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Vectorcardiography (VCG) is another useful method that provides us with useful spatial
information about the electrical activity of the heart. The use of vectorcardiography in
clinical practice is not common nowadays, mainly due to the well-established 12-lead ECG
system. However, VCG leads can be derived from standard 12-lead ECG systems using
mathematical transformations. These derived or directly measured VCG records have
proven to be a useful tool for diagnosing various heart diseases such as myocardial
infarction, ventricular hypertrophy, myocardial scars, long QT syndrome, etc., where
standard ECG does not achieve reliable accuracy within automated detection. With the
development of computer technology in recent years, vectorcardiography is beginning to
come to the forefront again. In this review we highlight the analysis of VCG records within
the extraction of functional parameters for the detection of heart disease. We focus on
methods of processing VCG functionalities and their use in given pathologies. Improving or
combining current or developing new advanced signal processingmethods can contribute
to better and earlier detection of heart disease. We also focus on the most commonly used
methods to derive a VCG from 12-lead ECG.
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1 INTRODUCTION

Measuring the electrical activity of the heart using electrocardiography and vectorcardiography is
well established, as thesemethods have been used formore than a hundred years Burch (1985), Burch
and DePasquale (1990). The cells that create the myocardium are joined together by gap junctions,
which have very low resistance to a normal healthy heart. As a result, activity in one cell easily spreads
to neighboring cells. However, this muscle cannot be controlled by the will. Durrer et al. (1970)
published a study which shows that activation wavefronts progress relatively evenly, from
endocardium to epicardium and from apex to base. Electrical activation of the heart begins in
the sinus node (SA), and it spreads along the atrial walls. Then depolarization reach the
atrioventricular (AV) node. Propagation of AV junction is very slow and results in delays
during activation, which is a desirable, because it allows completion of ventricular filling. Once
the activation reaches the chambers, the excitement continues along the Purkinje fibers.
Furthermore, depolarization waves occur from left to right of the septum. Then, the
depolarization spread through the left and right ventricular wall. Because the left ventricular
wall is thicker, depolarization of the left ventricle continues even after depolarization of a large
portion of the right ventricle. The left ventricle is depolarized mainly in parallel through the left
anterior and posterior fascicles and the left the lateral basal part is the last to be activated. Ventricular
repolarization begins on the outside of the ventricles and “spreads” inward. Although the epicardium
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is depolarized last, its action potential duration is short and it is
the first to recover. Although single cell recovery does not
propagate to neighboring cells, it can be noted that recovery
generally moves from the epicardium to the endocardium.
Inward repolarization generates a signal with the same sign as
outward depolarization. Due to the diffuse form of repolarization,
the amplitude of the signal is much smaller than the amplitude of
the depolarization wave and lasts longer Malmivuo and Plonsey
(1995). These changes in depolarization and repolarization are
then measured from the patient’s body surface, most often in the
form of a 12-lead ECG.

The method of vectorcardiography dates back to 1887, when
in the first article concerning the human electrocardiogram,
Augustus D. Waller pointed out the dipolar nature of the
cardiac electric generator. Thus, it is possible to describe an
electric generator of the heart with reasonable accuracy by an
equivalent dipole. This dipole can be described as an electric heart
vector (EHV) and it is possible to display it in vector formWaller
(1887). In 1920s Mann first introduced the concept of a “loop”
representing a continuous series of vectors for depicting electrical
depolarization and repolarization magnitudes. Mann derived
these loops manually from three Einthoven leads Burch
(1985). From 1936 to 1940 the technique of vector
representation of the electric field of the heart was actively
developed in Germany Howard (1946). For direct

measurement of orthogonal leads, Schellong et al. (1937)
introduced the first uncorrected orthogonal system in 1937.
Their work was further developed by other authors who
defined new lead systems Kimura (1939), Duchosal and Sulzer
(1949), Grishman et al. (1951), Milnor et al. (1953). These lead
systems differ by placing the electrodes on the hull and are
represented by signals that are orthogonal to each other.
However, they do not take into account the different torso
geometry or intrinsic tissue inhomogeneity. The first corrected
lead system was derived by Frank based on a mathematical model
Frank (1956). This system, which uses seven measuring
electrodes, is today one of the most widely used
vectorcardiographic leads. Other published but less commonly
used vectorcardiographic leads include McFee and Parungao
(1961), SVEC III Schmitt and Simonson (1955), and hybrid
lead systems Dellborg et al. (1995).

Like the ECG, VCG is a diagnostic method which is
considered as a very useful method for measuring the
electrical activity of the heart. It is more sensitive than a
standard 12-lead ECG and provides the cardiologist with
important additional information such as a clearer indication
of the phase relationships between leads Rubel et al. (1991),
Levkov (1987). Today, the QRS-T angle is the most commonly
analyzed of the VCG, while current ECG markers of
repolarization abnormalities mainly include ST depression, T

FIGURE 1 | 1) The basic principle of vectorcardiography is illustrated on ideal uniform lead fields, which are perpendicular to each other and are in a bipolar
configuration (set by parallel electrodes on opposite sides of the torso) Malmivuo and Plonsey (1995); 2) Placement of measuring electrodes on the patient body using
Frank lead system Hasan and Abbott (2016).
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wave inversion, and QT prolongation Dilaveris et al. (2001),
Voulgari and Tentolouris (2009). The VCG is projected into three
mutually perpendicular planes: sagittal, transversal and frontal,
see Figure 1 (left), where placement of the electrodes are shown in
Figure 1 (right). The individual planes are most often located as:
frontal plane between X and Y leads, transversal plane between X
and Z leads and sagittal plane between Y and Z leads. Cardiac
activity is then described by three loops, which represent the
individual phases of the cardiac cycle. The first loop corresponds
to wave P, the second loop which is the largest corresponds to
QRS complex and the third loop corresponds to wave T. The
loops can be seen in three 2-D projections or in one 3-D image in
a demonstrative physiological record from the PTB database, see
Figure 2. The records contained in this database are sampled by
sampling frequency of 1 kHz with a 16-bit resolution in the range
of ±16,384 mV. Based on the recommendationMerri et al. (1990),
the sampling frequency for measuring electrical activity of the
heart should be at least 128 Hz. However, setting parameters in
the PTB database is suitable for subsequent and detailed analysis
of the electrical activity of the heart. However, along with the
required signal, interfering components that need to be removed
from the records can also be measured. When designing filters, it
is necessary to take into account the frequency range of the
desired signal and the frequency characteristics of individual
filters.

The benefits of a 12-lead ECG for diagnostic evaluation of
electrical activity of the heart has been a standard in clinical
practice over a hundred of years. However, there are certain cases
where the vectorcardiogram is superior to the electrocardiogram.
In some publications, a higher sensitivity of VCG compared to
conventional ECG has been reported in the diagnosis of atrial
enlargement and right ventricular hypertrophy. It has been
proposed to re-evaluate the frequency of 12-lead ECG usage to
increase vectorcardiography measurements in clinical practice
van Bemmel et al. (1992), Chou (1986). In recent years, VCG has
become a method that is processed by modern signal processing
procedures, mainly due to the possibility of obtaining and
subsequent analysis of spatial features. Studies have shown
that the vectorcardiogram is very useful in some specific
situations, such as assessing intraventricular conduction
disorders combined with inactive areas, identification of
sudden cardiac death, identifying and locating ventricular
preexcitation, differential diagnosis of patterns different from
normal deviation from electrical axis, assessment particular
aspects of Bruges’ syndrome and estimating the severity of
some cardiac enlargements Sur et al. (2013), Perez Riera et al.
(2007). Also, more accurate results were obtained in the analysis
of QRS in three-dimensional projection, such as improved patient
selection for cardiac resynchronization therapy (CRT), detection
of myocardial injury Correa et al. (2010) or extraction of VCG

FIGURE 2 | Demonstration display of individual VCG planes for randomly selected physiological record: (A) Transverse plane of X and Y leads, (B) Sagittal plane of
X and Z leads, (C) Frontal plane of Y and Z leads, (D) 3-D image of X, Y and Z leads. The record s0503rem from the PhysioNet PTB database was used as a randomly
selected physiological record. The individual planes are related to the basic principle of VCG measurement on ideal uniform lead fields from Figure 2.
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features from QRS complex Correa et al. (2012) for ischemia
detection. Another advantage of vectorcardiography over
standard ECG is in detection of long QT syndrome Diamant
et al. (2013, 2010), Cortez et al. (2017a). Another use of VCG, due
to its higher sensitivity, was in the analysis of inducted cardiac
memory, which was mainly known from ECG recordings. Wecke
et al. (2013) analyzed the VCG records of patients after previous
ablation of accessory pathways (AP). They were aware of the
phenomenon of induced cardiac memory, which was present on
ECG records in different patient ratios. They assumed that VCG,
which is more sensitive than ECG, would show cardiac memory
independent of AP location after ablation. They found out from
the analyzed records that after ablation there was a correlation
between the directions of the overexcited maximum QRS vector
and the post-ablation maximum T-vector, indicating the
presence of cardiac memory. From their findings, it was
confirmed that the information we know from the ECG can
also be found in the VCGwith the possibility of a new perspective.

Vectorcardiography, which represents a slightly different
approach, is used less commonly in practice and VCG leads are
often derived Frank (1956), Iwaniec et al. (2018), Sedaghat et al.
(2016), Sun et al. (2017), Treskes et al. (2015), Correa et al. (2012,
2013). This examination method can be considered as a useful tool
in the study of many heart diseases and can provide additional
information to the conventional ECG in the form of additional
spatial information Vozda and Cerny (2015). However, VCG is not
usually recorded in clinical practice but orthogonal leads can be
derived from a conventional 12-lead ECG Belloch et al. (2007). The
importance of vectorcardiography has been published in numerous
publications, but VCG records are not available in most cases.
Therefore, an alternative form of deriving VCG from a commonly
measured 12-lead ECG was proposed. Derived VCG is useful for
estimating somemeaningful features that represent high diagnostic
information such as QRS-T angle or Total cosine R to T (TCRT).
These and other features can be estimated from derived VCG with
sufficient accuracy Karsikas et al. (2009), Cortez and Schlegel
(2010), Cortez et al. (2014).

In recent years, vectorcardiographic recordings have been
increasingly used for the analysis and detection of heart
disease. If directly measured records using Frank lead system
are not used, they are often transformed by various methods from
a 12-lead ECG. In the following chapter, this paper provides an
overview of the most commonly used transformationmethods. In
addition, it reviews the processing and extraction of important
diagnostic parameters, the most promising techniques and
current challenges for the detection of various heart diseases.

2 REVIEW STRATEGY

This work presents a comprehensive overview of the
multidisciplinary area of vectorcardiographic record processing
and methods of possible transformation from 12-lead ECG to
obtain derived VCG leads. The individual methods and steps for
the implementation of this overview are presented here. These are
mainly: selection of suitable databases, selection of search terms,
and evaluation of results. This review was conducted using full

papers, including publications in journals, conference papers,
books, and academic papers. The search was performed without a
time limit to provide a historical background. The search for
relevant works was carried out in English.

2.1 Database Selection
Four basic databases were selected for the classification of suitable
literature. These include the Scopus database and the Web of
Science, which are among the largest databases, including peer-
reviewed citation sources. PubMed and ProQuest databases, which
focus on the selection of medical and medical literature, were also
used. The combination of medical and technical literature should
be the basis for comprehensive information, both medical and
especially technical in the field of vectorcardiographic processing.

2.2 Indexed Terms
In this section, we list the individual indexed terms that have been
used for this overview. In the case of processing
vectorcardiographic records, the terminology is inconsistent.
Therefore, several combinations of indexed terms have been
used to include the widest possible range of articles that are
relevant to this review. A summary of the individual indexed
terms used can be seen in Table 1.

3 TRANSFORMATION METHODS

The first consideration on the transformation of individual lead
systems was presented by Burger et al. (1952). Kornreich et al.
(1974) described that the 12-lead ECG and Frank lead system were
very similar in terms of their information content and therefore
their mutual transformation was possible. This resulted in the first
attempts to transform lead systems based on the transformation
from VCG to 12-lead ECGs by Dower Dower (1968). Wolf et al.
(1976) pointed out that knowledge from measuring of orthogonal
lead systems can contribute to better diagnosis. He therefore
considered the possibility of a two-way transformation and later
he derived transformation matrices for the bidirectional
transformation of conventional 12-lead ECG to VCG.

Many of the transformation methods were derived only for the
QRS complex of the heart cycle. There are also transformation
matrices that are focused on other parts of the heart cycle. For
example, Guillem et al. (2006) designed a modified transformation
matrix optimized for the P wave, thereby achieving improved
transformation for this ECG segment. Guillem et al. (2008)
addressed the issue of accuracy of P wave derivation further in.
The object of this study was to test the accuracy of the inverse Dower
transformation in comparisonwith the P-wave optimized transform.
The problem of P-wave accuracy in a transformed VCG was also
addressed by Carlson et al. (2005). In their study, they used a total of
41 patient records, of which 20 records were diagnosed with atrial
fibrillation. After the transformation using the inverse Dower
transformation, the waveform of P was preserved. When
comparing the directly measured VCG and the derived VCG, the
morphological parameters of the P wave were consistent in the
respective groups, and better conservation was observed in the
healthy groups.
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Transformation methods for the derivation of ECG and VCG
leads are an integral part of obtaining further beneficial
information from the measurement of electrical activity of the
heart. Most of the published articles use databases with already
measured ECG and VCG records. However, simultaneously
measured orthogonal data with a 12-lead ECG is not always
available. Therefore, this chapter is devoted to the most
commonly used transformation methods used in publications
and scientific works.

3.1 Quasi—Orthogonal Transformation
Any ECG lead system can be converted into vectorcardiographic
loops. However, these derived VCG loops will not be orthogonal.
Certain leads from a 12-lead ECG show a high correlation with
orthogonal leads. These leads are called as quasi-orthogonal. Such
derived lead systems correspond approximately to uncorrected
VCG leads. Correction can be achieved using geometry based on
the torso model derived by Frank (1954).

Bjerle and Arvedson (1986) derived some of the first quasi-
orthogonal leads that can be expressed as (Eq. 1):

X � 1, 06 · V6
Y � 1, 88 · VF � 1, 25 · aVF
Z � −0, 532 · V2 + 0, 043 · V6

(1)

Kors et al. (1986) analyzed ECG lead systems and selected
those leads that showed the highest correlation with orthogonal
leads. Derived orthogonal leads can be expressed as Eq. 2:

X � V6
Y � II
Z � −0, 5 · V2

(2)

Kors et al. (1990) compared two quasi-orthogonal lead
systems (Eq. 1) and (Eq. 2) and VCG derived by regression
and Inverse Dower Transformation (IDT). Based on the
measurement of the mean absolute deviation and the
evaluation of cardiologists, he concluded that the
transformation matrix obtained by regression and IDT
achieved better results than both quasi orthogonal leads.

3.2 Transformation Methods Based on
Linear Approach
The standard 12-lead ECG does not provide much information
about the sagittal plane, so it is necessary to use all the
information contained in the ECG to derive the VCG. It is the

VCG that provides us information of cardiac activity in all three
planes. The simplest conversion to a VCG is to use quasi-
orthogonal conversions, where one ECG lead corresponds to
one VCG lead. A more reliable variant is the use of linear
transformation methods, where each ECG lead (I, II, V1, V2,
. . . , V6) contributes to a certain extent to a specific orthogonal
lead. The individual weight coefficients then form the resulting
transformation matrix M. This approach was first introduced by
Burger et al. (1952) in the analysis of the description of the
electrical action of the heart by one dipole. Transformation
matrix coefficients were derived using a regression approach
and their accuracy tested in 169 patients. However, the
authors did not publish the transformation coefficients.

For the conversion, the IDT has become one of the most
widely used transformations. The coefficients can therefore be
applied to individual ECG leads in the form of (Eq. 3).

X � 0, 156 · I − 0, 01 · II − 0, 172 · V1 − 0, 074 · V2
+0, 122 · V3 + 0, 231 · V4 + 0, 239 · V5 + 0, 194 · V6 (3)

The Y and Z leads can be derived similarly. The difference
between a quasi-orthogonal systems and a linear transformation
can be noticed here. Individual VCG leads in a quasi-orthogonal
system correspond to exactly one ECG lead, while in the case of a
linear transformation matrix the VCG leads is formed by the
weight coefficients of the individual ECG leads. Themathematical
transformation is then realized as a multiplication of twomatrices
(Eq. 4).

V � M · E (4)
where M is the transformation matrix, E is matrix whose rows are
formed by independent ECG leads and V is matrix whose rows
correspond to the derived VCG.

The coefficients of the transformation matrices are also
derived on the basis of the torso model described by Frank
(1954) or by regression methods based on data measured in a
representative group of patients. These coefficients then differ
from one approach to another, describing in particular the
morphology of the average patient or torso model.

3.3 Kors Regression Transformation
The transformation matrix introduced by Kors et al. (1990) was
derived by regression technique for a group of patients from the
CSE database. The transformation matrix coefficients, see
Table 2, were derived by minimizing the mean error between
the measured VCG and the transformed VCG.

In this way, Kors derived several transformation matrices for
different complex segments. He also stated that the differences
between individual transformation matrices are small. Given that
the QRS complex is most often analyzed, the resulting matrix is
based only on the regression of the QRS complex.

Several publications have studied the transformation method
introduced by Kors. The authors in Cortez and Schlegel (2010) and
Cortez et al. (2014) discussed which of the available transformation
methods provides the QRS-T spatial angle value closest to the values
obtained from Frank lead system. They used two available
transformation matrices: the Kors regression transform and the

TABLE 1 | Indexed terms and their combinations.

Index terms

1. Vectorcardiography OR Vector Cardiography OR Vector Electrocardiography
2. VCG OR ECG
3. Transformation methods OR Derivation methods OR Linear transformation

methods OR Quasi-orthogonal transformation OR Frank lead system
4. VCG features OR ECG features
5. P-loop OR QRS-loop OR T-loop
6. Medical signal processing OR Biomedical signal processing
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IDT. The authors concluded that the resulting values from the Kors
regression method did not differ significantly from the values from
Frank lead system. In their further publications, the authors in
Cortez et al. (2015) have focused on the analysis of the spatial angle
of QRS-T in patients with hypertrophic cardiomyopathy. Similarly,
Man et al. (2011) analyzed the QRS-T spatial angle from the derived
VCG data using the Kors regression method and IDT. Of the two
transformation methods used, the Kors regression method achieved
better results. The analysis was performed between the transformed
VCGs and the VCGs measured by the Frank lead system.

3.4 Inverse Dower Transformation (IDT)
In 1980, Dower et al. (1980) presented the possibility of deriving
12-lead ECGs from three leads measured by the Frank lead
system. They created the transformation coefficients, see
Table 3, which provide better correlation for precordial
electrodes with respect to the voltage and P and T waves in
leads V1 and V2 Dower (1968); Dower et al. (1980); Dower and
Machado (1979).

Using this knowledge, Edenbrandt and Pahlm (1988) derived
a pseudo-inverse matrix that can be used for transformation from
8 independent ECG leads to VCG. The resulting pseudoinverse
matrix is shown in Table 4.

The Inverse Dower Transformation was used by Panagiotou
et al. (2013) and Dima et al. (2013) to transform a 12-lead ECG
into a VCG for subsequent feature analysis to detect myocardial
scar. Similarly, Sun et al. (2017) used IDT to analyze the VCG
loop in patients with myocardial ischemia. Dawson et al. (2009)
compared the Dower transformation matrix with the affinity
transform in relation to the transformation from 12 to 8 lead ECG
to 3 lead VCG and back. Based on the evaluated results, they
conclude that in both myocardial infarction (MI) and healthy
(HC) patients, the affinity transformation achieves better results
in transformation from 3-lead VCG to 12-lead ECG than the
Dower transform.

3.5 P Least Square Value (PLSV) andQ Least
Square Value (QLSV) Transformations
Transformation matrices derived from the regression approach
mainly focus only on the QRS complex of the heart cycle. The

accuracy of P and T waves is usually considered sufficient in
transformations and the differences in transformation matrices
are minimal. VCG loops can be used to detect arrhythmias with
high accuracy, emphasis is also placed on the accuracy of P and T
wave transformation Kors et al. (1990).

Guillem et al. (2006) presented a transformation matrix
derived using the regression method, which is optimized for P
wave. They named the transformation matrix as PLSV, see
Table 5. In addition to the matrix targeting the P wave, they
also derived a matrix optimized only for the QRS complex,
transformation coefficients are shown in Table 6. Both of
these matrices were derived from a total of 124 patients. Using
the least squares method, a regression model was found for each
patient and the resulting matrix is given as the mean value of the
transformation matrices for all patients. Guillem et al. (2006) also
compared the Kors and PLSV matrices for atrial fibrillation
records, and the PLSV transform yielded significantly better
results in this regard.

3.6 Transformation From Mason-Likar (ML)
ECG Leads
During stress tests, measuring a 12-lead ECG is not appropriate
due to limb movement. Therefore, Mason and Likar have
published their recommendations on how to limit the
movement of electrodes when measuring ECG in stress tests
Mason and Likar (1966). Interfering components that are created
by movement are eliminated by moving the measuring electrodes
to the chest. The resulting differences in signals should always be
taken into account Papouchado et al. (1987). For these reasons,
standard linear transformation methods cannot be used.
Guldenring et al. (2012) designed a new transformation
matrix, see Table 7, for the transformation of ECG measured
using Mason-Likar leads.

3.7 Singular Value Decomposition of
12-Lead ECG
Another possibility of deriving vector cardiographic leads is by
reducing the dimension of data using Singular Value
Decomposition (SVD). This is an orthogonal matrix reduction
of the data dimension defined by Golub and Van Loan (1996).
The principle of this transformation is as follows (Eq. 5):

Σ � UTMV (5)
where columns of U are referred to as the left singular vectors,

columns of V are referred to as the right singular vectors and M is
8 x n matrix of individual ECG lead of n samples Acar et al.
(1999).

TABLE 2 | Transformation coefficients of Kors regression method.

Lead I II V1 V2 V3 V4 V5 V6

X 0.38 −0.07 −0.13 0.05 −0.01 0.14 0.06 0.54
Y −0.07 0.93 0.06 −0.02 −0.05 0.06 −0.17 0.13
Z 0.11 −0.23 −0.43 −0.06 −0.14 −0.20 −0.11 0.31

TABLE 3 | Leading vectors for deriving a 12-lead electrocardiogram from the Frank XYZ signal.

Lead I II III aVR aVL aVF V1 V2 V3 V4 V5 V6

X 0.632 0.235 −0.397 −0.434 0.515 −0.081 −0.515 0.044 0.882 1.213 2.125 0.831
Y −0.235 1.066 1.301 −0.415 −0.768 1.184 0.157 0.164 0.098 0.127 0.127 0.076
Z 0.059 −0.132 −0.191 0.037 0.125 −0.162 −0.917 −1.387 −1.277 −0.604 −0.086 0.230

Frontiers in Physiology | www.frontiersin.org March 2022 | Volume 13 | Article 8565906

Vondrak and Penhaker Review of Processing Vectorcardiographic Records

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


The orthogonal leads obtained in this way do not
correspond directly to the Frank VCG, and the indications
obtained from these leads do not correspond to the indications
derived from the VCG leads, as stated by Belloch et al. (2007).
However, this method found use Acar and Koymen (1999)
where Hasan et al. (2012a,b) analyzed the morphology of QRS-
T loops using SVD.

3.8 Summary of Transformation Methods
Transformation methods were derived to obtain orthogonal lead
leads from a 12-lead ECG. There are many linear transformation
methods that are used in various branches of VCG processing.
However, each method has its advantages and disadvantages,
especially in the processing of pathological records, where
different pathologies affect different parts of the heart cycle. In
such a case, knowledge of the effect of pathology on the ECG
would be required to select the correct transformation method. If
a transformation method is selected that is not suitable for a
particular part of the ECG recordings, diagnostic information
may be lost by signal distortion. The following Table 8
summarizes the key features of each linear transformation
method. The Accuracy column shows the accuracy of the
transformation method according to the evaluation parameter
of correlation in individual leads. This is one of the most

frequently used parameters in the evaluation of transformation
methods. The stated quantitative values are defined as average
values of all leads from publications Jaros et al. (2019), Vozda and
Cerny (2015), Kors et al. (1990). However, these values are only
indicative, as the accuracy of the derivation depends on several
factors.

One of the most frequently used transformation method is the
IDT followed by the Kors regression method. There are more and
more studies that point to the fact that Kors regression method
achieves higher accuracy than other transformations Cortez and
Schlegel (2010), Cortez et al. (2014), Man et al. (2011), Kors et al.
(1990). The QLSV and PLSV methods are mainly focused on a
certain part of the ECG (QLSV—QRS complex, PLSV—P wave).
The quasi orthogonal method is derived by approximation to
VCG leads and is not suitable for processing due to its high
error rate.

If we assume a pathology that will affect more parts of the
ECG, a combination of two or more transformation methods
could be used to obtain a more accurately derived VCG. A
graphic comparison of the individual transformation methods
can be seen in Figure 3. From the first point of view, it can be
seen that the Kors regression method copies the shape of the
directly measured curve most accurately. However, various
statistical tests are needed to verify the accuracy of the

TABLE 4 | Transformation matrix for Inverse Dower transformation (IDT).

Lead I II V1 V2 V3 V4 V5 V6

X 0.156 −0.010 −0.172 −0.074 0.122 0.231 0.239 0.194
Y −0.227 0.887 0.057 −0.019 −0.106 −0.022 0.041 0.048
Z 0.022 0.102 −0.229 −0.310 −0.246 −0.063 0.055 0.108

TABLE 5 | PLSV transformation matrix.

Lead I II V1 V2 V3 V4 V5 V6

X 0.370 −0.154 −0.266 0.027 0.065 0.131 0.203 0.220
Y −0.131 0.717 0.088 −0.088 0.003 0.042 0.048 0.067
Z 0.184 −0.114 −0.319 −0.198 −0.167 −0.099 −0.009 0.060

TABLE 6 | QLSV transformation matrix.

Lead I II V1 V2 V3 V4 V5 V6

X 0.199 −0.018 −0.147 −0.058 0.037 0.139 0.232 0.226
Y −0.164 0.503 0.023 −0.085 −0.003 0.033 0.060 0.104
Z 0.085 −0.130 −0.184 −0.163 −0.193 −0.119 −0.023 0.043

TABLE 7 | Mason–Likar transformation matrix.

Lead I II V1 V2 V3 V4 V5 V6

X 0.5169 −0.0722 −0.0753 0.0162 0.0384 0.0545 0.1384 0.4606
Y −0.2406 0.6344 0.1707 −0.0833 0.1182 0.0237 −0.1649 0.2100
Z −0.0715 −0.1962 −0.4987 −0.0319 −0.2362 −0.0507 −0.2007 0.4122
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individual methods. Nevertheless, in the case of greater use of
Frank’s lead system in clinical practice to obtain the original
VCG, it would not be necessary to address the possibilities of
transformation and their accuracy in the preservation of
diagnostic information.

The following chapter describes the possibilities of
detecting individual heart diseases from VCG records.
Because VCG is not commonly obtained in clinical practice,
transformation methods are being approached. These

transformation methods are also listed in the individual
publications when used.

4 HEART DISEASE ANALYSIS FROM
VECTORCARDIOGRAPHY

Since the 19th century, it has been known that the heart muscle
emits quasi-periodic electrical signals during its activity.

TABLE 8 | Overview of transformation methods.

Transformation method Derivation of transformation methods Primary use Accuracy

Kors regression transformation Minimizing the mean error between the measured VCG and the transformed VCG All types of ECG >98%
Inverse Dower transformation (IDT) Pseudo-inverse matrix to a system based on a torso model Pathology affecting the QRS section >97.2%
PLSV transformation Derivation by least squares method P wave of ECG >96.8%
QLSV transformation Derivation by least squares method QRS complex of ECG >97%
Quasi-orthogonal transformation Approximation to VCG leads from ECG leads All types of ECG >90%
Mason-Likar (ML) Designed using the regression method Exercise and movement ECG >95%

FIGURE 3 | An exemplary comparison of transformation methods, where the blue curve is measured by the Frank lead system and the red curves are the
transformed one.
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Although it is very important, there are no standardized methods
for detecting pathologies from electrical heart activity measured
in three mutually perpendicular planes. This is mainly due to the
poor use of VCG in clinical practice and the scientific work that
does not provide the necessary evaluation from cardiologists.
Greater cooperation between authors and relevant doctors and
mutual openness to new procedures could address this
shortcoming.

Using various methods, it is possible to find a pattern of
healthy cardiac rhythms and different patterns for each type of
hearth disease. Published contributions and studies evaluate
patient records using various methods. It is important to use
the right criteria for an objective comparison of the newmethods.
This section presents the different methods and techniques used
for the subsequent evaluation of the most frequently analyzed
pathologies.

4.1 Acute Cardiac Ischemia
Acute cardiac ischemia can be characterized as an imbalance
between myocardial oxygen supply and demand. The
reduction in blood circulation is progressive and by
delivering insufficient blood to the myocardium are
myocardial cells deprived of the blood combinations
necessary for their survival Tomey and Gidwani (2016). The
authors approached to the detection of these life-threatening
conditions by various methods of processing VCG records,
where the most common cases were mainly myocardial
ischemia and myocardial infarction.

4.1.1 Myocardial Ischemia
In recent years, several publications have promoted different
methods for detecting and classifying electrical cardiac activity
in patients with myocardial ischemia Persson et al. (2006),
Martínez et al. (2006), Arini et al. (2008), Toledo and Wagner
(2007). Several publications have dealt with the topic of
preventing these life-threatening conditions by early
detection, where authors approach different methods of
VCG analysis. The detection of myocardial ischemia was
dealt by Sun et al. (2017), where they focused on the
development of a screening system using a
vectorcardiogram. They used a total of 132 patient ECG
records from two databases and introduced a total of 14
new characteristics to detect arrhythmia. They used derived
VCGs using IDT to analyze VCG features. Accuracy of the
proposed method was verified by calculating Accuracy (Acc)
(Eq. 6), Sensitivity (Sens) (Eq. 7) and Specificity (Spec) (Eq. 8).
The same calculation procedure was also used by Dima et al.
(2013), Sun et al. (2017), Correa et al. (2013), Yang et al.
(2012), Correa et al. (2016), Yang et al. (2013), Tripathy and
Dandapat (2017), Huang et al. (2011).

Sens � TP

TP + FN
(6)

Spec � TN

TN + FP
(7)

Acc � TP + TN

FN + FP + TP + TN
(8)

where True Positive (TP)/False Negative (FN) are records that
have a Ischemic Heart Disease (IHD) and are correctly/
incorrectly identified, while False Positive (FP)/True Negative
(TN) are records that do not have a IHD and are incorrectly/
correctly classified. The accuracy of the proposed method reached
98.07% sensitivity 98.63% and specificity 99.04%. They state that
the reliability of the proposed method is guaranteed by the
analysis of pathophysiology and application of QRS, ST and T
criteria. Another processing of QRS area connected with ST
segment was presented by Kawahito et al. (2003). They
analyzed the difference in the QRS vector, which reflects
changes in the shape of the QRS complex, and the size of the
ST vector, which represents the diversion of the ST segment from
the isoelectric level. They states that monitoring the ST vector size
and the QRS vector difference by vectorcardiography may be
useful for identifying myocardial ischemia during carotid
endarterectomy.

Correa et al. (2012) analyzed vectorcardiographic curves for
the detection of ischemia and used a total of 80 ischemic and 52
healthy records. They studied five parameters, where the best
results were achieved with a QRS Volume with a sensitivity of
64.5%, a specificity of 74.6% and an Area Under Receiver
Operating Characteristic Curve (AUC) = 0.77. Later, they
expanded their work, where their objective was evaluating
the vectorcardiographic difference between both groups
Correa et al. (2013). Synthesized orthogonal leads were
obtained by Kors transformation. They analyzed seven QRS
loop parameters, and from their analysis the best results
achieves a QRS volume, which achieved sensitivity 64.5% and
specificity 74.6%. In conclusion, they emphasize the fact that
VCG and ECG parameters have significant differences between
healthy and ischemic subjects. The QRS analysis was extended
by Sun et al. (2017) by evaluation of ST and T segment. They
analyzed a total of 17 parameters from the modified VCG using
the IDT. Out of the tested number of 132 records they achieved
an accuracy of 98.07%, a sensitivity of 98.63% and a specificity of
99.04%.

Dehnavi et al. (2011) used the Principal Component Analysis
(PCA) and Independent Component Analysis (ICA) methods to
reduce extracted VCG features. They used a set of 60 ischemic
and 10 physiological records and extracted a total of 22 VCG
parameters. After the reduction, they acquired five features that
served as parameters for input to the neural network classifier
(NNC). Their designed model has achieved accuracy 86% in
distinguishing HC fromMI. They also used the classical method
of IHD detection from ECG parameters (ST segment and
T-wave morphology) and compared to VCG parameters,
detection from ECG achieves lower accuracy (73%). Based on
the results obtained in this study authors indicate that VCG has
higher accuracy and sensitivity in automated detection IHD
than ECG.

Schuepbach et al. (2008) used cardiogoniometric leads (VCGC)
and classifies healthy (HC) and ischemic (IHD) patients.
Coronary angiography (CA) was used as a reference method.
They describe VCG as a set of parameters including: time scale,
size and direction of vectors, ratios of R/T vectors and ST/T
segments, and the percentage location of QRS and T loops in
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space. A follow-up article by Seeck et al. (2009) already uses
Linear Discriminant Functional Analysis (LDA) and the Machine
Learning Method for classification. Huebner et al. (2010) uses
statistical analysis, Mann-Whiteny U test and Kendall’s τ
correlation coefficient. The accuracy of the classifier
(sensitivity and specificity) is determined by the diagnostic
characteristic (ROC). Although the best results are obtained
with the Support-Vector Machine (SVM) classifier, the authors
strive to find a systematic approach instead of retrospective
optimization of results, which will bring better stability in the
diagnosis of IHD regardless of the type and distribution of
stenosis. The reported sensitivity and specificity for recent
studies are 72.1 and 76.3%, respectively.

4.1.2 Myocardial Infarction
Myocardial infarction (MI), also known as a heart attack, is a
consequence of coronary artery occlusion and insufficient blood
supply to the myocardium and may occur in different parts of the
heart. MI triad: ischemia, injury and necrosis or any of the threemay
appear alone or in combinationDubin (2000). It is reported by Lloyd
(2009) that nearly 452,000 Americans die from MI each year and
almost every 34 s in the US a heart attack occurs. Coronary artery
disease was considered to be the leading cause of death in America in
2004. Accurate detection of myocardial infarction is critical to early
medical intervention and improved quality of life. A commonly used
method for identifying cardiovascular diseases is time domain ECG,
which is now considered as the gold standard. However, projection
of cardiac electrical activity in the temporal region will reduce
important spatial information about cardiac pathological

behaviors. Therefore, new methods using vectorcardiographic
recordings that suppress the redundancy of the 12-lead ECG and
provide spatial information of cardiac electrical activity for early
identification of cardiovascular diseases are being approached.

VCG loops contain almost periodic activities of P, QRS and T
waves in three-dimensional space. This space can be divided into
eight octants, defined by Laufberger (1982), which was used by Yang
et al. (2012). They presented an approach that uses new
spatiotemporal features to identify different types of MI. VCG
signals were divided into 8 octants, see Figure 4, from which they
extracted a total of 48VCG features. The analysis was performed for a
total of 368 MI records and for 80 HC. They used Classification and
Regression Tree (CART) analysis to show that the octant traits of
VCG can distinguishMI fromHC. The proposed method achieved a
sensitivity (accuracy of MI identification) of 97.28% with a specificity
(accuracy of HC identification) of 95.00%.

In a previous study Yang (2010) examined the quantification
of VCG signals to identify cardiac disorders using the discrete
wavelet transform (DWT). A total of three classification models
were used to separate healthy and MI records: linear, quadratic,
and nearest neighbor (KNN). The linear discriminant analysis
(LDA) is based on Eq. 9 and assumes that the linear plane serves
as a boundary separating the points HC and MI.

y � α · S + ϵ � α0 +∑
n

i�1
αi · Si + ϵ (9)

where αi are model coefficients and Si represents input properties.
The residual error ϵ of the difference between the actual value and

FIGURE 4 | (A) Acquiring VCG signals; (B) Locations of the eight octants Yang et al. (2012).
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the model output determines whether VCG is HC or MI.
Quadratic Discriminant Analysis (QDA), based on Eq. 10,
assumes that the hyperplane serves as a boundary separating
the HC and MI points in the element space.

y � α · S + ST · β · S � α0 +∑
n

i�1
αi · S+

+∑
n

i�1
∑
n

j�1
βij · Si · Sj + ϵ

(10)

where αi, βij are coefficients, Si represents input properties and ϵ
are residual errors. In the KNN classification model, the authors
proceeded to use the Euclidean metric to measure proximity.
From all the three analyzed classification models it was LDA that
has reached the highest accuracy with sensitivity 96.5% and
specificity 75%. The LDA classification technique was also
used by Correa et al. (2016) with a total of 95 MI patients and
52 healthy patients. They concluded that several ECG and VCG
parameters showed significant differences (p-value < 0.05)
between healthy and MI subjects and were able to classify MI
and HC subjects with a sensitivity 95.8%, specificity 94.2%, and
accuracy 95.2%. Another use of the wavelet transform was used
by Sharma and Sunkaria (2018), this time to decompose the
segmented multi-lead electrocardiogram (ECG) signal into
different sub-bands. They extracted and analyzed a total of 10
VCG features. SVM and a KNN were used to classify MI and HC
with an overall accuracy of 81.71%, a sensitivity of 79.01% and a
specificity of 79.26%. Extraction and analysis of VCG features
together with octant theory was also dealt by Hafshejani et al.
(2021). The extracted features were applied to the CART
classifier. For the classification of MI and HC records, they
achieved an accuracy of 99.4% sensitivity of 100%, and a
specificity of 98.7%. Octane-based features were able to
distinguish between anterior MI and inferior MI with an
accuracy of 98.9%, a sensitivity of 98%, and a specificity of 100%.

Similarly, Kan and Yang (2012) introduced a new warping
approach that quantifies the pattern difference in
spatiotemporal VCG signals. For a total 309 MI and 79
physiological records the proposed multi-class classification
achieves an accuracy > 94.7% for separating MI and HC
and an accuracy of 96.5% for anterior-related MIs and
inferior-related MIs. In the next study, Yang et al. (2013)
presents a model based on Self Organizing Map using VCG
parameters. This method has a sensitivity of 94.9% and a
specificity of 95.7%. Even greater accuracy in MI detection
has been reported by Tripathy and Dandapat (2017). They
performed a multilevel analysis of the VCG signal using a
complex dual-tree wavelet transform, from which they
extracted a total of 15 features. The proposed method for
detection MI uses the Vector Machine Relevance classifier
(RVM) and the multiscale features of VCG signal, where the
accuracy is 99.80%, sensitivity 99.67% and specificity 99.90%.
The authors also point out that complex wavelet functions can
also be used to detect bundle branch block, cardiomyopathy and
ventricular tachyarrhythmia pathologies from the VCG signal.
Maximum-likelihood classifier (MLC), general linear model
(GLM), the nearest neighbor (KNN) and the Support-Vector

Machine (SVM) were used by Huang et al. (2011). They used 6 s
of recording for the created classification system. They extracted
total 64 VCG features and used 369 MIs and 80 HCs patient
records. The proposed classification achieved an accuracy
96.96%, sensitivity 99.89% and specificity 92.51%.

In other publications, the authors dealt with the extraction of
VCG MI features affected at various sites in the heart Ge (2008),
Kan and Yang (2012). Ge (2008) studied the effectiveness of
features extracted from VCGmeasured by Frank lead system and
from classical 12-lead ECG to classify healthy patients (HC),
patients with acute infarction (AMI) and subacute infarction
(SAMI). The author points out the importance of AMI detection
for its great clinical significance, where a small improvement of
the algorithm can save lives. The properties of VCG are
determined using a M-channel multivariable AR model of
order P, based on Eq. 11. The classification is performed by
the general linear model (GLM). The average detection accuracy
of all diagnoses is 98% for VCG and 73% for ECG.

Y k( ) � −∑
P

i�1
A i( )Y k − i( ) + E k( ) (11)

where Y(k) is an M-dimensional column vector of observation
over time in current research, E(k) is a M-dimensional column
vector that represents the multivariable AR modeling errors, A(i)
for i = 1, 2, . . . , P are M x M matrices of multivariate AR model
coefficients to be estimated. The results show a higher accuracy of
pathology detection in VCG analysis than in the case of a
standard ECG. Also the higher sensitivity of VCG in detection
in patients with inferior infarction is mentioned Hurd et al.
(1981), Edenbrand et al. (1990).

By evaluating certain sections of the heart cycle, such as PR
Korhonen et al. (2013) or ST Kawahito et al. (2003), Eriksson
et al. (2007), El Haddad et al. (2016), Fesmire et al. (2002),
Romero et al. (2010), Matveev et al. (2007), Hernandez et al.
(2018), it is possible to develop identification methods for further
detection of heart disease. Study dealing with changes in the PR
segment of the heart cycle by Jim et al. (2006) inspired Korhonen
et al. (2013) to evaluate dynamic PR segment changes for 37
patients with AMI. They analyzed PR interval, PR level, Change
in PR level, PR area and Change in PR area. The findings support
the concept that atrial ischemia causes similar changes in the PR
segment as ventricular ischemia in the ST segment. Similarly,
Eriksson et al. (2007) studied the prognostic value of various
reperfusion criteria for short-term continuous
vectorcardiography in 400 patients with ST-segment elevation
of myocardial infarction. They analyzed ST vector size (ST-VM)
at the beginning of registration and at the beginning of
thrombolysis, ST-VM 60 and 90 min after the start of
thrombolysis, and maximal ST-VM. They show that VCG may
be useful in selection of patients for coronary angiography
followed by revascularization. El Haddad et al. (2016)
developed and validated a novel method for detection
transmural ischemia based on a new 3-lead configuration.
They found that the proposed 3-lead configuration is highly
accurate for the early detection of acute occlusion-related
ischemia and exceeds conventional 12-lead ECG criteria. This
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method provides a platform for self-detection of CAO using
handheld devices or smartphones.

In recent years, there has been an increasing move to process
VCG features to improve pathology detection. Therefore,
Hernandez et al. (2018) analyzed 322 VCG features to
improve the detection of AMI from the ST and T wave
section which they reduced to five major features by using
stepwise forward selection as a method for variable selection.
From their results, they found that VCG features are able to
diagnose AMI slightly better than ST elevation and T-wave
maximum features together. Goernig et al. (2015) dealt with T
vector and T-loop parameters compared to a conventional 12-
lead ECG. They used 114 patient records and analyzed T vector
elevation, T vector azimuth, QRS-T angle, Tarea, Teigenv (expresses
the form and the symmetry of the T loop) and Tavplan (expresses
the bulginess of the loop). MI detection was successfully identified
in 75.2% of ECG records and 83.2% of T vector and loop
parameters from VCG.

Romero et al. (2010) assess depolarization changes during
AMI using analysis of the QRS loop represented by principal
component analysis (PCA). In addition to the classical method
based on the analysis of the ST-T section of ECG leads, it thus
provides a new vector approach to the detection of AMI. The
method includes signal preprocessing, which includes QRS
detection, detection of normal cardiac cycles, isolation of the
isoelectric line by cubic spline interpolation (CSI), delineation
using wavelet (WT) techniques, and normalization. The result is
an improvement in the sensitivity of the ST-segment inclination
parameters by 103%, respectively 46% for the VCG method
compared to the ECG for AMI detection.

Aranda et al. (2015) made a comparison between transformed
VCG records using IDT and originally measured VCG to identify
which record achieves better MI detection results. In conclusion,
the authors present two results, namely that the inverse Dower
transform achieves the same MI detection success rate as Frank
lead system and the second result, generally known, that electrode
positions have a great influence on the accuracy of identifying
patients with MI.

Chen and Yang (2013) developed amulti-step repeat approach
to VCG analysis for MI detection. Analysis of multiple
recurrences of VCG signals resulted in an improved
classification model having an average sensitivity of 96.8% and
a specificity of 92.8%. The time of recording also plays an
important role in the success of arrhythmia detection,
therefore Kulbertus and de Leval-Rutten (1974) described the
vectorcardiographic features observed during true apical
ventricular pacing in myocardial infarction patients. He states
that deformities may gradually decrease in later stages of the
disease. New method for processing angular acceleration during
ventricular repolarization from Frank lead system was proposed
by Cruces and Arini (2016). By combining the linear velocity,
obtained by differentiation, and the spatial velocity shown during
ventricular depolarization, they created a new VCG feature (the
so-called Heart Vector Rate Index: ICVV) with high sensitivity
(92%) and specificity (97%) values.

The processing of vectorcardiographic features has become a
reliable and recently expanded tool for the analysis of the VCG

curve. The creation of new features or improvements in analysis
techniques can contribute to better processing of VCG data and
achieve early detection of heart disease. The new VCG feature was
also proposed by Sadhukhan et al. (2017), which consists of a
combination of the volume ratio of the 3-D QRS and the ST-T
loop. From a statistical analysis, they found that this new feature
provide high sensitivity (98.8%) between the MI and HC groups.
Keshtkar et al. (2013) analyzed VCG features for 50 MI and 50
HC records and their proposed method based on probabilistic
neural networks achieves 93.0% sensitivity at 86.0% specificity
with 89.5% accuracy.

There are also papers that point to a significant impact of a
combination of QRS complex and ST segment analysis Treskes
et al. (2015), van Hellemond et al. (2013). Treskes et al. (2015)
analyzed ST vector at J-point (J-point is automatically localized
when the heart vector between QRS and T wave reaches its
minimum value) and ventricular gradient vector (VG) from
modified VCG by Kors regression method. According to their
findings, the authors report that ST and VG analysis for the
detection of acute myocardial ischemia is feasible and has either
the same or even better performance than the conventional
method. Also, van Hellemond et al. (2013) based on their
QRS and ST parameter evaluation study, the myocardial risk
area (MaR) estimation was more accurate that both ST and QRS
abnormalities were taken into account than using individual
components alone. The morphology of QRS-T for MI
identification was also addressed by Hasan et al. (2012b),
where they investigated beat-to-beat variations in their work
and they find beat-to-beat analysis useful for characterizing
abnormalities in MI patients. They further expanded their
work in extracting other features and further supported their
previous claims Hasan et al. (2012b). Their proposed algorithm
has been further improved in robustness, which now achieves
better results even on noisy data Karisik et al. (2019). Based on
these results, it can be argued that beat-to-beat VCG analysis can
be considered useful for distinguishing MI.

4.2 Myocardial Scar
Fatal arrhythmias (ventricular tachycardia, fibrillation, etc.), most
commonly caused by conduction defect from injured cardiac
tissue known as scar, are a major cause of sudden cardiac death.
Myocardial scar is the result of myocardial infarction (MI), which
is caused by insufficient blood supply to the heart. This results in
the death of part of the heart cells (scar tissue) and affects the
contractile properties of the myocardium. Methods for accurate
localization and scar size determination are different imaging
techniques such as magnetic resonance imaging (MRI). However,
this presents a number of disadvantages such as limited
availability, high costs and mobility. Therefore, new methods
for early identification of scar tissue in patients suffering fromMI
are being approached.

In 1971, Selvester et al. (1971) described detailed ECG and
VCG criteria developed from simulations for localization and
quantification of MI size. From these simulations, it was found
that in a lead at right angles to the epicardium of the respective
area, the degree of QRS change was proportional to the size of the
infarct. Wickline and McNamara (1978) confirmed this finding
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based on autopsy results performed on baboons and Selvester
et al. (1979, 1982) correlated the ECG/VCG QRS MI size scores
with biplane ventriculograms that of the LV. The VCG score was
calculated based on the deformations in the amplitude and length
of the QRS applied to the nomogram developed in the set-
learning test mode to predict the size of the MI. The 12-lead
ECG MI size score involved 57 criteria (Q- and R-wave duration,
R- and S-wave amplitudes, R/Q ratios, R/S ratios, and QRS slurs
or notches) in 10 of the 12 standard leads except aVR and III. The
maximum number of points was 32, and each point corresponded
to 3% of the LV mass (representing 96% of the LV) Strauss and
Selvester (2009).

VCG features are typically used for automatic classification
using machine learning algorithms. For example, Panagiotou
et al. (2013) used 27 spatial features to detect the presence or
absence of a scar in myocardial tissue. For processing they used
modified VCG by using IDT. For a total of 46 records, they
developed a classification scheme based on SVM for scar
detection. The proposed method achieves an accuracy of
82.36% (sensitivity 84.31% and specificity 77.36%). Another
method for scar detection using a complex model based on
the SVM was presented by Dima et al. (2013). A group of
extracted features from ECG and derived VCG was used to
formulate a classification model of the machine model of
supportive learning. From a total of 260 used patient records,
this model achieved an accuracy of 82.07% (sensitivity 76% and
specificity 87.5%).

Nguyên et al. (2018) investigated the relationship between
VCG parameters and myocardial scar (focal and diffuse) on CMR
in patients with heart failure with ventricular dysfunction and
whether the combination of VCG with scar parameters obtained
by CMR improves the prediction of CRT response. They
extracted QRSarea, Tarea and QRSTarea from the derived leads
using the Kors regression method. Based on their findings, it
follows that focal scar CMR parameters and QRSarea are
independent predictors for CRT response and are inversely
associated with each other. The highest percentage of CRT
response was observed in patients with low focal scar CMR
values and high QRSarea, indicating that combined CMR-
VCG parameters may improve prediction to CRT response.
The issue dealing with QRSarea and CMR was also dealt by
Okafor et al. (2020). The purpose of their study was to
determine in patients with ideally deployed quadripolar left
ventricular lead whether a reduction QRSarea leads to an acute
hemodynamic response (AHR) and whether the scar affects this
interaction. In their study, they found that lowering the QRSarea
improved AHR to CRT, myocardial scar adversely affectsQRSarea
and AHR.

Bizarro et al. (1978) performed a multivariate discriminant
procedure for VCG identification of ischemic myocardial scars
from 1162 HC records and 90 VCGs obtained from patients
proved at autopsy to have ischemic myocardial scars. They used a
total of 16 VCG features for discriminant analysis, which
achieved sensitivity 90% and specificity 97.2%. The
vectorcardiogram was also used as a non-invasive remodeling
method to detect the presence, location, and dimensions of
cardiac scars. Using a clinically derived computational model

of the entire torso, Gemmell et al. (2020) performed both slow
and fast pacing simulations for various myocardial scar patterns.
Their results show that differences in the dipole angle at the end
of the QRS complex and differences in QRS area can be used to
predict scar properties and were also be able to predict the
location of the scar with high accuracy.

Approximately 80% of the causes of SCD are associated with
coronary heart disease Myerburg and Junttila (2012). The
possibility of finding a suitable marker for SCD identification
was analyzed by Waks et al. (2015). They analyzed beat-to-beat
spatiotemporal variability in the T vector as the mean angle
between consecutive T-wave vectors. They applied IDT
transformation to derive VCG leads to the measured ECG
recordings. Based on their findings in a large study, the
increased risk of SCD is associated with higher variability in
temporal and spatial variability between beats in the spatial T
vector. In a previous study Tereshchenko et al. (2010) also looked
at beat-to-beat analysis of VCG records now to predict
ventricular arrhythmia (AV) as a possible predisposition to
SCD. From their analysis, the authors state that T peaks are
predictors associated with an increased risk of ventricular
arrhythmias.

4.3 Left Bundle Branch Block
Left Bundle Branch Block (LBBB) is a disorder of cardiac
conduction in the myocardium. Rather than heart disease, it is
an abnormality of intraventricular conduction where the left
ventricle is abnormally activated from the right bundle branch
which starts branching in the apical region. The entire left
ventricle is depolarized from the right bundle branching in the
apical region, thereby expanding and morphologically changing
the QRS complex. The main feature of LBBB is the mismatch
between the main axes of the QRS complex and the T-wave,
which is consistent with very wide QRS-T angles. Frank lead
system can be considered the gold standard for precisely defining
the mean spatial and vertex angles of QRS-T Schreurs et al.
(2010). In patients with LBBB and heart failure, the goal is to
achieve a more synchronous model of electrical ventricular
activation and contraction by left ventricular-based stimulation
(LV), thereby improving LV systolic function. Therefore, van
Deursen et al. (2015a) and van Deursen et al. (2015b) utilized
vectorcardiography knowledge to more accurately select patients
for cardiac resynchronization therapy (CRT). They evaluated the
QRS region from vectorcardiography against the commonly used
QRS duration and left bundle branching morphology. Their
findings suggest that the QRS area is a stronger predictor of
CRT compared to the QRS time or conventionally defined LBBB
morphology. A more precise selection of candidates for CRT was
also dealt by Rad et al. (2016), where the main parameter of the
study was also the QRS area. They used a total of 51 VCGs derived
by Kors regression method. They compared the QRS area with
QRS length and, based on their analysis, conclude that the QRS
area is a non-invasive alternative to intracardiac measurement of
electrical activation that identifies delayed left ventricular lateral
wall activation better than QRS duration and LBBB morphology.

Shvilkin et al. (2010) in their study they distinguished the
criteria to differentiate new and old LBBB. IDT were applied to
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the measured ECG recordings to obtain derived VCG leads. They
analyzed QRS and T-wave amplitudes, directions, and durations
and found that the QRS/T vector magnitude ratio and the deepest
S to largest T wave ratio allow accurate discrimination between
the new and old LBBBs with 100% sensitivity and 96–68%
specificity. This finding may help management of patients
with chest pain and LBBB. In another study, Villongco et al.
(2014) described a method for simulating LBBB branches and
RV-stimulated ventricular activation profiles in three dimensions
from non-invasive routine clinical measurements. They used IDT
and Kors regression transformation to derive VCG. They
developed an activation pattern predicted by optimal
parameters that correlates with invasive endocardial activation
time measurements. The aim of this approach is to improve non-
invasive electrocardiographic imaging techniques.

4.4 Hypertrophic Cardiomyopathy
Hypertrophic cardiomyopathy (HCM) is a cardiac disorder with
heterogeneous expression, specific pathophysiology and a diverse
clinical course. Several disease-causing mutations have been
reported in genes encoding sarcomere proteins. Due to its
characteristic clinical, morphological and genetic diversity,
hypertrophic cardiomyopathy has maintained the curiosity of
physicians and scientists for almost 40 years Maron (1997).
Whereas HCM is the most common cardiomyopathy, left
ventricular hypertrophy is, however, more commonly due to
hypertension and VCG might be useful here mainly due to
QRS and T mismatch and more circular T-loop.

One of the first studies at HCM was conducted by Chen and
Kawai (1978), where they examined a total of 45 patient VCG
records and their QRS and T loops. In its findings, it draws
attention to the changes in loops between HCM and HC.

Current ECG criteria have low accuracy in the diagnosis of left
ventricular hypertrophy (LVH). However, the magnitude of QRS
vectors and the direction of T loops can be considered useful
parameters for the diagnosis of LVH from VCG MURATA et al.
(1964). Man et al. (2012) trying to improve the diagnostic
accuracy of LVH by combining demographic,
anthropomorphic ECG and VCG variables. They used 196
VCG records derived by Kors regression method. They
divided the study group into four subgroups and compared
patient characteristics in each subgroup with an unpaired
t test or a χ2 test. They created a discriminatory model based
on Eq. 12, where D greater or equal than 0 predicts normal
echocardiogram and D less than 0 predicts LVH.

D � 5, 130 · BSA − 0, 014 · SA − 8, 74 (12)
where the BSA corresponds to the body surface area and SA
spatial QRS-T angle. The diagnostic accuracy (79%) was better
than the diagnostic accuracy of the conventional LVH ECG
criteria (57%). The VCG was also analyzed by Kataoka and
Tomoike (2021) to increase the accuracy of LVH diagnosis.
Their goal was to quantify the three-dimensional
characteristics of the P, QRS, and T loops from which they
extracted features using the minimum volume ellipsoid
enclosure (MVEE). They used random forests as a decision

classifier for the extracted features, where they achieved an
accuracy of 0.904 (95% confidence interval: 0.861–0.947).

HCM is a genetic heart disease with unexplained left
ventricular hypertrophy and is one of the most common
causes of sudden cardiac death in young people. The issue of
HCM was also studied by Cortez et al. (2017b) and used a total
967 VCG records derived by Kors regression method. They
analyzed spatial mean and peaks QRS-T angles, spatial
ventricular gradient (SVG), spatial QRS, QT, and Tpeak-Tend
(TpTe) intervals. They evaluated the differences between
patients with HCM with a positive genotype and with a
negative genotype. They found that the QRS-T parameter
from derived VCG can distinguish patients with HCM from HC.

The HCM study in children was also studied by Jimenez et al.
(2021), where they analyzed the T loop from the derived VCG.
Based on T-wave vector (VM) analysis, it was found that lower
VM was associated with a higher risk of developing a sentinel
event in HCM, presumably as an indicator of abnormal
repolarization.

4.5 Long QT Syndrome
Long Q-T syndrome (LQTS) is an inherited and life-threatening
condition whose initial symptoms develop in childhood or
adolescence. Ion channel dysfunction in myocytes causes
delayed repolarization. The characteristic prolonged Q-T
interval is associated with torsade de pointes and sudden cardiac
death Diamant et al. (2013), Goldenberg and Moss (2008).

Important finding was presented by Diamant et al. (2013,
2010) in the diagnosis of long QT syndrome from
vectorcardiography. Diamant et al. (2013) determined whether
the VCG record was better than a 12-lead electrocardiogram in
providing a correct diagnosis of long QT syndrome (LQTS) in
children. For their study, they used a set of 70 child records, where
35 records were diagnosed with long QT syndrome. Of 35
children with genetically confirmed LQTS, 30 (86%) were
diagnosed correctly with QTVCG and 24 (69%) with QTECG.
The specificity was 80% for QTVCG and 77% for QTECG. While
Diamant et al. (2010) presented two methods of QT analysis,
manual evaluation from ECG using four experienced observers
and automatic computer measurement with evaluation from
VCG. They confirm that automatic VCG detection achieves
high precision and reliability in LQTS detection. From these
findings, they indicate the importance of vectorcardiography in
the detection of LQTS.

Cortez et al. (2017a) investigated by retrospective analysis
patients with hidden LQTS (ecLQTS). They used a dataset out of
a total of 610 records with LQTS (169 records with ecLQTS)
compared to 519 records of healthy individuals. They found that
ecLQTS can be distinguished from healthy individuals by QT
peak analysis.

4.6 Atrial Fibrillation
Atrial fibrillation (AF) is one of the most common heart diseases
occurring in 1–2% of the population. Although AF itself is not a
life-threatening condition, it increases the risk of stroke fivefold,
and every fifth stroke is attributed to this arrhythmia. Ischemic
strokes associated with AF are often fatal, and patients who survive
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are more affected by stroke and are more likely to relapse than
patients with other causes of stroke Camm et al. (2010).

Newmethods for correct AF detection were sought. Bartall et al.
(1978) compared the accuracy of AF detection from a standard 12-
lead ECG and a VCG. They concluded that VCG measured by
Frank lead system achieves a higher sensitivity for the detection of
echocardiographically detectable left atrial enlargement and a
higher success rate of AF detection. Filos et al. (2017) dealt with
AF which can last up to 48 h. They investigated patterns of P-wave
morphology thatmay occur in patients with Paroxysmal AF (PAF).
They used 29 PAF and 34 physiological VCG records using a
method based on the identification of dominant and secondary
P-wave morphology by a combination of adaptive clustering of
morphologies (KNN) and the beat-to-beat correlation technique.
From their analysis, seven features were highlighted, which the
SMV classifier determined the detection accuracy at 93.75%. The
issue of PAF was also examined by Filipova et al. (2017) and
Yamashita et al. (2011). Filipova et al. (2017) studied total 276
patients with a diagnosis of hypertension (HT) at risk for
paroxysmal atrial fibrillation. It is possible, that especially P
wave and P loop values can reflect the abnormal status in atrial
myocardium prior the PAF onset. Their analysis shows that HT
patients with verified PAF have more abnormal P and QRS wave
and loop parameters than HT patients without a history of PAF.

The problem of early detection of AF was also addressed by
Kawano et al. (1988). In their study, they found that P waves
from patients with transient AF without apparent anatomical
changes in the atria showed abnormal findings in the VCG.
These abnormal phenomena include: 1) Prolonged duration
and increased amplitude of the P wave in recordings from
Frank lead system 2) Abnormal bites or notches in the P loops
in the VCG 3) Increased values of the P waves in the spatial
velocity ECG and spatial magnitude ECG 4) Prolongation of
both the anterior and the left maximum in the body surface P
maps. For better analysis during AF, van Oosterom et al.
(2007) designed a vectorcardiographic lead system based on
the Gabor-Nelson equation. Six electrode configurations and
their dedicated transfer matrices were tested using 10 different
episodes of simulated AF and 25 different chest geometries.
Their results indicate that the alternative electrode
configuration should include at least 1 electrode on the
back of the body to observe the dipolar activity of the atria
during AF.

Transformation methods have also found application in the
analysis of spatial characteristics of AF from derived VCG using
IDT Carlson et al. (2005); Ng et al. (2004); Guillem et al. (2009). Ng
et al. (2004) analyzed the synthesized VCGs of each f-wave cycle of
each ECG and its plane of best fit, described by azimuth and
elevation angles relative to the frontal plane. From their findings,
fifteen of the 22 patient records analyzed had at least 30% of the
planes in one 30-degree region of azimuth angles. While Guillem
et al. (2009) compared the loop orientation of the derived and
directly measured VCG. They state from their results that IDT
should not be used for the analysis of fibrillatory wave loops in AF,
due to the fact that the spatial parameters can differ significantly
from the directly measured VCG. However, it should be borne in
mind that the transformation methods also work with the presence

of the P wave, and in the case of AF, the transformation could
introduce a significant error into the derived signal.

However, AF can also be reliably detected on a standard
ECG, but there may be some problems when using one or a few
leads. In this respect, VCG could provide support in
applications where fewer leads are used in a 12-lead ECG,
such as patient monitors or smartphones or watches. The use
of a lower number of leads can also be used in VCG, where it is
necessary to focus on the direction of propagation of the
potential P wave vector.

5 CURRENT PROBLEMS

The identification of heart disease from diagnostic methods is
a frequently discussed topic in recent years. For decades, 12-
lead ECG has been considered as the gold standard for
electrical heart activity diagnostics. However, there are cases
where a standard ECG does not achieve the necessary success
rate of detecting various ischemia using automated detection.
Therefore, VCG is approached as a method that can provide
additional information Edenbrand et al. (1990), Stovicek et al.
(1993), Warner et al. (1982), Filos et al. (2017), Iwaniec et al.
(2018), Okafor et al. (2020), Jimenez et al. (2021). Standardized
VCG leads using Frank lead system are rarely used nowadays,
and for this reason trends are shifting to a derivation solution.
Comparative studies and individual work have shown that
regression transformations are more accurate than model-
based transformations Kors et al. (1990), Levkov (1987),
Rubel et al. (1991), Jaros et al. (2019). Many different
regression transformation matrices can be obtained, all of
which yield similar results. Quasi-orthogonal leads are not
truly orthogonal and the interpretation of VCG is only
approximate. Although there is some correlation with VCG
leads, the spatial information that can be obtained from the
ECG is reduced. In some studies, it has been shown that these
Quasi-orthogonal derivation methods achieve poor results
Kors et al. (1990), Levkov (1987), Rubel et al. (1991) and
for these reasons they should not be used for further
processing.

For the processing of pathological data, theremay be a problem in
selecting the most suitable transformation method. The reliability of
the methods is also conditioned by different and inconsistent
evaluation parameters. Linear transformation methods have
proven to be a useful and frequently used tool for converting 12-
lead ECGs to VCGs. The most commonly used transformation
methods include the IDT, the Kors regression, the PLSV and QLSV
methods, and in some cases also the Quasi-orthogonal approach.
IDT is the most commonly used transformation method for further
processing. This transformation method is mainly focused on the
QRS complex, but also achieve reliable accuracy in other parts of the
ECG signal. Methods that have been derived to improve accuracy
only for some parts of the cardiac cycle (QLSV, PLSV) achieve the
same accuracy as the regression approach. However, the accuracy of
transformation methods also needs to be evaluated with a
cardiologist. The problem with transformation methods and their
transformation accuracy, in which the preservation of diagnostic
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information is addressed, would be solved by more frequent use of
Frank lead system in clinical practice.

As additional information for the detection of heart disease are
used VCG features. Studies have shown that VCG features extracted
from pathological records such as myocardial infarction, myocardial
ischemia,myocardial scar or atrial fibrillation can reliably distinguish
test groups from healthy controls. Current studies have confirmed
that the VCG features analysis especially of the QRS complex in
particular provides reliable detection results Correa et al. (2010);
Yang et al. (2012); Tripathy and Dandapat (2017); Kan and Yang
(2012). An overview of selected important comparative studies
dealing with VCG features are summarized in Table 9. The
relevant table describes the scientific work relevant in particular
to this review. Central to the table, is the column VCG features,
which shows the total number of VCG features for individual works
and their most important features. For publications with a large
number of features, only the number is given.

Paramount is to evaluate the diagnostic significance of
individual features, which may be different for different
pathologies. Most studies only deal with the
individualization of VCG features to a particular dataset.
Thus, their results do not have to correspond to another
database. It would be useful to compare the effectiveness of

different features between the databases because each dataset is
obtained by different measurement parameters. This fact is
also correlated to the small number of available VCG datasets,
where only a few authors use their own measured records for
their study. The lack of records could be reduced by providing
records by the authors or creating new datasets using modern
devices. There are VCG features that are used in most
publications and achieve high detection accuracy in terms
of statistical evaluation. However, these features are not
standardized for certain arrhythmias despite their possible
diagnostic benefit, caused mainly by not consulting the
results with cardiologists. The derivation and extraction of
additional VCG features could further contribute to obtaining
additional information necessary for the early diagnosis of
heart disease.

6 CONCLUSION

Vectorcardiography, which in recent years is more often analyzed
mainly in the research field, and which represents a different
approach in the representation of electrical activity of the heart,
can help us to obtain information that can help in the early

TABLE 9 | An overview of important comparative studies.

Author Year Purpose VCG features Data collection Transformation
method

Kawahito et al.
(2003)

2003 QRS, ST-T
parameters study

2 features QRS vector difference, ST vector magnitude VCG measured by authors none

Huang et al. (2011) 2011 MI detection 64 features, QRS, T vector magnitudes R-T peak angle PhysioNet PTB none
Yang et al. (2012) 2012 MI detection 48 features Q, R, T—vector magnitude, R, T—vector angle,

Angle between R and T-vector
PhysioNet PTB none

Correa et al. (2012) 2012 QRS, ST-T
parameters study

8 features QRS—Volume, Planar Area, Ratio between Area
and Perimeter, Perimeter, ST Vector Magnitude, ST segment
Level, T-wave amplitude

PhysioNet PTB Kors regress

Correa et al. (2013) 2013 Cardiac ischemia
detection

8 features PhysioNet PTB Kors regress

Panagiotou et al.
(2013)

2013 Myocardial scar
detection

27 features R-width, T-width magnitude, R-peak, T-peak PhysioNet PTB, Cardiology
Department (UHS-NHS)

Dower’s inverse

Dima et al. (2013) 2013 Myocardial scar
detection

25 features PhysioNet PTB, Cardiology
Department (UHS-NHS)

Dower’s inverse

Treskes et al. (2015) 2015 Myocardial
ischemia detection

2 features ST vector, Ventricular gradient vector ECG measured by authors Kors regress

Aranda et al. (2015) 2015 MI detection 98 features PhysioNet PTB Dower’s inverse
Correa et al. (2016) 2016 MI detection 9 features QRS—Volume, Planar Area, Perimeter, Vector

difference in ST segment and T-wave, ST-T Vector
Magnitude Difference

PhysioNet PTB none

Sedaghat et al.
(2016)

2016 QRS parameters
Study

5 features QRS loop roundness, planarity, thickness,
rotational angle, dihedral angle

ECG and VCG measured by
authors

Dower’s inverse

Sun et al. (2017) 2017 Myocardial
ischemia screening

17 features PhysioNet PTB, STAFF III Dower’s inverse

Tripathy and
Dandapat (2017)

2017 MI detection 15 features PhysioNet PTB none

Sharma and
Sunkaria (2018)

2018 MI detection 10 features PhysioNet PTB none

Gemmell et al.
(2020)

2020 Myocardial scar
detection

6 features Derived whole-torso
computational model with
simulations

none

Hafshejani et al.
(2021)

2021 MI detection 48 features PhysioNet PTB none
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diagnosis of heart disease. The main problem is that this method
is not measured in clinical practice and the authors approach this
method using transformation methods. The most important
condition for the transformations is that diagnostic
information must not be lost. Only an experienced cardiologist
can evaluate the effect of transformation. If we only need a certain
part of the heart revolution for processing, it is more appropriate
to use specialized methods, which are focused on that part. The
most accurate current methods are the IDT and the Kors
regression transform but they lag slightly behind the accuracy
of the P and T waves. This gap in the imperfection of linear
transformation methods needs to be further addressed, due to the
consequent better accuracy of transformation and preservation of
diagnostic information. The new transformation method could
refine VCG findings and provide physicians additional
information for the early treatment of heart disease.
Complications of applying transformation methods could be
reduced by more frequent use of Frank lead system in clinical
practice.

In most cases processing of VCG is performed on already
measured datasets and is performed so-called offline. Future
intentions may lead to the creation of devices that will process
data using already proven techniques in real time or on newly
created data or datasets. To detect different pathologies, the
authors use different VCG features applied to derived or
directly measured VCGs. Certain features are often pointed
out that achieve reliable pathological detection. The authors
analyze various parts of the cardiac revolution, such as the
QRS complex, where they achieve relatively high detection
accuracy (sensitivity and specificity is often > 90%) or the
S-T region with sensitivity and specificity around 80%.
However, different processing methods for each access are
often used. To complete the knowledge, it would be
appropriate to focus on a certain type of processing. Few

authors also consult their results with cardiologists to confirm
their importance. They merely point out differences in
morphological properties to assess the new method. The
assessment of certain features by cardiologists could help
standardize the features for certain pathologies. Combinations
of VCG features for different loops of cardiac cycle achieve
promising results but this approach is rarely used. By
combining the QRS complex and the ST segment features,
greater differences can be achieved between groups HC and
the pathology. It would be advisable to consider using multiple
VCG parts (QRS loop, ST segment, T wave) for analysis rather
than just one.

Combining the above suggestions and discussing the
results with cardiologists could help with visualization and
gain new insights into the electrical activity of the heart. It
would also be beneficial to increase the frequency of use of
Frank lead system in clinical practice because as has been
shown by more accessible and improving computer
technology, the VCG method is suitable for the analysis of
various heart diseases.
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