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Beat-by-beat arrhythmia detection in ambulatory electrocardiogram (ECG) monitoring is
critical for the evaluation and prognosis of cardiac arrhythmias, however, it is a highly
professional demanding and time-consuming task. Current methods for automatic beat-
by-beat arrhythmia detection suffer from poor generalization ability due to the lack of large-
sample and finely-annotated (labels are given to each beat) ECG data for model training. In
this work, we propose a weakly supervised deep learning framework for arrhythmia
detection (WSDL-AD), which permits training a fine-grained (beat-by-beat) arrhythmia
detector with the use of large amounts of coarsely annotated ECG data (labels are given to
each recording) to improve the generalization ability. In this framework, heartbeat
classification and recording classification are integrated into a deep neural network for
end-to-end training with only recording labels. Several techniques, including knowledge-
based features, masked aggregation, and supervised pre-training, are proposed to
improve the accuracy and stability of the heartbeat classification under weak
supervision. The developed WSDL-AD model is trained for the detection of ventricular
ectopic beats (VEB) and supraventricular ectopic beats (SVEB) on five large-sample and
coarsely-annotated datasets and the model performance is evaluated on three
independent benchmarks according to the recommendations from the Association for
the Advancement of Medical Instrumentation (AAMI). The experimental results show that
our method improves the F1 score of supraventricular ectopic beats detection by
8%–290% and the F1 of ventricular ectopic beats detection by 4%–11% on the
benchmarks compared with the state-of-the-art methods of supervised learning. It
demonstrates that the WSDL-AD framework can leverage the abundant coarsely-
labeled data to achieve a better generalization ability than previous methods while
retaining fine detection granularity. Therefore, this framework has a great potential to
be used in clinical and telehealth applications. The source code is available at https://
github.com/sdnjly/WSDL-AD.
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1 INTRODUCTION

Cardiac arrhythmia has become one of the leading causes of
morbidity and mortality worldwide (Roger et al., 2012).
Ambulatory electrocardiogram (ECG) monitoring with
prolonged duration (several days or weeks) provides critical
information for early detection and treatment of arrhythmias,
especially for transient and asymptomatic arrhythmias (Sana
et al., 2020). The ambulatory ECG devices have been
sufficiently miniaturized, wearable and connected to high-
speed mobile networks with the promise to give patients high-
quality yet affordable health monitoring services at home. To
enable the adoption of remote ECG monitoring services in the
general population, reliable automatic ECG analysis and
diagnosis technology is necessary as analyzing the vast amount
of monitoring data is far beyond the capability of human
physicians. Although the technologies for automatic ECG
analysis have been developed for decades, current technologies
cannot replace human physicians for diagnosis because they have
limited generalization ability to cope with the diverse artifacts and
inter-patient variations in the ECG signals (Alday et al., 2020;
Siontis et al., 2021). Therefore, novel technologies for
generalizable detection of arrhythmias are in urgent demand.

Beat-by-beat arrhythmia detection, determining the rhythm
type of each heartbeat in an ECG recording, is essential for the
analysis of ambulatory ECG. According to the ANSI/AAMI
EC57:2012 standard (AAMI, 2012), a beat-by-beat arrhythmia
detection software should discriminate five types of heartbeats:
ventricular ectopic beat (VEB or V), supraventricular ectopic beat
(SVEB or S), ventricular fusion beat (F), ambiguous beat (Q), and
beat of all other types (N). In particular, the detection
performances of SVEB and VEB are of major interest to
health care practitioners and constitute the evaluation metrics

for the detectors as recommended by the ANSI/AAMI standard.
An accurate beat-by-beat arrhythmia detector has several
important implications for clinical practices. The detected
beat-wise rhythm types manifest the occurrence time of each
arrhythmia episode which is necessary evidence to correlate the
detected arrhythmias with the symptoms recorded by the
patients. Besides, the detected types of each heartbeat in the
recording can be used to measure the burdens (i.e., the
proportions in all heartbeats) of VEB and SVEB which are
important indicators in evaluating cardiac function (Baman
et al., 2010), assessing the effectiveness of treatments (Deyell
et al., 2012), and predicting the risk of malignant diseases, such as
stroke, heart failure and sudden death (Binici, 2010; Marcus,
2020). Furthermore, the fine-grained beat-wise rhythm types can
be further used to identify some complex patterns of arrhythmias,
such as ventricular/supraventricular tachycardia, bigeminy, and
trigeminy.

The state-of-the-art methods for beat-by-beat arrhythmia
detection are generally based on machine learning (ML), a
methodology to guide the models to learn detection rules from
a training dataset. Typically, the ECG signal is segmented into
individual heartbeats, each of which is then fed into a classifier to
determine its rhythm type, as shown in Figure 1A. The classifier
is usually trained in a supervised learning methodology, where
each training beat is annotated with a corresponding rhythm
type. According to the split of training and test sets, the classifiers
can be further categorized into two types: intra-patient classifier,
of which the training and test data are from the same group of
patients (Kiranyaz et al., 2016; Li et al., 2018; Degirmenci et al.,
2021), and inter-patient classifier, of which the training and test
data are from non-overlapping patient populations (Raj and Ray,
2018; Guo et al., 2019; Niu et al., 2020). The intra-patient
classifiers are suitable to develop personalized arrhythmia

FIGURE 1 | Comparison between different methodologies of machine learning for arrhythmia detection. (A) The supervised learning (SL) method for
heartbeat/segment classification which uses fine-grained annotations for model training and achieves fine-grained predictions. (B) The SL method for ECG
recording classification which uses coarse-grained labels as supervision and achieves coarse-grained predictions. (C) The weakly supervised learning (WSL)
method for beat-by-beat classification which uses coarse recording labels for model training but achieves fine-grained predictions. N = normal or bundle
branch block beat. SVEB = supraventricular ectopic beat. VEB = ventricular ectopic beat.
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detectors, while the inter-patient classifiers aim to provide
diagnostic models for general populations. Intra-patient
classifiers usually perform much better than inter-patient
classifiers because they have been fine-tuned for the target
population. This in turn suggests that it is more challenging to
develop models with good generalization abilities to deal with
data from unseen patients. In real-world medical settings, the
ECGs are obtained from large, diverse populations, which makes
the classifier’s generalization ability of critical importance.

A key reason for the poor generalization ability of current
methods is that the training data come from a small population.
For example, the MIT-BIH Arrhythmia Database, a dataset used
by dozens of studies for classifier training, contains only 48 ECG
recordings collected from 47 subjects (Moody and Mark, 2001).
Since the training data only reflect the characteristics of a few
people, it is naturally difficult for the model learner to learn the
discrimination features applicable to data from general
population. For example, it has been demonstrated that
patients with COVID-19 exhibit obvious ECG changes, based
on which an automatic diagnostic model for COVID-19 has been
developed and achieved a quite high accuracy and F1 score (both
≥93.0%) (Ozdemir et al., 2021). These COVID-19-related ECG
changes represent a new class of conditions that may not be
considered by previous arrhythmia detectors and may affect the
generalization ability of those detectors. Besides, the models tend
to over-fit the small amount of training data and thus impair their
generalization ability. The small sample sizes of the training
datasets are partly because of the high cost of the beat-by-beat
annotation work. In order to ensure the correctness of the labels,
independent labeling by multiple experts is often required and the
disputed samples should resort to an expert committee for
adjudication. Another challenge of machine learning for
arrhythmia detection is class imbalance, where samples of
normal sinus rhythm tend to predominate in the datasets.
Some strategies have been proposed to address this problem.
For example, Lu et al. utilized focal loss to address the class
imbalance in ECG classification (Lu et al., 2021).

In view of the limitation of annotated training data, some
researchers have explored new methods to improve the
generalization ability of ECG classifiers, such as unsupervised
learning and semi-supervised learning. The unsupervised
learning methods have been developed to mine unlabeled ECG
data for representative learning (Rajan and Thiagarajan, 2018),
domain adaptation (Li et al., 2021; Wang et al., 2021), and data
augmentation (Golany and Radinsky, 2019; Wulan et al., 2020).
Some semi-supervised learning methods that use both labeled
and unlabeled data for model training have also been developed
to fine-tune the classifier for the target patient without the need
for patient-specific labeled data (Zhai et al., 2020). Although these
methods contribute to the improvement of generalization ability,
the limited labeled data still plays a very central role in the
training of these models and induce a high risk of overfitting.

This study explores the possibility of another learning
approach, i.e., weakly supervised learning (WSL), to improve
the generalization ability of beat-by-beat arrhythmia detectors.
Unlike previous methods that utilize unlabeled samples or
synthesize new samples, the WSL approach tries to train a

model with incomplete, inexact, or inaccurate annotations that
are usually much easier to obtain (Zhou, 2018). In the domain of
ECG classification, there are a large amount of ECG data
annotated with coarse-grained labels, i.e., a recording (typically
several to tens of seconds) is labeled as a whole (Liu et al., 2018;
Alday et al., 2020). Since the rhythm types of individual
heartbeats in these datasets are not annotated, these datasets
are mainly used to train recording classifiers that determine if
certain anomalies are present in an ECG recording, as shown in
Figure 1B, in previous studies. Nevertheless, the recording labels
indicate the rhythm types of an unknown subset of heartbeats in
the recording, which can provide a form of weak supervision for
the model training. In addition, as these datasets reflect diverse
signal artifacts and inter-patient variations, they may help
prevent overfitting and improve the generalization ability of
the heartbeat classifiers.

Several issues need to be addressed for applying WSL to beat-
by-beat arrhythmia detection. Firstly, what is the mapping
relationship between the target labels of individual heartbeats
and the labels of their recording? For this study, the recording
labels in datasets such as the PhysioNet/CinC Challenge 2020
datasets clearly reflect the presence of SVEB or VEB in the
recordings, which is critical to a successful application of
WSL. Secondly, how to construct a beat-by-beat classifier that
can be trained under the supervision of recording labels? As the
true heartbeat labels are not available, a mechanism is needed to
guide the optimization of the heartbeat classifier based on the true
recording labels and the mapping relationships between heartbeat
labels and recording labels. Finally, how to address the ill-posed
problem that the constraints of recording labels can be satisfied by
different hypotheses of the heartbeat rhythms? The ill-posed
problem usually arises when two types of samples always
occur concomitantly (Choe et al., 2020). For example, SVEBs
and sinus beats usually occur alternately and have similar
waveforms, which may confuse the classifier in discriminating
these two kinds of beats since swapping their categories can also
map to the same recording labels. Therefore, the ill-posed
problem must be addressed to ensure the stability of the
heartbeat classifier.

In this study, we propose a deep-learning-based WSL
framework for beat-by-beat arrhythmia detection (WSDL-AD),
as shown in Figure 1C, which can be trained with just coarse
record-level labels in an end-to-end manner. In this framework,
the model first makes local predictions for each heartbeat, and
then maps the heartbeat predictions to the prediction of the
recording labels by an aggregation mechanism. The model can be
optimized by gradient descent, where the gradients of the
recording predictions are back-propagated through the
aggregation layer to calculate the gradients of the heartbeat
predictions. Thus, the heartbeat classifier can be optimized
according to the coarse recording labels. To address the ill-
posed problem, we design a two-stage training strategy: a
supervised pre-training stage with small amounts of heartbeat
labels, and a weakly-supervised training stage with large amounts
of recording labels. In addition, we introduce some techniques
into the WSDL-AD framework to enhance the model
performance. 1) To assist the model in utilizing contextual
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information, two knowledge-based features, namely relative RR
interval and RR entropy, are proposed. 2) Considering the
heartbeats vary in length and are unevenly distributed over
time, we propose a masked aggregation mechanism that can
select a representative prediction for each heartbeat for
aggregation without the need to split the ECG signal into
heartbeat segments.

The remainder of this paper is organized as follows. In section
2, the proposedWSDL-AD framework and the datasets for model
training and evaluation are described in detail. The experimental
setup and results are present in section 3. Section 4 compares our
results with that of other studies and discusses the implications
and limitations of this work. Finally, we conclude this work in
section 5.

2 MATERIALS AND METHODS

2.1 Datasets
We use multiple coarsely annotated and finely-annotated
datasets in this study. The coarsely-annotated datasets are
from the PhysioNet/CinC challenge 2020/2021 (Alday et al.,

2020; Reyna et al., 2021), including two China physiological
signal challenge datasets (CPSC and CPSC-Extra) (Liu et al.,
2018), the Physikalisch Technische Bundesanstalt extension
(PTB-XL) dataset (Wagner et al., 2020), the Georgia 12-lead
ECG challenge dataset (G12EC), and the Chapman University,
Shaoxing People’s Hospital and Ningbo First Hospital
database (Chapman-Shaoxing-Ningbo) (Zheng et al., 2020).
There are a total of 87,653 12-lead ECG records in these
datasets. Each record was annotated as a whole using the
SNOMED CT codes (Donnelly, 2006). The ANSI/AAMI
standard recommends five classes for the arrhythmia
detector, namely VEB, SVEB, F, Q, and N (AAMI, 2012). In
addition, as recommended by the standard, a detector is
neither penalized nor rewarded for its treatment of F and
Q. Therefore, in this work, we only deal with the classification
of VEB, SVEB, and N. The data of F and Q are excluded from
the evaluation. The mapping between the original labels and
the ANSI/AAMI classes is available in Table 1. Statistics of the
datasets are shown in Table 2.

The finely annotated datasets used in this study include the
MIT-BIH arrhythmia database (MITBIH-AR) (Moody and
Mark, 2001), the MIT-BIH supraventricular arrhythmia

TABLE 1 | The mapping between the dataset labels and the classes suggested by the ANSI/AAMI standard. The dataset labels are in the parentheses following their
corresponding class names.

ANSI/AAMI SNOMED CT codes PhysioBank labels

N All labels except that mapped to SVEB, VEB Normal beat (N)
Left bundle branch block beat (L)
Right bundle branch block beat (R)
Atrial escape beat (e)
Nodal (junctional) escape beat (j)

SVEB Premature atrial contraction (284470004) Atrial premature beat (A)
Supraventricular premature beats (63593006) Aberrated atrial premature beat (a)

Nodal (junctional) premature beat (J)
Supraventricular premature or ectopic beat (S)

VEB Premature ventricular contractions (427172004) Premature ventricular contraction (V)
Ventricular premature beats (17338001) Ventricular escape beat (E)
Ventricular ectopic beats (164884008)

TABLE 2 | The compositions of the datasets.

Datasets Recording numbers Recording lengths Sampling rate
(Hz)

Annotations Annotation unit

N VEB SVEB

CPSC 6,877 6–144 s 500 5,564 700 616 record
CPSC-Extra 3,453 8–98 s 500 3,150 194 124 record
PTB-XL 21,837 10 s 500 20,194 1,154 555 record
G12EC 10,334 5–10 s 500 9,336 395 640 record
Chapman-Shaoxing-Ningbo 45,152 10 s 500 42,536 1,385 1,321 record
MITBIH-AR-DS1 22 30 min 360 45,869 3,789 945 beat
MITBIH-AR-DS2 22 30 min 360 44,264 3,221 1837 beat
MITBIH-SUP 78 30 min 128 162,368 9,950 12,207 beat
INCART 75 30 min 257 153,673 20,012 1960 beat

CPSC, the China physiological signal challenge; PTB-XL, the Physikalisch Technische Bundesanstalt extension dataset; G12EC, the Georgia 12-lead ECG challenge dataset;
MITBIH-AR-DS1, the DS1 of MIT-BIH arrhythmia database; MITBIH-AR-DS2, the DS2 of MIT-BIH arrhythmia database; MITBIH-SUP, the MIT-BIH supraventricular arrhythmia
database; INCART, the St. Petersburg INCART arrhythmia database; N, normal or bundle branch block beat; SVEB, supraventricular ectopic beat; VEB, ventricular ectopic beat.
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database (MITBIH-SUP) (Greenwald et al., 1990), and the St.
Petersburg INCART arrhythmia database (INCART)
(Goldberger et al., 2000). The MITBIH-AR dataset is further
divided into two subsets as in (De Chazal et al., 2004), namely
MITBIH-AR-DS11 (or DS1) and MITBIH-AR-DS22 (or DS2),
which contain ECG records from non-overlapping patient
groups and have similar category distributions. This
division is widely used in previous studies (Mar et al., 2011;
Raj and Ray, 2018; Niu et al., 2020), where the models are
trained on DS1, and tested on DS2. For comparison purposes,
we also adopt this division in this study. All these datasets
contain two-lead ECG signals with physician-reviewed beat-
by-beat annotations in the PhysioBank labels, which can be
mapped to the AAMI classes as in Table 1. The compositions
of the datasets are shown in Table 2.

In this study, the signal in the lead II of each recording is
used for beat-by-beat arrhythmia detection. For recordings in
MITBIH-AR, the modified lead II (MLII) is used instead. If the
lead configurations are unavailable, such as in MITBIH-SUP,
the signal in the first lead is used.

2.2 Overview of the WSDL-AD Framework
We propose the WSDL-AD framework for beat-by-beat
arrhythmia detection, as shown in Figure 2. The framework is
input with an ECG signal of variable length. The input signal is
first preprocessed to unify the signal configurations (such as
sampling rate and amplitude) and eliminate noise. Then, feature
maps are extracted from the signal by a residual convolutional
neural network (ResNet) and domain-knowledge-based methods
respectively. Based on the features, the framework makes local
predictions in the granularity of a sampling point. Then the
predicted rhythm for each heartbeat is obtained by selecting the
prediction at its R peak. Finally, the beat-level predictions are
aggregated into the global prediction, whereby the loss value for
the prediction can be calculated according to the global
annotations to enable the model to be trained end-to-end.

2.3 Preprocessing
The preprocessing is mainly aimed to eliminate the noise and unify
the sampling rate and amplitude of the ECG signals. Each ECG
recording is first processed by a moving average filter (the window
size is one second) to estimate the baseline wander which mainly
originated from the offset and low-frequency noises in the signal.
The estimated baseline wander is then removed by subtracting it
from the signal. The signal is also processed by a band-pass filter
(0.1–30 Hz) to suppress noises in other bands. In addition, we
resample the signal to 125 Hz and normalize the signal to havemean
zero and variance one. Among these datasets, the MITBIH-SUP has
a frequency (128 Hz) very similar to our target frequency, so signals

FIGURE 2 | The schematic diagram of the weakly supervised deep learning framework for arrhythmia detection (WSDL-AD). CNN = convolutional neural network.
N = normal or bundle branch block beat. S = supraventricular ectopic beat. V = ventricular ectopic beat.

1MITBIH-AR-DS1 comprises recordings 101, 106, 108, 109, 112, 114, 115, 116,
118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, and 230.
2MITBIH-AR-DS2 comprises recordings 100, 103, 105, 111, 113, 117, 121, 123,
200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233, and 234.
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of this dataset are not resampled. But the frequencies of other
datasets are all much higher than the target frequency, so signals in
these datasets are downsampled to 125 Hz.

For the coarsely-annotated training data, a tricky situation is
that if a recording contains both sinus and arrhythmia episodes,
its annotation usually does not include the label for sinus rhythm.
To address this problem, we complement the labels based on the
rules of co-occurrence of different rhythms. Specifically, if the
label set of a recording contains SVEB or VEB, and contains
neither supraventricular tachyarrhythmia nor idioventricular
rhythm, it is very likely that beats of N are also present in the
recording. So, in this case, we add the label N to the label set of the
recording for complementing.

2.4 Knowledge-Based Features
Contextual information, e.g., the variation of RR intervals, is
essential for the detection of many arrhythmias. In order to
facilitate the utilization of contextual information in
arrhythmia detection, we design two context-relative features
based on domain knowledge. The extraction of the two
features requires the positions of QRS complexes, which are
usually not directly available, and need to be detected by some
algorithms. In this study, the QRS complexes are detected by a
U-net-based model that has been proposed in a previous study
(He et al., 2020).

2.4.1 Relative RR Interval
The change of current RR interval relative to the contextual
normal sinus RR intervals supplies important information for the
detection of many arrhythmias including SVEB and VEB. So, we
design a feature, named relative RR interval, to represent this
information: IR � (IN − IA)/IN · s , where IR is the relative RR
interval, IA is the absolute RR interval, IN is the representative
normal RR interval in the context, and s is a scaling parameter.
Here, we use the mean RR interval of the context to approximate
IN for simplicity of calculation: IN ≈ mean(I), where I is the set
of RR intervals in the context. Note that IR is negatively related
with IA. IR is positive when IA < IN, while IR is negative when
IA > IN. Due to the wide adoption of rectified linear unit (ReLU),
many DNN models are more sensitive to positive values.
Therefore, our design can induce the DNN to be more
sensitive to the shortening of RR interval which is an
important indicator of ectopic heartbeats. Besides, IR is
normalized by IN in the formula to better reflect the degree of
relative changes.

In selecting the length of the context for estimating IN, a trade-
off should be considered between the accuracy and robustness:
the longer the context is, the more robust the mean RR interval is
to local disturbances, but the less accurately it reflects a temporal
fluctuation of the sinus RR interval. In this work, we set the
context length to 60 RR intervals with the current RR interval at
the middle of the context. And when the number of RR intervals
in a recording is less than 60, all the RR intervals are used as the
context. The scaling parameter, s, is used to increase the feature’s
contribution in the prediction since the raw value is usually small
and easy to be ignored by the classifier. In our implementation, s
is set to 10.

The relative RR intervals of a recording are organized in a
feature map, which has the same length as the ECG. In this way,
the feature map can be easily combined with the DNN-extracted
feature maps, and used in the local predictions. The feature map is
organized as follows: the points in the region of a heartbeat are
assigned the feature value of the corresponding heartbeat. Here,
we define the region of a heartbeat as the portion between the
midpoint of its preceding RR interval and the midpoint of its
succeeding RR interval.

2.4.2 RR Entropy
The regularity and stationarity of the RR intervals in the context
also provide important diagnostic information. We measure this
information by another feature, named RR entropy. The RR
entropy is calculated by the sample entropy (SampEn) method
(Richman and Moorman, 2000). SampEn is the negative natural
logarithm of the empirical probability that two templates
(i.e., segments) of length m+1 from the input sequence match
each other given that their sub-templates containing the
corresponding first m sampling points match. In our
implementation, m is set to 1, and the threshold to determine
whether two templates match is set to 0.05. Before the entropy
calculation, the RR intervals are divided by their median value for
normalization. Since the entropy can fluctuate with time, we
calculate its values dynamically in a sliding window. Similar to the
selection of the context length for estimating normal RR interval,
the selection of window size for entropy calculation should also
take into account the balance between accuracy and robustness.
The window size is set also to 60 RR intervals in our
implementation. And the method for window selection is the
same as that for specifying the context in normal RR interval
estimation. The calculated RR entropies are also organized in a
feature map, where the result of each moving window calculation
is mapped to the region of the central heartbeat (typically the 30th
heartbeat) of the window. Any sampling point that is not mapped
in the above process is assigned the value of its neatest mapped
neighbor.

To assess the discriminative abilities of the features, we
randomly sample 2,700 heartbeats from the MITBIH-AR-DS1
(900 for each category), and apply one-way ANOVA test on their
feature values grouped by categories. The results show that the
values of both features are significantly different (p < 0.0001)
among these categories. We also perform multiple pairwise
comparisons on the feature values, and the results are given in
Figure 3. We found that the feature values are significantly
different (p < 0.0001) between each pair of categories.
Therefore, these knowledge-based features have certain
discernibility for categories and will contribute to the
classification task.

2.5 DNN-Based Feature Extraction and
Local Prediction
The ResNet is used to automatically extract features from the
ECG. It consists of a stack of residual convolutional blocks (Res
blocks) as shown in Figure 4. Each Res block contains two
convolutional (Conv) layers and some assistant layers,
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including batch normalization (BN) (Ioffe and Szegedy, 2015),
rectified linear unit (ReLU) (Nair and Hinton, 2010), and
Dropout (Srivastava et al., 2014). The output of a block’s last
convolutional layer is merged with the block’s input by element-
wise addition, as suggested by the original ResNet (He et al.,
2016). A max-pooling layer with a pool size of two then
compresses the merged output to half of its original length.
The blocks are connected in series, with the output of the
previous one serving as the input of the latter. The outputs of

the last block are a series of feature maps characterizing each
temporal slice of the input recording. To align with the
knowledge-based features, these DNN-extracted feature maps
are up-sampled along the time dimension to the same length
of the input. Then, these feature maps are concatenated with the
feature maps of knowledge-based features along the feature
dimension, and jointly used for the local prediction. This
architecture contains several hyperparameters which may
affect the model performance. We optimize the
hyperparameters by grid search: different choices of residual
blocks number (3, 4, 5, and 6), convolutional kernel number
(16, 32, and 64), convolutional kernel length (8, 16, and 32), and
dropout rate (0, 0.25, and 0.5) are tested to find the combination
that achieves the best performance on the validation set
(MITBIH-AR-DS1). After the hyperparameters optimization,
the ResNet consists of 4 Res blocks. In each Res block, each
convolutional layer contains 32 kernels with a kernel length of 8.
The parameters of each convolutional layer are initialized by the
method proposed in (He et al., 2015), which takes the ReLU into
account and allows for very deep models. The dropout rate of
each dropout layer is 0.25.

Based on the feature map merged from DNN features and
knowledge-based features, the local predictions are made by a
time distributed dense (TDD) layer, which leverages a dense layer
(i.e., fully-connected layer) to process each temporal element
separately. The cell number of the TDD layer is equal to the
number of considered rhythm types. The output of the TDD layer
at each temporal element is then processed by the softmax
function to calculate probability of each considered rhythm
occurring at the slice.

2.6 Aggregation for Global Prediction
The aggregation mechanism, mapping the local predictions to the
global prediction, is a critical part in the WSDL-AD framework.
Here, we introduce the method of applying the traditional
aggregation mechanisms to this framework, and also propose
the masked aggregation mechanism.

FIGURE 3 | The results of one-way ANOVA with multiple pairwise comparison for the knowledge-based features. (A) The results for relative RR interval. (B) The
results for RR entropy. The symbol “****” indicates that the corresponding two groups are significantly (p < 0.0001) different from each other in features values. N = normal
or bundle branch block beat. S = supraventricular ectopic beat. V = ventricular ectopic beat.

FIGURE 4 | The structure of residual convolutional network (ResNet) for
feature learning. Res block = residual block. Conv = convolutional layer. Batch
Norm = batch normalization. ReLU = rectified linear unit.
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2.6.1 Traditional Aggregation Methods
A series of aggregation methods have been proposed in previous
studies for computer vision, including global average pooling
(GAP) (Zhou et al., 2016), global maximum pooling (GMP)
(Pathak et al., 2014), and Log-Sum-Exp (LSE) (Pinheiro and
Collobert, 2015). Here, we formalize these methods for
application to the mapping between the local predictions and
the global prediction. GAP averages all local predictions to obtain
the global prediction: GAP(Ŷ)c � 1

n∑
n
i�1ŷi, c, where Ŷ is the

collection of local predictions, ŷi, c is the prediction for
rhythm c at the ith sampling point. We argue that GAP is not
suitable for use in the WSDL-AD framework, because some
arrhythmias, e.g., ectopic beats, may account for only a very
small fraction of a recording, and the predictions for them will be
ignored by GAP. In contrast, GMP selects the maximum local
prediction for a class as its global prediction:
GMP(Ŷ)c � max

i∈{1, ..., n}
ŷi, c. By using GMP, a rhythm is

considered to be present in a recording as long as it occurs at
some time in the recording regardless of the duration. One
possible problem of GMP is that it may underestimate the true
region of an object (Kolesnikov and Lampert, 2016), because the
gradient of the prediction loss will be saturated (extremely close to 0)
as long as the maximum activation for the existing arrhythmia is
extremely close to 1. One solution for this problem is to make a
compromise between GAP and GMP. For example, LSE is a convex
approximation of the max function (Pinheiro and Collobert, 2015):
LSE(Ŷ)c � (1/b)log( (1/n)∑n

i�1exp(bŷi, c)), where b> 0 is a hyper-
parameter that controls the degree of the approximation to GMP.
Increasing b will push the function closer to GMP, while decreasing
b will make the function closer to GAP.

However, there are some problems when directly applying
these aggregation methods to the local predictions. Firstly, the
local predictions are corresponding to sampling points rather
than heartbeats. Although we can divide these local features and
predictions into individual heartbeats, the variable length and
uneven distribution of heartbeats can make an accurate division
difficult and increase the complexity of the model structure.
Secondly, due to the significant morphological differences
between the subwaves (e.g., P wave, QRS complex, and T
wave) of a heartbeat, the local predictions at different parts of
a heartbeat may be inconsistent, i.e., different parts of a heartbeat
are classified to different classes. These inconsistent predictions
are unreasonable and will increase the difficulty of model
optimization. To address these problems, we propose a
masked aggregation mechanism.

2.6.2 Masked Aggregation
The inconsistent predictions within a heartbeat are mainly due to
the morphological differences between the subwaves (e.g., P,
QRS, and T) of a heartbeat. This problem can be
circumvented by selecting the prediction at a certain point in
a heartbeat (i.e., the reference point) as the representative
prediction for the beat. To ensure the representativeness of the
selected predictions, we propose to aggregate only the selected
predictions to obtain the global prediction. In this way, only the
selected predictions are optimized according to the gradient of the

global prediction loss, and thus they will be representative of the
beats after the training. Since other predictions are masked out in
the aggregation, we call this mechanism masked aggregation. In
this work, we choose the R peak as the reference point of a
heartbeat because it can be usually accurately recognized by
certain algorithms (He et al., 2020). On the selected local
predictions, the aggregation methods mentioned above can
also be applied. Here, we combine masked aggregation with
GMP to get masked global max pooling (MGMP):
MGMP(Ŷ)c � max

i∈R
ŷi, c, where R denotes the set of reference

points. By selecting only the local predictions at the reference
points, the space of possible solutions for local predictions will be
significantly reduced, because the reference points in a recording
are a few orders of magnitude less than the sampling points.
Furthermore, the masked aggregation induces the model to learn
features around the reference points so that the learned features at
different reference points are semantically comparable between
each other.

2.7 Loss Calculation
The global predictions are used for the loss calculation since only
record-level labels are available in our WSL setting. The loss
function should support multi-label classifications, because
multiple rhythms may coexist in a single ECG record. Here,
we use the binary cross-entropy as the loss function for the
training of our models:

Lθ(X,T) � − 1

|C| ∑
|C|
c�1(tclog(f(X; θ)c) + (1 − tc)log(1 − f(X; θ)c))

(1)
where X is a recording of the training set, T is the record-level
label set of X, f is the prediction model, and |C| is the number of
considered classes. tc is an indicator of the presence of class c in
the label set T: if c ∈ T, tc � 1; otherwise, tc � 0. Besides, because
N is much more common than SVEB and VEB in clinic, there is
an extreme imbalance between these classes. For this problem, we
assign different weights to the training samples of different classes
in the loss calculation:

Lθ(D) � 1
M

∑(Xi,Ti)∈D w(Xi,Ti)Lθ(Xi, Ti) (2)

where Lθ(D) is the loss for the training setD,w(Xi,Ti) is the weight
for the sample (Xi, Ti), and M is the number of samples in the
dataset. In our implementation, after tuning the weight
parameters with experiments, the weight for a sample with
SVEB or VEB is set to 2, the weight for a sample with both
SVEB and VEB is set to 4, while the weight for a sample with
neither SVEB nor VEB is set to 0.1.

2.8 Two-Stage Training Strategy
To address the ill-posed problem of WSL, we propose a two-stage
training strategy. In the first stage, the model is pre-trained in SL
with small amounts of samples with heartbeat labels. Then, in the
second stage, the pre-trained model is further trained in WSL
with large amounts of coarsely-labeled ECG data. The SL-based
pre-training is implemented by omitting the aggregation part of
the WSDL-AD framework and applying the supervision directly
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to the local predictions. The loss value is calculated using
categorical cross-entropy on the predictions at the R peaks, as
in (3).

Lθ(X,Y) � − 1

|R| ∑i∈R
∑|C|

c�1(yi,c log(g(X; θ)i,c)) (3)

where g is the local prediction model, R denotes the set of
heartbeat positions, Y denotes the set of heartbeat labels. yi,c is an
element of Y: if the heartbeat at the ith sampling point belongs to
category c, yi,c � 1; otherwise, yi,c � 0. The idea behind this
strategy is that the SL-based pre-training can initialize the
model with proper parameters that may prevent the
subsequent WSL-based training from going in the wrong
direction.

3 RESULTS

In this section, we describe the experimental setup and results to
evaluate the performance of the WSDL-AD framework in beat-
by-beat arrhythmia detection. Ablation studies are also
conducted to assess the influence of our proposed techniques
on the model’s performance.

3.1 Experimental Setup
For comparison between different ML methodologies, we
conduct the experiments in three settings: 1) SL setting, where
the model is trained with full supervision; 2) WSL setting, where
the model is trained with only weak supervision; and 3) the SL +
WSL setting, where the model is pre-trained with full supervision
on a small dataset, and then trained with weak supervision on a
large dataset. Details of each setting are shown in the following
subsections.

We implement the models based on the Tensorflow and train
the models on a workstation with a CPU running at 3.5 GHz, an
NVIDIA Quadro k6000 GPU, and 64 GB of memory. The
method used for model optimization is Adaptive Moment
Estimation (Adam) (Kingma and Ba, 2014), where β1 is 0.9, β2
is 0.999, and the learning rate is 0.001. The training process is
terminated when the mean F1 score for all categories on the
validation set doesn’t increase over 10 epochs. The source code is
available at https://github.com/sdnjly/WSDL-AD.

By comparing the model predictions with the annotations, we
calculate several metrics to evaluate the model performance.
These metrics include sensitivity (Sen), specificity (Spe),
positive predictivity (Ppr), accuracy (Acc), F1 score, and
average precision (AP). Formulas for calculating these metrics
are as follows:

Sen � TP

TP + FN
(4)

Spe � TN

FP + TN
(5)

Ppr � TP

TP + FP
(6)

Acc � TP + TN

TP + FP + TN + FN
(7)

F1 � 2 × Sen × Ppr

Sen + Ppr
(8)

AP � ∑
n
(Senn − Senn−1)Pprn (9)

where TP denotes true positive predictions, TN denotes true
negative predictions, FP denotes false positive predictions, and
FN denotes false negatives predictions. Senn and Pprn are the
sensitivity and positive predictivity at the nth threshold of the
precision-recall curve (PRC) (Chen, 2003).

3.2 The SL Setting
For training the SL model, recordings of MITBIH-AR-DS1 are
split into segments of 20 s 80% of the segments are randomly
selected as the training set, and the remaining 20% are used as the
validation set. The validation set is just used for hyperparameters
tuning and early stopping of the training process. The trained
model is tested on the other three completely independent and
finely annotated datasets, including MITBIH-AR-DS2, MITBIH-
SUP, and INCART. The metric scores on these test sets are used
for the final evaluation of the model performance.

The test results on each dataset and the total test data are
shown in Table 3. For the detection of SVEB, the SL model
achieves high scores in Spe andAcc, but has very low scores in Sen,
Ppr, and F1. For example, the Spe scores of the SL model on
MITBIH-AR-DS2, MITBIH-SUP, and INCART are 0.994, 0.981,
and 0.993, respectively, whereas its Sen scores on these datasets
are only 0.066, 0.130, and 0.590, respectively. The high scores of
Spe and Acc can be attributed to the extreme class imbalance of
the test sets, where only a tiny minority of the samples belong to
SVEB. And the low scores of Sen, Ppr, and F1 are a true reflection
of the poor ability of the SL model in detecting SVEB. The test
scores for VEB detection are much higher than those for SVEB
detection. Besides, the model performances are different from
dataset to dataset. For example, the scores of Ppr and F1 for VEB
detection on the MITBIH-SUP dataset are much lower than that
on the other datasets. These differences may result from the
diversity of data distribution among these test sets.

3.3 The WSL Setting
TheWSL model is trained on the five coarsely-annotated datasets
from the PhysioNet/CinC challenge. MITBIH-AR-DS1 is used as
the validation set, and the other three finely-annotated datasets
are used as the test sets. For ease of batch processing during the
model training, all recordings in the training set are padded or
truncated at the end to 20 s. The recordings in the validation set
are also split into segments of 20 s.

The evaluation results on the test sets are shown in Table 3. By
comparing the scores with those in the SL setting, we find that the
WSL model improves the scores for detecting SVEB, VEB and N
on all of the test sets. Especially, the scores for SVEB detection are
improved most significantly. For example, on the dataset of
MITBIH-AR-DS2, the Sen, Ppr, and F1 scores for SVEB
detection are improved from 0.066, 0.286, and 0.108 to 0.806,
0.799, and 0.803, respectively. The differences are shown visually
by the PRCs in Figure 5. In the detection of both VEB
(Figure 5A) and SVEB (Figure 5B), the curves for the WSL
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model (in orange) cover significantly larger areas than that for the
SL model (in blue), especially in the detection of SVEB.

3.4 The SL + WSL Setting
In this two-stage training setting, the model is pre-trained in SL
for 10 epochs on the segments from the first half of each recording
in the MITBIH-AR-DS1. Then the model is trained in WSL on
the same data in the WSL setting, with the last-half recordings in
the MITBIH-AR-DS1 as the validation set. Finally, the model is
tested on the three test sets, with the results shown in Table 3.
These results are very close to that in the WSL setting, which is
also shown in Figure 5. The WSL and SL + WSL models have
superiority over each other in different datasets and metrics. For
example, theWSLmodel outperforms the SL +WSLmodel in Ppr
and F1 for detecting SVEB on the INCART, whereas the SL +
WSL model outperforms the WSL model in Sen and F1 for

detecting SVEB on the MITBIH-SUP. On the total test set, the
overall performance (indicated by F1 and AP) of the SL + WSL
model is superior to that of the WSL model in detecting both
SVEB and VEB. Especially, in the detection of SVEB, the SL +
WSL model achieves obvious better scores (F1 of 0.610, AP of
0.601) than the WSL model (F1 of 0.550, AP of 0.583) on the total
test set.

3.5 Stability Assessment
Due to the ill-posed problem of WSL, there is a chance that the
rules learned by a WSL model deviate from the ground truth. To
assess the stability of the model performance from training to
training, we train the model independently 50 times in each of the
WSL and SL +WSL settings. In the WSL setting, the F1 scores for
SVEB detection and VEB detection are 0.370 ± 0.260 and 0.740 ±
0.187, respectively, whereas in the SL +WSL setting, the F1 scores

TABLE 3 | Experimental results of different training setting on the evaluation datasets.

Test
set

Experimental
setting

N S V

Sen Ppr Spe Acc F1 Sen Ppr Spe Acc F1 Sen Ppr Spe Acc F1

MITBIH-AR-DS2 SL 0.985 0.959 0.634 0.949 0.972 0.066 0.286 0.994 0.959 0.108 0.935 0.873 0.991 0.987 0.903
WSL 0.990 0.987 0.883 0.979 0.988 0.806 0.799 0.992 0.985 0.803 0.902 0.950 0.997 0.990 0.925
SL + WSL 0.990 0.992 0.928 0.983 0.991 0.886 0.785 0.991 0.987 0.832 0.916 0.956 0.997 0.992 0.936

MITBIH-SUP SL 0.932 0.941 0.574 0.889 0.936 0.130 0.323 0.981 0.924 0.186 0.826 0.434 0.939 0.933 0.569
WSL 0.991 0.951 0.629 0.947 0.971 0.325 0.776 0.993 0.949 0.458 0.803 0.774 0.987 0.977 0.788
SL + WSL 0.986 0.962 0.717 0.954 0.974 0.452 0.705 0.987 0.951 0.551 0.795 0.768 0.986 0.976 0.782

INCART SL 0.991 0.978 0.844 0.973 0.985 0.590 0.487 0.993 0.989 0.534 0.826 0.945 0.994 0.975 0.882
WSL 0.990 0.988 0.914 0.981 0.989 0.852 0.575 0.993 0.991 0.687 0.886 0.950 0.994 0.982 0.917
SL + WSL 0.993 0.990 0.933 0.986 0.992 0.927 0.519 0.990 0.990 0.665 0.880 0.976 0.997 0.984 0.926

The Total Test Set SL 0.964 0.959 0.701 0.932 0.961 0.179 0.371 0.988 0.956 0.242 0.837 0.696 0.968 0.957 0.760
WSL 0.990 0.971 0.782 0.965 0.981 0.445 0.721 0.993 0.972 0.550 0.862 0.893 0.991 0.980 0.878
SL + WSL 0.990 0.978 0.835 0.971 0.984 0.560 0.669 0.989 0.972 0.610 0.858 0.906 0.992 0.981 0.882

N, normal or bundle branch block beat; S, supraventricular ectopic beat; V, ventricular ectopic beat; SL, supervised learning; WSL, weakly supervised learning; Sen, sensitivity; Ppr,
positive predictivity; Spe, specificity; Acc, accuracy; F1, F1 score.

FIGURE 5 | Precision-recall curves (PRCs) of the detection for ventricular ectopic beats (VEB) and supraventricular ectopic beats (SVEB) on the total dataset in
different learning settings. (A) PRCs of VEB detection. (B) PRCs of SVEB detection. SL = supervised learning. WSL =weakly supervised learning. AP = average precision.
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for SVEB detection and VEB detection are 0.582 ± 0.019 and
0.886 ± 0.009, respectively. The distribution of the scores on the
total test data are shown by the histograms in Figure 6. The
results show that the performance of the WSL model in detecting
both arrhythmias fluctuates wildly from training to training. The
distribution of the scores for SVEB detection is polarized: some
scores are clustered at the top pole, while other scores are located
near the bottom pole. This suggests that different hypotheses of
the detection model can satisfy the weak constraints of the
recording labels and cause the instability of the model
performance from training to training. By contrast, the
performance of the SL + WSL model is very stable in multiple
training sessions. The SL-based pre-training only initializes the
model with a few training samples. It indicates that proper
initialization can avoid the unstable performance of a
WSL model.

3.6 Ablation Studies
Several ablation studies are conducted to evaluate the effects of
the proposed knowledge-based features, DNN-based feature
extraction and masked aggregation on the performance of the
WSDL-AD framework. And all of the ablation studies are in the
SL + WSL setting.

3.6.1 Knowledge-Based Features
Ablation experiments are conducted to evaluate the contributions of
knowledge-based features to the prediction. Four configurations are
studied in the experiments, including none (using only DNN
features), RR entropy (using DNN features and RR entropy),
relative RR interval (using DNN features and relative RR
interval), both features (using DNN features and both of the
knowledge-based features). The test results on the total test data
are shown by PRCs in Figures 7A,B. The PRCs of VEB detection are
very similar among different configurations, so the knowledge-based
features have little effect on the VEB detection. In contrast, there are
significant differences among the PRCs for the SVEB detection. The
model with no knowledge-based features has an AP score of 0.485,
while applying the RR entropy and relative RR interval alone

improves the score to 0.512 and 0.529 respectively. The joint
application of both knowledge-based features further improves
the score to 0.607. Therefore, the knowledge-based features have
positive effects on the model’s performance in detecting SVEB.

3.6.2 DNN-Based Feature Extraction Methods
In our framework, the DNN-based features are extracted using the
ResNet. But our framework is also compatible with other kinds of
networks for feature extraction. To evaluate the impacts of the
network structure on the model performance, we conduct ablation
experiments with different types of networks for feature extraction.
Besides the ResNet, several well-known networks are tested for
comparison, including AlexNet (Krizhevsky et al., 2012), VGG-19
(Simonyan and Zisserman, 2014) and U-Net (Ronneberger et al.,
2015). Since these networks are all originally designed for processing
2D images, we replace the 2D convolutional and pooling layers with
their 1D counterparts to adapt to the processing of 1D ECG signals.
The recommended hyperparameters of these networks are adopted
in our experiments. Some dimension-related hyperparameters (such
as, convolutional kernel size and pool size) are converted to the 1D
counterparts. For example, the convolutional kernel size (3 × 3) of
the VGG-19 is converted to 3. The test results on the total test set are
shown in Figures 7C,D. From the results, we can find that the
performances of models with different network structures are
obviously different. Among these networks, ResNet achieves the
best performance in both SVEB (AP = 0.607) and VEB (AP = 0.962)
detections on the total test data. The performance of VGG-19 is very
close to that of ResNet, and the main difference lies in the detection
of VEB (AP = 0.943). By contrast, the performances of models with
AlexNet and U-Net are much lower than that of ResNet. These
results indicate that the structure of the feature-extraction network
has important impacts on the model performance. To obtain good
performance, it is necessary to choose a proper network structure for
feature extraction.

3.6.3 Aggregation Mechanisms
Four aggregation mechanisms are compared in our ablation
studies, including GAP, GMP, LSE (b = 5), and MGMP. The

FIGURE 6 |Distributions of the F1 scores on the total test data in multiple independent training sessions. (A) The histogram of the results for ventricular ectopic beat
(VEB) detection. (B) The histogram of the results for supraventricular ectopic beat (SVEB) detection. SL = supervised learning. WSL = weakly supervised learning.
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test results on the total test data are shown in Figures 7E,F. In
detecting VEB, GAP achieves the poorest performance (AP =
0.661) among all of the tested mechanisms, which may be
attributed to the fact that an arrhythmia epoch may only
account for a small portion of a recording. The performance

of LSE (AP = 0.793) is better than GAP since it makes a
compromise between GAP and GMP. Much better
performances are achieved by GMP (AP = 0.938) and MGMP
(AP = 0.962). It may be because that these two mechanisms are
consistent with the basic principle that an arrhythmia should be

FIGURE 7 | Precision-recall curves (PRCs) of the ablation studies on the total test data. (A) and (B) show PRCs of models with different knowledge-based features.
(C) and (D) show PRCs of models with different feature extraction networks. (E) and (F) show PRCs of models with different aggregation mechanisms. GAP = global
average pooling. GMP = global max pooling. LSE = Log-Sum-Exp. MGMP = masked global max pooling. AP = average precision. The parameter b of LSE is set to 5.
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included in the global prediction as long as it exists somewhere in
the recording. As for the detection of SVEB, the performances of
GMP and MGMP are also significantly better than GAP and LSE.
Especially, the MGMP, achieving an AP of 0.607, outperforms all
other mechanisms by a large margin. This indicates that the
masked mechanism is indeed helpful to improve the performance
of WSL-based arrhythmia detection, especially for arrhythmias
with subtle morphological changes, e.g., SVEB.

3.7 Analysis of Detection Examples
The qualitative results of theWSDL-ADmodel in detecting SVEB
and VEB are shown in Figure 8. In this figure, both the ECG
signal and the knowledge-based feature maps (including relative
RR interval and RR entropy) of each example are present. The

local classifications contain the rhythm-wise probability
distribution at each sampling point. The beat-by-beat
detections are derived from the local predictions by selecting
the predictions at the R peaks. The local classifications indicate
that theWSL models have learned the ability to detect SVEBs and
VEBs in various contextual rhythms, such as normal sinus
rhythm, atrial fibrillation (AF), atrial bigeminy (AB), and
ventricular bigeminy (VB). And, in most cases, the model has
adequate confidence for the classification, where the predicted
probability for some class is significantly higher than that for
other classes. The value of the relative RR interval exhibits a
positive correlation with the occurrence of SVEB and VEB, which
is in line with our expectations and thus can serve as an effective
indicator. However, a shortened RR interval, manifested by the

FIGURE 8 | Qualitative results of arrhythmia detection on the MITBIH-AR-DS2 in the SL + WSL setting. (A) An example during normal rhythm. (B) An example
during atrial fibrillation. (C) An example during atrial bigeminy. (D) An example during ventricular bigeminy. The vertical dashed lines indicate the positions of R peaks. In
the ECG waveform charts, the reference category of each heartbeat is labeled above the ECG. In the local classification charts, the predictions for supraventricular
ectopic beats (S) are drawn in blue, the predictions for ventricular ectopic beats (V) are drawn in orange, and the detected categories are labeled above the
prediction lines. N denotes a normal or bundle branch block beat. Since the probabilities of N, S, and V add up to one at each sampling point, the predictions for N are not
plotted in the figure for clarity.
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high value of relative RR interval, doesn’t necessarily indicate an
ectopic beat, because it may be caused by other arrhythmias, such
as AF. The RR entropy, on the other hand, reflects the variation of
RR intervals in the context: when the RR interval changes greatly
(e.g., during AF, AB, or VB), the entropy value is at a high level,
and vice versa (e.g., during sinus rhythm). Therefore, the joint
application of relative RR interval and RR entropy can supply the
information about the significance of a local RR-interval change,
and help to increase the precision of the detection.

However, there are also some cases where the model has low
confidence in the classification or even makes errors, as shown in
Figure 9. In the example of Figure 9A, two SVEBs during
supraventricular tachyarrhythmia (SVTA) are misclassified as
N. This can be attributed to the successive occurrence of SVEBs
during SVTA, where the change of RR intervals from beat to beat
is not significant, and especially most SVEBs are followed by
noncompensatory pauses. Figure 9B presents an example that a
VEB during the left bundle branch block (LBBB) is misclassified
as SVEB. At the beat, the predicted probability for VEB is slightly
less than that for SVEB, and both probabilities are significantly
higher than that for N. It implies that the model has enough
confidence to classify the beat as an ectopic beat, but has not
enough confidence to distinguish whether it is an SVEB or VEB.
One possible reason for this is that the QRS complex of the VEB is
not significantly wider than that of the neighboring beats.

4 DISCUSSION

In this study, we propose a WSL framework (WSDL-AD) for the
beat-by-beat detection of arrhythmias, which requires only
coarse-grained record-level annotations during the model
training. The evaluation on independent datasets shows that a
WSDL-AD model is able to learn the ability to detect VEB and

SVEB from the coarsely annotated ECGs. In particular, our WSL
model outperforms its SL counterpart by a large margin on
multiple external test sets, which indicates that the WSL
framework can facilitate the generalization ability of
arrhythmia detection by exploring the large amount of
coarsely-annotated ECG data. The biggest improvement is in
the detection of SVEB, which is more difficult to detect because its
waveform variation is usually very subtle. In this section, we will
compare the results of our method with that of other state-of-the-
art studies, and discuss the implications and limitations of
this study.

4.1 Comparison With Other Studies
We compare our results with that of representative previous
studies. The previous studies on the heartbeat classification can be
categorized into two types: inductive learning (or induction),
which learns general rules from labeled training samples and
applies the rules to test samples; and transductive learning (or
transduction), which learns the detection rules from both the
labeled training samples and the unlabeled test samples, and
applies the rules on the same test samples. This study and most
previous studies are in inductive learning. Some studies that
based on unsupervised domain adaptation are in transductive
learning (Li et al., 2021; Wang et al., 2021). Although the models
of transductive learning usually achieve better performance than
inductive learning models, their requirement for the unlabeled
target samples during the model training stage is hard to satisfy,
since there are always new patients in routine clinical practice.

The MITBIH-AR-DS2 dataset is mostly used by previous
studies for model evaluation, and the results of some
representative studies are shown in Table 4. On the dataset,
the test scores of our WSL models (in both WSL and SL + WSL
settings) in detecting SVEB and VEB are significantly superior to
that of the state-of-the-art methods of supervised inductive

FIGURE 9 | Qualitative results of error predictions. (A) An example of misclassifying supraventricular ectopic beats (S) as normal or bundle branch block beats (N)
during supraventricular tachyarrhythmia. (B) An example of misclassifying a ventricular ectopic beat (V) as an S during left bundle branch block (LBBB).
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learning (Guo et al., 2019; Niu et al., 2020), and comparable to the
state-of-the-art results of unsupervised transductive learning (Li
et al., 2021;Wang et al., 2021). Compared with previous inductive
models, the improvements of F1 scores are >8% (from 0.766 to
0.832) for SVEB and >4% (from 0.898 to 0.936) for VEB. The test
results of previous studies on the MITBIH-SUP dataset and the
INCART dataset are present in Tables 5,6 respectively. On the
MITBIH-SUP dataset, our WSL models substantially outperform
previous studies of induction (increasing the F1 scores by >290%
for SVEB and >11% for VEB) and transduction methods
(increasing the F1 scores by >66% for SVEB and >3% for
VEB). Similar improvements are also observed for the
INCART dataset. In particular, for the detection of SVEB, our
WSL models have a big superiority over the transduction

methods on these two datasets, although the transduction
methods have optimized their models according to the test
samples. These improvements indicate that the proposed WSL
method can learn robust rules from a large amount of coarsely
annotated data and has a better generalization ability.

4.2 Implications of the Proposed Method
This study shows that the WSL approach is effective to improve
the generalization ability of beat-by-beat arrhythmia detectors by
leveraging the large amounts of coarsely-annotated ECG data. An
arrhythmia detector with both fine detection granularity and
good generalization ability has important implications for clinical
practice. The fine granularity is necessary for measuring the
burden and pattern (e.g., bigeminy and trigeminy) of

TABLE 4 | Comparison of our method with other studies on DS2 of the MITBIH-AR dataset.

Studies Learning
type

N S V

Se Ppr F1 Se Ppr F1 Se Ppr F1

De Chazal et al. (2004) Induction 0.869 0.992 0.926 0.759 0.385 0.511 0.777 0.819 0.794
Llamedo and Martínez. (2010) Induction 0.776 0.995 0.872 0.765 0.413 0.536 0.829 0.880 0.854
Mar et al. (2011) Induction 0.896 0.991 0.841 0.832 0.335 0.478 0.868 0.759 0.809
Zhang et al. (2014) Induction 0.889 0.990 0.937 0.791 0.360 0.495 0.855 0.928 0.890
Raj and Ray. (2018) Induction 0.909 0.994 0.950 0.808 0.488 0.608 0.822 0.854 0.838
Garcia et al. (2017) Induction 0.940 0.980 0.959 0.620 0.530 0.571 0.873 0.594 0.707
Guo et al. (2019) Induction — — — 0.627 0.612 0.619 0.913 0.883 0.898
Niu et al. (2020) Induction 0.989 0.974 0.981 0.765 0.766 0.766 0.857 0.941 0.897
Wang et al. (2021) Transduction 0.991 0.984 0.990 0.765 0.902 0.830 0.940 0.923 0.930
Li et al. (2021) Transduction 0.994 0.983 0.989 0.772 0.934 0.845 0.906 0.944 0.924
This work (WSL setting) Induction 0.990 0.987 0.988 0.806 0.799 0.803 0.902 0.950 0.925
This work (SL + WSL setting) Induction 0.990 0.992 0.991 0.886 0.785 0.832 0.916 0.956 0.936

N, normal or bundle branch block beat; S, supraventricular ectopic beat; V, ventricular ectopic beat; Se, sensitivity; Ppr, positive predictivity; F1, F1 score.
The bold text indicates the maximum of each column.

TABLE 5 | Comparison of our method with other studies on the MITBIH-SUP dataset.

Studies Learning type S V

Se Ppr F1 Se Ppr F1

Al Rahhal et al. (2016) Induction 0.088 0.143 0.109 0.652 0.093 0.163
Guo et al. (2019) Induction 0.079 0.645 0.141 0.868 0.588 0.701
Wang et al. (2021) Transduction 0.236 0.539 0.33 0.844 0.563 0.68
Li et al. (2021) Transduction 0.238 0.472 0.316 0.785 0.724 0.753
This work (WSL setting) Induction 0.325 0.776 0.458 0.803 0.774 0.788
This work (SL + WSL setting) Induction 0.452 0.705 0.551 0.795 0.768 0.782

S, supraventricular ectopic beat; V, ventricular ectopic beat; Se, sensitivity; Ppr, positive predictivity; F1, F1 score.
The bold text indicates the maximum of each column.

TABLE 6 | Comparison of our method with other studies on the INCART dataset.

Studies Learning type S V

Se Ppr F1 Se Ppr F1

Llamedo and Martínez. (2010) Induction 0.77 0.39 0.52 0.81 0.87 0.84
Al Rahhal et al. (2016) Induction 0.156 0.025 0.04 0.751 0.376 0.501
Wang et al. (2021) Transduction 0.711 0.435 0.54 0.901 0.903 0.90
This work (WSL setting) Induction 0.852 0.575 0.687 0.886 0.950 0.917
This work (SL + WSL setting) Induction 0.927 0.519 0.665 0.880 0.976 0.926

N, normal or bundle branch block beat; S, supraventricular ectopic beat; V, ventricular ectopic beat; Se, sensitivity; Ppr, positive predictivity; F1, F1 score.
The bold text indicates the maximum of each column.

Frontiers in Physiology | www.frontiersin.org March 2022 | Volume 13 | Article 85095115

Liu et al. Generalizable Arrhythmia Detection

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


arrhythmias, which can be used to assess critical risks (e.g., stroke
and heart failure) in clinic (Boriani et al., 2014; Marcus, 2020). On
the other hand, the generalization ability is a necessary
prerequisite for an algorithm to be trusted for clinical use,
because ECG is susceptible to environmental and individual
differences. The diagnoses made by currently used algorithms
still need to be reviewed by doctors. However, with the explosion
of ECG data from mobile devices, it is not practical to rely on
doctors to review every record. With the improvements in
generalization ability, our WSL method can deal with more
situations and make more reliable detections independently,
which are of significance to prompt the revolution of
automatic ECG diagnosis.

This superiority of the WSL models may source from the fact
that their training data are from a much larger patient group
than that of the SL models. The coarse-grained annotations
usually take much less time and effort than fine-grained
annotations. And to ensure the correctness of the
annotations, fine annotation needs multiple experts to reach
a consensus on the labels of each beat, while coarse annotation
only needs a consensus on the global labels. In addition, in many
medical institutions, the electronic medical records, containing
both physiological signals and diagnostic reports, are inherent
coarsely annotated data and could be used to train the WSL
models. Therefore, the amount of coarsely annotated data could
be accumulated rapidly in the future, which provides essential
substrates for continually improving the reliability of automatic
arrhythmia detectors.

As demonstrated by the ablation experiments, the proposed
knowledge-based features and masked aggregation mechanism
also play an important role in improving the performance of the
WSL models. One of the advantages of the knowledge-based
features is that they integrate the information in a very wide
context, which is usually difficult to learn by the model self,
especially under weak supervision. By fusing the knowledge-
based features and the DNN-extracted features, the
representative ability of the feature vector might be enhanced,
thus causing the detection performance to be improved. On the
other hand, the masked aggregation mechanism selects the
representative prediction for each heartbeat at the specified
reference point, which greatly reduces the space of possible
local predictions. Besides, because the reference points belong
to the same type of ECG subwave, e.g., the R peak, the features
aligned to the reference points are also semantic comparable with
each other. Consequently, the masked aggregation mechanism
helps to improve the performance of ectopic beat detection.
Furthermore, the results of multiple independent training
sessions reveal the instability of the training process of WSDL-
AD. We also demonstrate that SL-based pre-training on a few
finely-annotated samples can effectively improve the stability of
the training process. It implies that the initialization has a critical
effect on the training process of the WSL model. These methods
proposed in this study may also be enlightening to further studies
in arrhythmia detection and even other fields.

The computational complexity of our framework can be
divided into several parts, which are corresponding to
preprocessing, QRS complexes detection, knowledge-based

features extraction, DNN-based features extraction, local
prediction, and aggregation, respectively. Among these parts,
the part of DNN-based features extraction dominates the
computational complexity of the framework. The network for
feature extraction is a 1D ResNet whose computational
complexity mainly comes from the convolutional layers in it.
The computational complexity of each convolutional layer is
O(K×M×N), where K is the kernel number, M is the kernel size
(kernel length × channels), andN is the signal length. By putting
the hyperparameters in the formula, we get O(K×M×N) = O (32
× 16×32×N) = O(N). There are only nine convolutional layers in
our 1D ResNet, and the feature maps are gradually down-
sampled. Taken together, the computational complexity of
the 1D ResNet is O (9 × 32×16 × 32×N) = O(N). Thus, the
computational complexity of the 1D ResNet is linear to the
signal length. Besides, the number of layers and the number of
convolutional kernels in our network are much smaller than that
of other well-known networks, such as VGG-19 (Krittanawong
et al., 2019) and U-Net (Ronneberger et al., 2015). Therefore, the
computational complexity of our framework is moderate, which
is critical for scenarios where computing resources are scarce,
such as mobile ECG monitoring.

4.3 Limitations
This work also has some limitations. First, the WSL models
have a high error rate for SVEB detection. The waveform
patterns of SVEB are usually subtle and therefore difficult to
be recognized by the model. To address this problem,
collecting more training data or improving the design of the
WSL framework (e.g., extracting features of the P wave) would
be helpful. Second, the WSDL-AD framework is not evaluated
for detecting other kinds of ECG abnormalities, such as branch
bundle blocks and ST segment changes. Future work is
required to assess the effectiveness of WSL in detecting
more diverse ECG abnormalities.

5 CONCLUSION

In conclusion, this study develops and evaluates a WSDL
framework for beat-by-beat arrhythmia detection, by which we
demonstrate the feasibility of training a fine-grained arrhythmia
detector on only coarsely-labeled ECG data. The evaluations on
multiple external datasets show that the proposed framework has
a significant superiority in generalization ability over previous SL-
based methods. The knowledge-based features and masked
aggregation mechanism also have important contributions to
the performance of the model, while the SL-based pre-training
helps to improve the stability of the training process.
Furthermore, the computational complexity of our framework
is moderate, which permits the models to be deployed on
hardware with limited computing resources. Our approach
would substantially reduce the burden of data annotation and
enhance the reliability of beat-by-beat arrhythmia detection, and
therefore has a great potential to promote the application of
automatic cardiac monitoring both in and out of hospitals.
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