibrosis (Figure  2; Peng et  al., 2017). These 
data are consistent with the complex mechanisms linking 
intestinal inflammation and PSC. Notably, the role of CD39 in 
limiting inflammation in this model is complicated by 
discordant impacts on ATP- and adenosine-mediated 
effects. As an example, subsets of bacterial species in 
dysbiosis activate immune cells, which upregulate CD39 
and traffic to the liver. This mechanism increases 
intrahepatic levels of adenosine, perhaps resulting in 
aberrant immunosuppression, predisposing to cancers in 
cholestatic liver disease (Longhi et  al., 2017; Tripathi et  al., 
2018; Vuerich et  al., 2020).

To address this in the myeloid lineage, the role of CD39 in 
liver fibrosis has been studied in myeloid-specific CD39-
deficient mice. After exposure to 3,5-diethoxycarbonyl-1.4-
dihydrocollidine (DDC), myeloid-specific CD39−/− mice 
manifested worse liver fibrosis compared to wild-type mice, 
indicating CD39 myeloid expression is protective in sclerosing 
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cholangitis (Rothweiler et  al., 2019). These data indicate at 
early stages of biliary fibrosis, CD39 may be  important for 
scavenging nucleotides and decreasing extracellular ATP 
levels to protect from sustained or chronic inflammatory 
signaling, but the consequences of sustained elevated CD39 in 
mediating long-term aberrant adenosinergic effects are to 
be  still determined.

Primary Biliary Cholangitis (PBC) is an autoimmune 
cholestatic liver disease, which is characterized by damage 
to the intrahepatic bile ducts resulting in cirrhosis in some 
patients. PBC is slow progressing and associated with a 
number of malignancies including pancreatic, breast, and 
hepatocellular carcinoma. PBC is manifested by accumulation 
of bile in the liver, portal inflammation, and antimitochondrial 
antibodies (Ide et  al., 2017). PBC can be  managed with 
ursodeoxycholic acid (UDCA), a hydrophilic bile salt 
metabolized by the microbiome (Guarino et  al., 2013). 

The proportions of CD4+CD39+ and CD8+ T regulatory cells, 
important for preventing autoimmune disease, are decreased 
in these patients (Lan et  al., 2006; Bernuzzi et  al., 2010) 
and CD4 + CD39+ cells are significantly reduced in the 
PBMCs of these patients compared to healthy controls. A 
mouse model for PBC has been described using 16-week 
chronic exposure to polyinosinic–polycytidylic acid (poly 
I:C). In these mice, similar to observed findings in 
human patients, CD39+CD4+ and CD39+ T regulatory cells 
are decreased in spleens and livers and CD39+ cells were 
decreased in PBMC. However, CD73+ cell numbers were not 
altered. In addition to loss of CD39, the A2AR, but not any 
other adenosine receptor, was decreased in the livers of 
poly I:C treated mice, indicating loss of hepatic A2AR and 
reduced anti-inflammatory adenosine signaling may 
be  associated with early progression of PBC (Figure  2; 
Gong et  al., 2021).

FIGURE 2 | Purinergic signaling in cholestatic liver disease, biliary cirrhosis, and development of cholangiocarcinoma. Ectonucleotidase-expressing 
immune cells, pancreatic acinar cells, and cholangiocytes help balance gut-derived ATP levels arising within the hepatopancreatobiliary tract. During 
Inflammatory Bowel Disease (IBD) with associated gut dysbiosis, increased levels of ATP are secreted impacting physiological bile duct function and 
provoking further cholestasis. Decreased intestinal ENTPDase8 promotes enhanced P2Y6 activation and exacerbates the inflammatory phenotype. Immune 
cells may lose CD39 expression, allowing systemic ATP accumulation with activation of dendritic cells, macrophages, and NK cells. This effect is pronounced 
when in presence of CD39-deprived macrophages. The activated immune cells secrete pro-inflammatory signals when these cells arrive within the 
pancreatobiliary tract promoting cholangiocyte inflammation. Primary Sclerosing Cholangitis (PSC) and Primary Biliary Cholangitis (PBC) are associated with 
chronic ductular injury, impairing intestinal bile liver delivery, promoting backpressure to the liver, and exacerbating intestinal inflammation. Chronic 
inflammation and intra bile duct fibrosis trigger duct obstruction, thickening, and scarring which leads to biliary cirrhosis. Decreased A2AR and elevated CD73 
and A2BR expression amplify adenosine signaling which reduces CD8+ T-cell tumor infiltration and enhances immune suppression, priming 
Cholangiocarcinoma initiation and development.
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BILE DUCT CANCER

Tumors arising in the bile ducts are considered rare, yet 
highly lethal. Cholangiocarcinoma is considered aggressive 
and highly invasive with poor prognosis. This malignancy 
arises in the biliary tract and consists of two major subtypes: 
intra- vs. extrahepatic cholangiocarcinoma. HIF-1α levels are 
significantly elevated in cholangiocarcinoma cell lines compared 
to normal biliary cells and HIF-1α is important for 
cholangiocarcinoma cell line proliferation, migration, and 
invasion (Yu et  al., 2020). ATP and adenosine have been 
shown to have anti-proliferative and anti-motility effects 
(Lertsuwan and Ruchirawat, 2017) in experiments conducted 
using cholangiocarcinoma cell (CCA) lines. Purinergic receptor 
expression levels in CCA cell lines were analyzed using qPCR 
and P2 receptors were expressed in CCA cell lines and in 
immortalized cholangiocytes, but in this study, adenosine 
receptors were not identified. Further elucidation of these 
mechanisms is needed, especially in the context of hypoxia, 
to evaluate the mechanistic consequences of elevated purinergic 
receptors in cholangiocarcinoma.

In contrast to in vitro studies, correlative immunohistochemical 
analysis of patients with cholangiocarcinoma in two separate 
cohorts has shown CD73 is elevated in cholangiocarcinoma 
and has prognostic implications. Immunohistochemistry in the 
first cohort showed CD73 staining in the majority of intra- 
and extrahepatic cholangiocarcinoma tissues. Notably, in normal 
hepatobiliary tissue, CD73 was expressed in the apical region 
of cholangiocytes and pancreatic ducts, and in the canalicular 
of hepatocytes (Sciarra et  al., 2019). In the second cohort of 
140 patients, elevated CD73 was highly correlated to lymphatic 
metastasis, tumor size and negatively associated with tumor-
infiltrating CD8+ T cells. These data suggest that inhibition of 
CD73 is a promising modality for immunotherapy in patients 
diagnosed with intra- or extrahepatic cholangiocarcinoma (Xu 
et  al., 2021).

In homeostatic biliary epithelia, the expression of hCNT3 
is well represented and appears to be  the major player in the 
extracellular regulation of adenosine levels. Moreover, as this 
receptor is regulated by A2AR, it contributes to complete 
purinergic control of bile flow which was started by ATP 
secretion into the bile (Godoy et  al., 2014). On the other 
hand, in a subgroup of patients with biliary tract cancer, hENT1 
expression correlated with overall survival, suggesting its 
participation in the intracellular transport of gemcitabine may 
play a role in predicting the subpopulation of patients who 
could benefit from this therapy (Santini et  al., 2011).

INFLAMMATORY PANCREATIC 
DISEASES

Under normal physiologic conditions, pancreatic acinar cells 
express P2X1, P2X4, P2Y2, and P2Y4. The role of these P2R 
is thought to be  related to signaling responses driven by 
secretion of ATP at the luminal side. In addition, intercalated 
pancreatic ducts expressing functional P2Rs, such as P2Y2, 

P2Y4, P2Y6, P2Y11, P2X4, and P2X7, respond and mediate 
ductal secretion of bicarbonate-rich fluid (Hayashi et  al., 
2016; Sciarra et al., 2019). ATP released by acini is hydrolyzed 
to ADP/AMP and adenosine by ectonucleotidase expression 
on ducts and both ADP and adenosine regulate ion 
channels on pancreatic ducts (Burnstock and Novak, 2012; 
Novak et  al., 2020).

In acute pancreatitis, injured acinar cells undergo autophagy 
or uncontrolled cellular death promoting the release of 
trypsinogen, cytokines, and ATP to the extracellular space 
allowing the activation and infiltration of several immune cells 
to the injured site (Sendler et  al., 2018; Mayerle et  al., 2019; 
Saluja et  al., 2019). Heightened trypsinogen and ATP release 
elevates induction of acinar cell p38 MAPK and NF-κB pathways, 
which further contribute to pancreatic inflammation (Dixit 
et  al., 2019). Elevated purinergic or adenosine signaling in 
pancreatic ducts results in dysregulation of bicarbonate secretion 
which alters the pH of pancreatic secretions provoking pancreatitis 
(Figure  3). In addition, purinergic receptors expressed on 
infiltrating neutrophils exacerbate pancreatitis. In a mouse 
model of acute pancreatitis, P2X1 expressed on neutrophils 
contributes to the inflammatory response and severity of 
pancreatitis (Wang et  al., 2020). Expression of purinergic 
receptors and ectonucleotidases play an important role in 
mediating the physiological and pathological function of the 
pancreas, given their broad expression in epithelial, immune, 
and stromal cells (Novak et  al., 2020).

Chronic pancreatitis is an important risk factor for 
development of pancreatic ductal adenocarcinoma and is 
characterized by acinar injury, damage of the gland, sustained 
inflammation, fibrosis, and loss of islet cells. Chronic pancreatitis 
manifests in unrelenting abdominal pain, malnutrition, 
pancreatogenic diabetes (type 3c diabetes), and exocrine and 
endocrine insufficiency (Bhattamisra et  al., 2019; Singh et  al., 
2019; Illés et al., 2020; Wei et al., 2020; Cruz-Monserrate et al., 
2021). Risk factors include heavy alcohol abuse, tobacco smoking, 
and genetic predispositions (Majumder and Chari, 2016; Singh 
et  al., 2019). Events that promote sustained pancreatic injury, 
like chronic pancreatitis, result in excessive accumulation of 
ATP which dysregulates the physiological state of the gland 
and may be  a key driver of neoplasia.

In vitro cultures of ethanol-induced toxicity on pancreatic 
ductal epithelial cells exposed to micromolar concentrations 
of ATP/ADP resulted in a protective effect via the P2Y1 receptor. 
ATP/ADP activation of the P2Y1 receptor increased intracellular 
levels of cAMP which is an important mechanism for maintenance 
of ductal epithelial integrity in the presence of ethanol (Seo 
et  al., 2016). While a protective mechanism through P2R 
purinergic signaling has been studied in pancreatic ducts, the 
role of adenosine signaling in alcohol-associated pancreatitis 
has not been described.

In addition, the role of purinergic signaling in the development 
of pancreatogenic or secondary type 3C diabetes has not been 
established (Hart et  al., 2016). Experiments evaluating the 
function of islets in models of insulin resistance, diabetes, and 
obesity have shown increased production of ATP in diabetic 
and obese mice. This has been shown to reduce anti-inflammatory 
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secretion of IL-10 from islet-associated macrophages indicating 
increased ATP may have a pathogenic role in development of 
type 3C diabetes (Weitz et  al., 2020). Adenosine signaling also 
regulates ß-cell survival and regeneration in inflammatory 
microenvironments as well as regulates insulin secretion and 
lipid homeostasis through P1 receptors (Antonioli et al., 2015).

Global deletion of CD39L (Entpd3−/−) and islet-specific 
deletion of CD39L using Entpd3flox/flox;InsCre mice have been 
studied as this ENTPD is the dominant islet and β cell 
ectonucleotidase. Entpd3−/− mice are resistant to high fat 
diet-induced obesity and have elevated basal metabolic rates, 
when fed a high fat diet associated with improved glucose 
tolerance. This phenotype was associated with higher 
uncoupling protein 1 (UCP-1) in brown adipose tissue. Studies 
on Entpd3flox/flox;InsCre mice show a similar phenotype indicating 
Entpd3 in β cells is not protective against diet-induced obesity 
and insulin resistance (Sandhu et  al., 2021). The potential 
role of purinergic and adenosine signaling in pancreatogenic 
diabetes has a number of therapeutic implications and should 
be  further explored.

DUCTAL ADENOCARCINOMA OF THE 
PANCREAS

Pancreatic ductal adenocarcinoma (PDAC) is one of the world’s 
most lethal malignancies. Risk factors include age, smoking, 
inherited predisposition due to a germline mutation, obesity, 
long-standing diabetes, chronic pancreatitis, and type 3 C 
diabetes (Xiao et  al., 2016; Saluja and Maitra, 2019; Hart and 
Conwell, 2020).

Several purinergic P2Rs are widely expressed in pancreatic 
cancer cell lines (Hansen et  al., 2008). Among these, P2X5, 
was found elevated in human PDAC and associated with 
malignant behavior of cancer cells; however, the role of P2X5 in 
pancreatitis and tumor development is not yet well stablished 
(Zaccagnino et al., 2016) and there remains uncertainty regarding 
the role of P2X7  in pancreatitis and PDAC initiation.

An in vivo study using P2X7 inhibitors revealed a tumor-
promoting function for this receptor and highlighted its 
participation in stellate cell fibrosis and collagen deposition 
(Giannuzzo et  al., 2016). Other P2 receptors including P2Y1, 

FIGURE 3 | Purinergic signaling mechanisms in chronic pancreatitis and development of pancreatic cancer. Purinergic signaling mediates normal pancreatic 
function by regulating ductal P2Rs-dependent bicarbonate fluid release and acinar CFTR-dependent exocrine pancreatic secretion. After acinar cell injury, increased 
levels of ATP are secreted into the extracellular compartment primarily from acinar cells, increasing pancreatic trypsinogen levels and affecting normal pancreatic 
function. In time, sustained ATP-derived inflammation and adenosine generation stabilizes pancreatic chronic injury and/or ongoing pancreatitis. Increased 
expression of ductal CD73 elevates adenosinergic signaling triggering collagen deposition and further fibrotic development. Altered ductal cells undergo aberrant 
purinergic signaling though P2Rs affecting glycolytic metabolism and cumulative pancreatic ADO signaling promotes CD8+ T cell and ϒδ T-cell depletion. These 
factors promote an immunosuppressive environment ultimately priming the organ to malignant transformation, PDAC initiation, and progression.
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P2Y6, and P2Y12 were identified as increased in PDAC cell 
lines and exerted tumor-promoting functions in the presence 
of ATP (Qadir et  al., 2018; Novak et  al., 2020). Studies show 
that P2Y2 is associated with poor prognosis and its activation 
promotes PDAC cancer progression by reprogramming cancer 
cell metabolism and glycolysis (Hu et  al., 2019). P2Y2 effects 
were prevented when genetically or pharmacologically inhibited, 
providing enhanced evidence regarding mechanisms of 
ATP-mediated PDAC progression through P2Y2 receptor on 
malignant epithelium (Choi et  al., 2013; Hu et  al., 2019).

Adenosine signaling is emerging as a critical mediator of 
PDAC. Evaluation of adenosine P1 receptors from gene expression 
analysis of PDAC tissues based on The Cancer Genome Atlas 
(TCGA) show that both ADORA2A and ADORA2B expression 
are increased in PDAC compared to normal tissues. Of interest, 
ADORA2B is a marker of poor prognosis and ADORA2A has 
better overall survival prognostic impact (Hayashi, 2019). Another 
well-studied receptor in this disease is A3R, which promotes 
the tumorigenic phenotype via ERK1/2 signaling pathway 
(Gorzalczany et  al., 2017).

In addition to P1 receptors, CD73 is elevated in pancreatic 
cancer (Chen et  al., 2020; Zhao et  al., 2021). In pancreatic 
cancer, adenosine generation mediated by the concerted activity 
of CD39 and CD73 is correlated with lower infiltration of 
CD8+ T cells and γδ+ T cells, as well as stellate cell proliferation 
and collagen production (Künzli et al., 2008; Chen et al., 2020; 
Shevchenko et  al., 2020). While correlative, these data indicate 
that adenosine signaling promotes pancreas fibrotic development 
by modulating ECM remodeling and immunosuppression 
(Blocking CD73 Can Shrink Pancreatic Tumors, 2021).

High expression of CD73 has been described in tumor cells 
in two independent cohorts of PDAC patients (Chen et  al., 
2020; Zhao et  al., 2021). Elevated CD73 is associated with a 
decrease in CD4+, CD8+, and CD21+ tumor-infiltrating 
lymphocytes and is associated with aggressive clinical behavior 
(Zhao et al., 2021). Histologic evaluation of CD73 in pancreatic 
and PDAC tissues has shown CD73 is expressed in pancreatic 
ducts and in PDAC tissue, but not acinar cell carcinoma (Sciarra 
et al., 2019). In genetically engineered mouse models of PDAC, 
CD73 is highly expressed on neoplastic and invasive lesions 
arising in pancreatic ducts and high CD73 is associated with 
high adenosine levels in pancreata from these mice. Inhibition 
of adenosine generation decreased tumor growth in spontaneous 
and established models and is correlated with increased activated 
CD8+, CD4+ T cells and macrophages, implicating anti-CD73 
immunotherapy in PDAC patients with high CD73 expression 
(Singh et  al., 2021). Further studies are needed to fully 
comprehend the molecular mechanisms underlying CD73 
function and adenosine generation in pancreatitis and PDAC 
microenvironment modulation. CD39 and CD39L transcripts 
are both increased in chronic pancreatitis and pancreatic cancer. 
Pathologic analysis reveals both are localized in vascular and 
stromal elements. In contrast to CD73, high expression of 
CD39 is significantly associated with better long-term survival 
in PDAC (Künzli et  al., 2007).

Nucleoside transporter expression was found altered during 
the progression from normal pancreatic epithelia to a malignant 

state. Evidence suggests that functional hENTs may result in 
increased gemcitabine uptake by pancreatic cells. Hence, reduced 
expression of hENT1 implicates a link between protein expression 
levels and chemoresistance (Nakano et  al., 2007; Carter et  al., 
2021). Moreover, in PDAC patients, its low expression correlates 
with a significant reduction in progression-free survival and 
disease-free survival when compared to patients with medium 
to high levels of hENT1 expression (Farrell et al., 2009). Aberrant 
expression of hENT2 was also observed in pancreatic cancer 
cells and suggested to contribute to chemoresistance; however, 
its participation is not yet fully elucidated (Alvarellos et  al., 
2014). On the contrary, hCNT3 expression in pancreatic tumors 
correlates with overall patient survival, with an increased 
expression of the transporter usually associated with a longer 
overall patient survival. The aberrant expression of hCNT3 
was observed in pancreatic tumors and pancreatic cancer cell 
lines and is of high relevance for pancreatic cancer patients 
given its ability to transport a large variety of nucleoside-
derived drugs and, more importantly, gemcitabine for solid 
tumors (Stecula et  al., 2017).

THERAPEUTIC CONSIDERATIONS IN 
PANCREATOBILIARY CANCERS

Therapeutic intervention has been proposed to correct the 
pathophysiological levels of extracellular nucleotides and 
nucleosides to restore CD39 or P2 receptor functionality in 
chronic inflammatory states. Given space constraints and the 
important recent developments in purinergic immunotherapy 
and check point inhibition in cancer, may we refer the interested 
reader to several reviews that cover the topics of augmenting 
adenosinergic pathways and blocking ATP-mediated pathways 
in the liver, pancreas, and GI tract in several inflammatory 
disease states in order to limit cancer development (Eltzschig 
et  al., 2012; Burnstock et  al., 2014; Longhi et  al., 2017, 2021; 
Vuerich et  al., 2020).

Given the complex expression of purinergic mediators in 
epithelial, stromal, and immune compartments, receptor blockade 
may not only impair the specific signaling pathway but also 
modulate the tumor microenvironment impacting other 
purinergic receptors. Preclinical studies targeting the purinergic 
system suggest that combined inhibition of more than one 
member of the pathway may enhance anti-tumor immune 
responses (Young et  al., 2016; Moesta et  al., 2020).

Firstly, metastatic dissemination and colonization are complex 
processes linked to spread of tumor cells. In vivo lineage tracing 
experiments indicate circulating pancreatic neoplastic epithelial 
cells disseminate prior to establishment of a primary tumor. 
In these in vivo experiments, inflammation appears as a potent 
driver of epithelial dissemination or delamination (Rhim et al., 
2012, 2014; Hendley et al., 2016). Defining the role of purinergic 
signaling coordinated between neoplastic epithelial cells, innate 
or adaptive immune cells and the foreign parenchymal 
microenvironment will be  crucial to determining whether 
immune mechanisms prevail and eliminate tumor cells before 
these cells spread.
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Secondly, ectonucleotidases, P2 and P1 receptors are predicted 
to play central roles in shaping the foreign microenvironment 
by boosting ATP/AMP/adenosine conversion, favoring an 
immunosuppressive niche. P2X1 negative neutrophils are key 
players in the invasion of foreign liver tissues. After being 
mobilized and recruited to metastatic sites, P2X1 negative 
neutrophils exert immunosuppressive activities via Nrf2-supported 
mitochondrial metabolism and predispose the foreign tissue as 
a suitable site to successful metastatic colonization (Wang et  al., 
2021b). In addition, purinergic signaling impacts T-cell memory 
and exhaustion. These prior findings indicate that targeting CD39 
has merit for augmenting checkpoint therapies for treating cancer 
and chronic infections (Sun et  al., 2010; Deaglio and Robson, 
2011). These observations suggest that specific mechanisms 
operate to modulate purinergic responses in memory T cells. 
The response of memory T cells to adenosine and specific 
receptor agonists might be modulated at the level of intracellular 
cyclic-AMP and the signaling pathways it controls (Peter et  al., 
2007). Furthermore, given the recent discovery of CD39+CD8+ 
T cells in regulating metastatic dormancy, understanding the 
mechanisms of purinergic signaling in metastasis is critical 
especially given the predicted duration of time from primary 
tumor to metastatic disease in pancreatic cancer (Yachida et  al., 
2010). These experiments also infer major implications for CD39 
inhibitors, which may block metastatic spread of cancer cells 
in experimental models (Sun et  al., 2010).

In the context of checkpoint inhibitors, targeting CD39 is 
likely to be  more effective than single agents targeting CD73 
(Beavis et  al., 2012), due to reduced generation of 
immunosuppressive adenosine, and also promoting the 
accumulation of immunostimulatory ATP (Martins et  al., 2009; 
Vieira et al., 2014). ATP in the tumor microenvironment amplifies 
TCR signaling in lymphocytes triggering anti-tumor CD8+ 
infiltration and activation (Boison and Yegutkin, 2019). In addition, 
sustained ATP promotes long-term memory CD8+ T cells critical 
for adaptive immunity. CD39 blockade has been shown to reduce 
tumor growth not only because of the diminished generation 
of downstream adenosine (see below) but also by enhanced 
P2X7-mediated NRLP3 inflammasome due to extracellular 
accumulation of ATP (Li et  al., 2019; Baeza-Raja et  al., 2020). 
In models of melanoma metastasis, tumor growth in the liver 
is substantively inhibited in mice with CD39 null vasculature 
or CD39 null bone marrow-derived cells. CD4+FoxP3+ Tregs 
expressing CD39 repressed anti-tumor immunity by NK cells 
and pharmacologic inhibition of CD39 significantly limited 
melanoma tumor growth. Thus, CD39 expression on Tregs 
promotes metastatic growth and targeting this may provide a 
strategy for secondary hepatic malignancies (Sun et  al., 2010).

In contrast, adenosine is generated by CD39-CD73 expression 
on Treg and memory T cells and inhibits effector T-cell 
immunity, which opposes effects of ATP. Adenosine receptor 
stimulation (A2AR or A2BR) on macrophages restrains production 
of nitric oxide and pro-inflammatory cytokines. Thus, adenosine 
receptors resolve inflammation and promote tissue repair, yet 
in chronic inflammation and neoplasia, cumulative adenosine 
signaling promotes transformation and immunosuppression 
(Boison and Yegutkin, 2019).

When targeting adenosine receptors, it is important to 
consider that A1R and A2R have the capacity to form heteromers, 
which implies a cross-communication between Gi and Gs 
proteins (Navarro et  al., 2018). These structures were shown 
to act as sensors of adenosine concentration and modulate 
adenosine signaling in such a way that there is either A1R or 
A2R-mediated effects. Similar properties were described for 
heteromers formed between A2AR and A2BR (Franco et  al., 
2021). Thus, these recent findings highlight the need to elucidate 
whether heteromer formation is found in pancreatobiliary 
cancers, as studying its peculiar signaling dynamic will 
be  essential to understand adenosine-mediated effects and 
potentially propose them as targetable structures.

A challenging aspect when targeting purinergic or 
adenosinergic receptors is most physiological and preclinical 
studies to unravel receptor function and therapeutic effects 
have been carried out in rodents, which, do not necessarily 
represent the affinity and functioning of human receptors. 
Hence, several compounds in preclinical platforms were selected 
based on their affinity to human receptors, which do not 
necessarily represent similar rodent receptor interaction. Indeed, 
this aspect was analyzed for adenosine receptors and determined 
that for some ligands the potency and selectivity are species-
dependent and proposed that a comprehensive characterization 
of compounds and species-specific affinities are key to understand 
whether they may be  suitable ligands to pursue drug therapy 
in the clinic (Alnouri et  al., 2015).

Beneficial effects were observed when targeting CD73 and 
A2AR alone or in combination with PD-1/PD-L1 inhibitors 
(Allard et  al., 2013; Mittal et  al., 2014; Beavis et  al., 2015; 
Hay et  al., 2016). Moreover, preliminary results of the first 
phase 1/2a study of a CD73 inhibitor in combination with 
the PD-1 inhibitor nivolumab induced partial responses or 
stable disease in 28% of patients with various malignancies 
(NCT02754141). Another phase 1 clinical trial recently evaluated 
simultaneously inhibiting CD73 and PD-L1  in subjects with 
select advanced solid tumors (NCT02503774), however, results 
remain to be  published.

Currently, several phase I/II studies are evaluating CD39 
(NCT04336098) and A2AR blockade in combination with PD-1 
(NCT03884556, NCT03207867), PD-L1 (NCT02655822) 
inhibitors, or with standard chemo- or immunotherapy 
(NCT04306900). Besides, in  locally advanced or recurrent/
metastatic PDAC, several phase I  clinical trials are being 
conducted by targeting CD73 alone (NCT04148937) or in 
combination with PD-1 (NCT04104672) and A2AAR inhibitors 
(NCT03549000, NCT03454451; Table  1).

Lastly, the role of microbiome in regulating systemic ATP 
or adenosine signaling in metastasis warrants further 
analysis. Inosine derived from the microbiome was recently 
described as a key mediator of immunosuppression and 
response to checkpoint inhibitor immunotherapy (Mager et al., 
2020) and analysis of human PDAC microbiome has revealed 
certain bacterial species are correlated with overall survival 
(Riquelme et  al., 2019). However, the role of gut bacteria in 
altering local and systemic purinergic and adenosine signaling 
in pancreatic diseases has not been well defined.
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CONCLUSION

Purinergic signaling pathways have important roles in initiation, 
progression and resolution of inflammation, yet sustained 
activation appears to disrupt normal tissue homeostasis and 
promote chronic inflammatory conditions and scar formation. 
These factors elevate the risk of end-organ failure and 
development of pancreatobiliary cancer. Beneficial ATP 
inflammatory P2R-mediated effects might be  overshadowed 
in chronically inflamed tissues or neoplastic environments, 
where enzymatic conversion of nucleotides through elevated 
CD39 and CD73 may lead to excessive adenosine accumulation. 
Instead of promoting resolution of inflammation and tissue 
repair, this rather promotes A2BR-mediated or other aberrant 
pathways important for cellular transformation and immune 
suppression. In this context, it should be  kept in mind that 
outcomes are not only determined by extracellular bioavailability 
of ATP and its nucleoside derivatives, but also by the expression 
of other purinergic mediators and P1 or P2 
receptor functionality.

Therapeutic strategies targeting CD39 or CD73 as well as 
A2BR antagonism have the potential to reverse adenosine-
mediated immunosuppression, albeit only CD39 blockade will 
boost ATP-mediated anti-tumor immunity. However, the 
widespread expression of CD39, CD73, and purinergic receptors 
on immune cells, myofibroblasts, and epithelial cells complicates 
understanding of the mechanistic basis for purinergic and 
adenosine signaling during chronic inflammation, fibrosis, and 
tumor formation.

We propose that modulation of purinergic signaling represents 
novel avenues for reversing inflammation, and by virtue of 

limiting scar formation and cell transformation, decreasing the 
risk of cancer. Once cancer has developed, then immunotherapy 
strategies for treatment of pancreatobiliary malignancies show 
great promise. Dissecting out the implications of these 
propositions and determining the clinical timing of these 
divergent approaches will require further study, attention to 
personalized medicine, and innovative clinical trials.
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TABLE 1 | Clinical trials evaluating the potential use of purinergic mediators as targets for hepatopancreatobiliary tumors.

Target Drug +/− combination therapy or Outcome Tumor Identifier Study phase Sponsor company

A2AAR NIR178 (A2AAR antagonist) in combination with 
PDR001 (anti-PD-1 Ab)

Patients with solid tumors 
(including pancreatic cancer) 
and Non-Hodgkin Lymphoma

NCT03207867 Phase II Novartis Pharmaceuticals

A2AAR Ciforadenant (A2AAR inhibitor) in combination 
with Atezolizumab (PD-L1 inhibitor)

Patients with selected incurable 
tumors

NCT02655822 Phase I/Ib Corvus Pharmaceuticals

CD39 TTX-030 (anti-CD39 Ab) in combination with 
standard chemo- or immunotherapy

Patients with advanced tumors NCT04306900 Phase I/Ib Trishula Therapeutics

CD39 SRF617(anti-CD39 Ab) Patients with advanced solid 
tumors

NCT04336098 Phase I Surface Oncology

CD39 TTX-030 (anti-CD39 Ab) +/− anti-PD-1 
immunotherapy

Patients with Lymphoma or 
solid tumors

NCT03884556 Phase I Trishula Therapeutics

CD39 Monotherapy Patients with advanced solid 
tumors

NCT05234853 Phase I Purinomia Biotech, Inc

CD73 LY3475070 (CD73 inhibitor) +/− Pembrolizumab Patients with advanced solid 
tumors including PDAC

NCT04148937 Phase I Eli Lilly and Company

CD73 +/− A2AAR NZV930 (anti-CD73 Ab) +/− PDR001 (anti-PD-1 
Ab) +/− NIR178 (A2A antagonist)

Patients with advanced solid 
tumors including PDAC

NCT03549000 Phase I/Ib Novartis Pharmaceuticals

CD73 +/− A2AAR CPI-006 (anti-CD73 Ab) +/− ciforadenant (oral 
A2A inhibitor) +/− pembrolizumab (anti-PD1 Ab)

Patients with selected 
advanced solid tumors 
including PDAC

NCT03454451 Phase I/Ib Corvus Pharmaceuticals

CD73 +/− PD-1 AB680 in combination with Zimberelimab 
(AB122), nab-paclitaxel and gemcitabine

Patients with advanced PDAC NCT04104672 Phase I Arcus Biosciences
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