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The detection of Early Warning Signals (EWS) of imminent phase transitions, such as
sudden changes in symptom severity could be an important innovation in the treatment or
prevention of disease or psychopathology. Recurrence-based analyses are known for their
ability to detect differences in behavioral modes and order transitions in extremely noisy
data. As a proof of principle, the present paper provides an example of a recurrence
network based analysis strategy which can be implemented in a clinical setting in which
data from an individual is continuously monitored for the purpose of making decisions
about diagnosis and intervention. Specifically, it is demonstrated that measures based on
the geometry of the phase space can serve as Early Warning Signals of imminent phase
transitions. A publicly available multivariate time series is analyzed using so-called
cumulative Recurrence Networks (cRN), which are recurrence networks with edges
weighted by recurrence time and directed towards previously observed data points.
The results are compared to previous analyses of the same data set, benefits, limitations
and future directions of the analysis approach are discussed.

Keywords: multiplex recurrence networks, multivariate time series analysis, resilience loss indicator,
multidimensional recurrence quantification analysis, complex adapt system (CAS), process monitoring,
transition network

INTRODUCTION

The detection of Early Warning Signals (EWS) of imminent transitions in states of the body and
mind has been a topic of great interest in the sciences that study health and wellbeing. In a clinical
setting, such transitions often concern sudden changes in symptom severity associated with the onset
of disease or psychopathology (see e.g., Leemput et al., 2014; Cramer et al., 2016; Fartacek et al., 2016;
Wichers et al., 2016), or, conversely, they might herald onset of recovery due to psychological or
medical interventions (see e.g., Kowalik et al., 2010; Lichtwarck-Aschoff et al., 2012; Olthof et al.,
2019a, Olthof et al., 2019b). These transitions are often conceived of as the phase transitions of
complex dynamical systems (cf. Olthof et al., 2022) and the EWS generally refer to well-known
critical phenomena observed around the tipping points of thermodynamical, chemical and ecological
systems (Scholz et al., 1987; Scheffer et al., 2009; Lenton, 2013).

Most EWS are so-called indicators of a loss of resilience (Scheffer et al., 2018), that is, a state of the
system that is currently stable starts to display characteristic signs of instability such as critical
slowing down, or, critical fluctuations. Critical slowing down refers to the increase in return times
after perturbation which can be directly observed in perturbation experiments (Scholz et al., 1987),
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or, can be inferred from data, for example by evidencing an
increase in magnitude of short-range temporal autocorrelations
or variance (Leemput et al., 2014; Weinans et al., 2021). Critical
fluctuations can be evidenced by a change in power law scaling
behavior (e.g., Bak et al., 1987; Stephen et al., 2009), an increase in
fluctuation intensity (e.g., Kelso et al., 1986; Fartacek et al., 2016;
Olthof et al., 2019b) or an increase of entropy and related
measures (e.g., Stephen et al., 2009; Lichtwarck-Aschoff et al.,
2012). The ability to detect such periods of destabilization is
hypothesized to be informative for the optimal planning of
interventions which attempt to facilitate a transition to a more
healthy state. There is also a great potential use in the context of
prevention, that is, EWS could be used for the timing of activities
intended to prevent a maladaptive state to emerge in the first
place (e.g., Schiepek et al., 2011; Schiepek et al., 2016; Olthof et al.,
2022). It is important to note that EWS like critical fluctuations
and critical slowing down are associated with particular types of
transitions that involve one or more control parameters of the
system to approach a critical value. Not all order transitions can
be attributed to changes in control parameters (Burthe et al.,
2016; Guttal et al., 2016), an apparent transition to a qualitatively
different mode of behavior can for example be noise-induced,
continuous, or, due to nonlinear dynamics evolving within a
specific regime without a change in control parameters (see e.g.,
Lenton, 2013). For the purpose of the present paper we will
assume the data under scrutiny contain at least one critical
transition that is expected to be preceded by EWS.

Weak Versus Strong Complexity
Assumptions
The multivariate time series data analyzed in the literature on
health and wellbeing mostly concern self-reports of human
experience collected through the Experience Sampling Method
(ESM), or Ecological Momentary Assessment (EMA) in which
participants are prompted one or more times per day to answer
some questions, which are often self-ratings of psychological or
physical states. Another data source concerns the measurements
of physiological variables recorded by wearable sensors. Both
types of data are known to be non-stationary, contain sudden
shifts in level, trend, or variance (Shiffman, 2014; Nezlek, 2015;
Schiepek et al., 2016) and contain evidence of long-range
temporal correlations and power-law scaling (Delignières et al.,
2004; Hasselman and Bosman, 2020; Olthof et al., 2020).

Many researchers do acknowledge the data generating
processes underlying time series appear to violate the ergodic
assumptions of stationarity, homogeneity (Molenaar, 2004) and
memorylessness (Ramachandran, 1979), but will consider these
facts to be nuisance factors that should be removed from the data,
or handled by (statistical) models as a covariates or random
effects (weak complexity assumption).

One approach suggested to “deal with” non-stationarity is to
collect data during a short, but very intensive, measurement
period, for example, one or 2 weeks in which a participant is
prompted 10 or more times per day to provide self-reports of
activities, emotional, psychological or physiological states (Trull
and Ebner-Priemer, 2009; Smith, 2012; Liao et al., 2016). A post-

data collection approach is data-segmentation based on the
identification of relatively stable or homogeneous epochs in
the time series data and fit a model for each stable epoch
separately (Bak et al., 2016; Wichers et al., 2016). This is of
course disrupting potential long range dependencies in the data
and introduces a problem for use in practice: The epochs can only
be identified and analyzed after the data collection has ended. Less
destructive, but still aimed at removing potentially nonlinear
phenomena are the practices of detrending, “artefact” removal
and imputation (Adolf and Fried, 2019; Piccirillo and Rodebaugh,
2019). On the data analysis side, these phenomena are often
modeled as nuisance factors, noise, or, explicitly as model
parameters, for example, time varying parameters to deal with
nonstationarity like Time Varying Auto Regressive models (TV-
AR, Bringmann et al., 2017), identifying homogeneous subgroups
to deal with heterogeneity (GIMME, Beltz and Gates, 2017; Gates
et al., 2014), or, using fractional integration components to deal
with long-range dependence (ARfiMA, Diniz et al., 2011; Torre
and Wagenmakers, 2009; Hasselman, 2013). These statistical
models generally limit estimating temporal dynamics to the
linear domain and very short time scales (e.g., lag-1 vector
autoregression Epskamp et al., 2012). This is also the case for
network models estimated from time series, like the Gaussian
Graphical Model (GGM, Epskamp et al., 2012) and the Ising
graphical model (Van Borkulo et al., 2014). Finally, a practice that
is commonly observed is the aggregation of time series, which
often concerns the simple averaging of different time series to
achieve dimension reduction. In general, such naive approaches
to the aggregation of time series are not recommended (cf.,
Petitjean et al., 2011). As a consequence, the techniques used
under the weak complexity assumption greatly reduce the range
of potential data generating processes that can be considered to
underlie the observed (multivariate) time series.

These examples also reveal that current methods
(measurement and data analysis) and models (inference and
interpretation) used to detect EWS in time series data of
physiological and psychological variables impair their
potential for being applicable in a clinical setting. The first,
rather obvious point is that clinical practice requires
personalized, idiographic methods, that is, EWS should be
reliably detectable in data observed in a single individual and
ideally make use of the particular facts pertaining to the case
(personal history, social-economic context, pre-existing
conditions, etc.). This requirement excludes all methods
that have been used in studies to evidence EWS based on
samples of many individuals (e.g., Leemput et al., 2014).
Second, although methods and models from complexity
science are available, many authors focus on developing
(linear) statistical models to evidence EWS. Two recent
reviews of the personalized approach to psychopathology
(Piccirillo and Rodebaugh, 2019; Wright and Woods, 2020)
fail to discuss, or even mention, the use of complexity methods.
As a consequence analyses often have to be conducted post-
data collection, which renders the techniques impractical for
analyzing and intervening on continuously sampled patient
data. Studying which EWS predicted a transition, after the
transition has already occurred may be of value to the
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researcher, but the clinician has to be able to make decisions in
the here and now.

The present study: “First Analyze, then Aggregate!”
It is the purpose of the present paper to showcase an analytic
approach to detecting EWS under a strong complexity assumption,
that is, analytic techniques will be used that were developed to
quantify the dynamics of complex systems, even in the context of
nonstationary and nonhomogeneous time series data. Moreover,
the explicit goal is to provide an analysis strategy that meets the
requirements for potential use as a tool in a clinical setting for the
diagnosis and treatment of individuals. The analysis strategy is
based on recurrence networks, to which some constraints are
added, resulting in a so-called cumulative Recurrence Network
(cRN). The cRN is constructed from a recurrence matrix based
on measurements of the state variables of the system (Marwan
et al., 2007; Wallot et al., 2016) and is a directed, weighted, network
(Zou et al., 2019) in which the nodes represent time points, the
edges connect recurring values and the weights represent the
distance (in time) between two recurring values. The direction
of the edges is always towards previously observed time points
(out-degree only). This mimics the situation in which only data up
to the most recently observed point in time is available to decide on
the presence of EWS. In order to show we can dispense with
unnecessary aggregation or dimension reduction of multivariate
time series data, cRN representing the phase spaces of different
subsystems will be constructed into a Multiplex Recurrence
Network (Zou et al., 2019).

To demonstrate the potential of Multiplex cumulative
Recurrence Network analysis for multivariate time series data,
a publicly available data set was analyzed (the data were published
as: Kossakowski et al., 2017). The data were acquired in the
context of a double-blind N = 1 experiment in which the
antidepressant medication of a participant diagnosed with
Major Depressive Disorder (MDD) was gradually reduced

(Wichers et al., 2016). The participant generated 1,478
questionnaire responses (on average 43.4 per day) over a
period of 239 consecutive days. The purpose of the original
paper was to detect critical slowing down as an EWS for the
critical transition that occurred. The transition concerned going
from a non-depressed state to a depressed state, likely due to the
reduction of antidepressant medication. Figure 1 panel A,
displays the mean of weekly measurements of the SCL-90-R
depression scale, which will be interpreted as the global state
variable in which the transition is observable. During the time of
the critical transition, data collection was partly stopped, so the
apparent drop in symptom severity in fact reflects a period in
which the global state variable was not observed. The daily
measurements will be analyzed for the presence of EWS. It is
assumed the multivariate data at least approximately capture the
internal state dynamics of several different subsystems of the
entire phase space that represents the micro-scale configurations
from which the macroscopic, system-wide depressive state
emerges.

First, a brief overview of recurrence analysis and recurrence
networks is provided, second, the concept of the (multiplex) cRN
is introduced as a tool for analyzing multivariate time-series data
obtained through the real-time monitoring of an individual.
Finally the technique is applied to the data and compared to
the original analyses by Wichers et al. (2016).

TIME SERIES ANALYSES BASED ON
RECURRENCES IN PHASE SPACE

Recurrence Quantification Analysis and its derivatives (Marwan
et al., 2007; Cox et al., 2016) are not new to the behavioral and life
sciences and have been successfully applied to study the temporal
dynamics underlying human physiology (Schinkel et al., 2009; De
Graag et al., 2012), motor coordination (Shockley et al., 2003;

FIGURE 1 | Panel (A) shows the state variable (SCL-90-R). Panel (B) is an example of the subset of Mood time series.
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Aßmann et al., 2007; Wijnants et al., 2011), perception (Hasselman,
2015), language (Wijnants et al., 2012; Wallot et al., 2013), cognitive
performance (Stephen et al., 2009; Oomens et al., 2015) and dyadic
interaction (Dale and Spivey, 2006; Louwerse et al., 2012). A large
number of studies use RQA to quantify dynamics of physiological or
performance measurements in different populations, for example
comparing literacy skills in average and dyslexic readers (Wijnants
et al., 2012; Hasselman, 2015), or searching for biomarkers of
Asperger’s syndrome, schizophrenia, ASD (Fusaroli et al., 2013,
2016), absence epilepsy (Bosl et al., 2017) and speech pathology
(Little et al., 2007).

Recurrence analytic approaches to time series analysis are
essentially model-free (descriptive) and make only a few
assumptions about the data related the observation of
dynamics/variance (Bianciardi et al., 2007). Moreover they
allow for:

• The description of linear as well as nonlinear dynamical
phenomena (Marwan et al., 2007).

• The description of (transitions between) dynamical regimes,
even in exceptionally noisy environments (Zbilut et al.,
1998).

• The quantification of recurrent dynamics across all available
time scales (Marwan et al., 2007; Donner et al., 2011).

• The quantification of attractor geometry across all available
time scales (Zou et al., 2012).

• The quantification of structural similarities between
different time series represented as Multiplex Recurrence
Networks (Zou et al., 2019), suspending the need for
potentially problematic aggregation and/or dimension
reduction of multivariate time series data.

It is not the case that results from recurrence-based analyses
are immune, or “robust” to nonstationarity and nonhomogeneity,
rather, it is the case that these methods can be understood as
descriptive of such dynamics. The goal is not to infer a true
model, process or estimate a population model parameter, but to
characterize the dynamics displayed during the observation time,
either as observed, or, after a reconstruction of the phase space.

Recurrence Quantification Analysis
Recurrence analyses are based on a recurrence matrix which
represents the states of the system that are re-visited at least once
during the time the system was observed. If a sequence of states is
recurring, this is referred to as a trajectory in phase space, a
relatively stable state, or, orbit of the system. In this paper the
observed variables in a multivariate time series are considered to
be measurements of the state variables of the system (cf. Marwan
et al., 2007; Wallot et al., 2016).

An observed time series can be interpreted as a finite
representation of the trajectory or state-evolution of a
stochastic or deterministic dynamic system: yi

N
i�1, with yi = y

(ti) (cf. Zou et al., 2019). The open data set analysed in the present
paper is a multivariate time series of at least 70 variables observed
in a single participant over the period of 239 days. The variables
can be conceptually grouped into six subsystems (Mood, Physical,
Self Esteem, Mental Unrest, Sleep and Day). Each time series is

considered a state vector yi
→ of the m-dimensional phase space of

the (sub)system. For example, the Mood subsystem consists of
12 time series representing a 12-dimensional state space. The 12
values that were simultaneously observed at each time point
represent a specific Mood-state, which can be regarded as a
12-tuple coordinate in the 12 dimensional space. As the
observed values change over time, they trace a trajectory
through this space representing the mood dynamics of the
participant. By evaluating the observed values as coordinates it
is possible to quantify whether the system (approximately)
returns to the same regions and revisits previously traversed
trajectories. In the current context this would refer to recurring
emotional states.

The recurrence matrix Ri,j is defined as:

Ri,j ε( ) � Θ ε − ‖ �yi − �yj‖( ), i, j � 1, . . . , N (1)
where ‖ · ‖ is a distance norm (e.g., Euclidean, Chebyshev,
Manhattan) calculated for each coordinate relative to every
other coordinate, ε is a threshold value for the distances
between coordinates, and Θ is the Heaviside function, which
returns one if a distance value falls below ε and 0 otherwise. The
threshold value ε directly determines how many recurring values
appear in the matrix, which is called the Recurrence Rate
(proportion of recurrent points in Ri,j). Figure 2 represents
the distance matrix of all observed coordinates in the 12-
dimensional Mood phase space. The color-bar displays
distance values on the right side, which, should they be chosen
as the threshold value ε, would result in the Recurrence Rate
displayed on the left.

Many other measures can be calculated from the matrix, such
as the proportion of recurrent points that form line structures
which represent larger patterns of recurring values (Marwan
et al., 2007; Donner et al., 2011).

Recurrence Networks
To create a recurrence network, we consider the recurrence
matrix R(ε) to be an adjacency matrix A(ε) of an adjoint
complex network. By removing the diagonal this matrix
represents an unweighted, undirected, simple graph called
an ε-Recurrence Network (Marwan et al., 2007; Donner
et al., 2011). The vertices Vi of the network represent the
state coordinates and are indexed by their time order. The
edges indicate whether the state observed at one point in time
will recur at another point in time and this is of course
conditional on the threshold ε. It is also possible to create a
weighted network, either by keeping the distances that are
smaller than ε, or, by creating edge weights that are based on
the time between recurring states, the recurrence time, or
recurrence time frequency. (Hasselman and Bosman, 2020).
Figure 3 displays the ε-RN based on the distance matrix shown
in Figure 2 with a threshold of ε of 0.889 yielding a Recurrence
Rate of 0.05. The RN is presented in a so-called spiral layout,
which preserves the time order of the vertices (see Hasselman
and Bosman, 2020).

Recurrence networks are formally equivalent to
Random Geometric Graphs (RGG), a full analytic theory

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 8591274

Hasselman Multivariate Geometric Resilience Loss Indicators

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


of ε-RN’s is provided by Zou et al. (2019). For the purpose
of the present paper it is important to understand the
differences between the information obtained about the
phase space trajectory based on RQA measures and the
complex network measures extracted from the ε-RN. The
line structures analyzed in RQA represent the evolution of
state coordinates, so those measures quantify dynamic

properties of the trajectory in phase space. Most
network measures extracted from a ε-RN will quantify
topological or geometric properties of the attractor (Zou
et al., 2019), when used as in the context of EWS, they can
be referred to as geometric resilience loss indicators. In a ε-
RN local and global measures can be identified for roughly
two types of measure: Path- and Neighborhood-based

FIGURE 2 | Distance matrix based on 12 time series (displayed as grey lines) representing self-reports of the mood of an individual.

FIGURE 3 | A Recurrence Network in spiral layout based on the distance matrix of 12 time series representing self-reports of the mood of an individual recorded
over a period of 238 days.
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measures. For the present study, we focus on
Neighborhood-based measures.

In what follows a description of unweighted, undirected
local and global characteristics of the vertices in a Recurrence
Network is provided. This description is not exhaustive, but
covers the most important vertex characteristics for the
present context (descriptions and formula’s presented here
were adapted from various sources, most can be found in Zou
et al., 2019).

Local Complexity Measures
Graph-neighborhood measures calculated from a ε-RN capture
information about the local density or space filling behavior of the
phase space trajectory. This has led to the novel measures such as
the notion of a transitivity dimensions and local clustering
dimensions (Donges et al., 2012; Zou et al., 2019), which
evaluate the dependence of these measures on the threshold
value ε. In the present context more familiar network
measures will be presented, starting with the degree centrality
of a vertex k̂i(ε):

k̂i ε( ) � ∑N
i, j�1

Aij ε( ), (2)

Where Aij(ε) is the Adjacency matrix. In ε-RNs the local
degree is normalized to the time series length, rather than to a
theoretical maximum, and the degree density is calculated as:

ρ̂i ε( ) � k̂i ε( )
N − 1

(3)

The degree density of a vertex Vi indicates the probability that
a randomly chosen state represented by Vj is ε-close to the state
represented by Vi. It can be interpreted as a localized
recurrence rate.

Another value is the local clustering coefficient Ĉi(ε), which
measures the fraction of pairs of vertices around Vi that are ε-
close:

Ĉi ε( ) � 1

k̂i k̂i − 1( ) ∑N
j, h�1

AijAihAjh (4)

This measure quantifies the geometric alignment of the
state vectors �yi, which occurs for example close to dynamic
invariant structures in phase space like quasi-periodic
behavior or unstable periodic orbits (UPOs, Zou et al.,
2019).

The degree density and clustering coefficient quantify vertex
properties at a local scale, a neighborhood, whereas measures
based on shortest paths quantify vertex connectivity relative to
the scale of the network as a whole. The closeness centrality
measure ĉi(ε) is defined as the inverse of the arithmetic mean of
shortest path lengths lij:

ĉi ε( ) � 1
N − 1

∑N
j�1

lij⎛⎝ ⎞⎠−1

(5)

The local efficiency is the inverse geometric mean of lij:

êi ε( ) � 1
N − 1

∑N
j�1

l−1ij (6)

In the path length calculation ‘disconnected’ vertices are
assigned a local average path length of N − 1. This occurs
quite often in ε-RN, a state occurring at Vi does not recur at
every other vertex by construction of the matrix R(ε). It is known
that the efficiency measure êi(ε) is well-behaved, even if the graph
has many disconnected components (cf. Boccaletti et al., 2006)

Global Complexity Measures
Table 1 displays some of the global measures commonly used to
describe the structure of complex networks. The edge density ρ̂(ε)
is simply the average of the local degree density. The global
clustering coefficient Ĉ(ε) is the arithmetic mean of the local
clustering coefficients (cf. Watts and Strogatz, 1998). An
alternative definition exists called network transitivity T̂ (ε),
which represents the effective global dimensionality of the
system (Barrat and Weigt, 2000) as opposed to the average
local dimensionality in phase space quantified by Ĉ(ε). The
average path length L̂(ε) and global efficiency Ê(ε) are the
arithmetic mean of the inverse local closeness, and the inverse
arithmetic mean of the local efficiency, respectively (see Zou et al.,
2019 for details). The edge density is equal to the Recurrence Rate
in RQA.

Cumulative Recurrence Networks for
Real-Time Process Monitoring
In order to fulfill the goal of serving as a potential tool for
assessing an imminent regime change in a clinical, real-time
monitoring setting, we should not use any information about
states that recur at some point in the future, because these are
of course only known ex post facto. It is possible to use
windowed analyses on the time series and construct a
recurrence matrix based on a right aligned window and
compute RQA or ε-RN measures within each of the sliding
windows. The minimal window size is of course limited by the
time series length, but also cannot be too small. To achieve the
same goal, it is also possible to create a directed (weighted)
network with recurrent points based on an adjacency matrix
with the upper triangle set to zero. The structure of the
network is evaluated based on measures that only consider
the vertex out-degree. Such a network represents vertex
properties that are cumulative with respect to the number
of edges that represent whether the current vertex is a
recurring state of the past, a cumulative Recurrence
Network (cRN). Figure 4 displays the first 50 vertices of a
directed, weighted network, with edges connecting only to
vertices of a lower time index.

Multiplex (Cumulative) Recurrence
Networks
Multiplex recurrence networks provide a framework for studying
the temporal structure in multivariate records of the observables
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of a complex dynamical system.Multiplex networks have recently
been constructed from horizontal visibility graphs (HVG, Lacasa
et al., 2015) and recurrence networks (Eroglu et al., 2018). To
obtain aMultiplex Recurrence Network (MRN), theM time series
of length n in the multivariate data set are turned into M
recurrence networks, each with n nodes, to constitute the κ =
M layers of he MRN. In the present example the MRN is built
from six weighted, directed recurrence networks, that represent
cumulative time by only considering the vertex out-degree when
computing vertex properties, see Figure 5

Multiplex Recurrence Network Measures
The purpose of constructing a multi-layer network is to evaluate
the structural similarities between the dimensions of the
multivariate time series that constitute the layers. Formally,
based on the M-dimensional time series [ �Xt]Nt�1 with
�Xt � (x[1]

t , x[2]
t , . . . , x[M]

t )), RNs can be constructed for each of
the α components of �Xt (cf. Zou et al., 2019). The multiplex
network can be represented as a giantNM × NMmatrixA, with a

diagonal of M adjacency matrices A[α] and off-diagonal identity
matrices IN of size N × N:

A �

A 1[ ] IN . . . IN

IN A 2[ ] 1 ..
.

..

.
1 1 IN

IN . . . IN A M[ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

In practice, the giant matrix is not constructed, rather, a
projection of A as a weighted matrix with the RN as vertices
connected by edges. The association between layers α and β, (Iα,β)
in the MRN can be quantified by some measure of association, for
example, the Inter-layer Mutual Information, Inter-layer
Correlation, which are based on the degree distributions
P(κ[α]), P(κ[β]) (Lacasa et al., 2015; Eroglu et al., 2018). The
mutual information is calculated as:

Iα,β � ∑
κ α[ ]

∑
κ β[ ]

P κ α[ ], κ β[ ]( )log P κ α[ ], κ β[ ]( )
P κ α[ ]( ), P κ β[ ]( ) (8)

The term P(κ[α], κ[β]) denotes the joint probability of observing
the same node with degree κ[α] in layer α and degree κ[β] in layer β.
P(κ[α]) and P(κ[β]) represent the marginal probabilities of
observing the degree distribution in each layer. Taking Iα,β as the
weight between two layers in a multiplex network can be interpreted
as the quantification of structural regularities between the time series
in the multivariate data set. Instead of the mutual information, one
can simply calculate the Pearson correlation between the degree
vectors Rα,β. The averaged mutual information 〈Iα,β〉 or correlation
〈Rα,β〉 across all layers in amultiplex network can be interpreted as a
quantification of typical information flow between the dimensions of
themultivariate system (Lacasa et al., 2015; Eroglu et al., 2018). In the
present application, the Iα,β between individual layers indicates the
characteristic way in which self-reports of internal states are
structurally associated across all observed timescales in the
multivariate dataset. If the layers of the MRN are weighted RN
(denoted as MwRN, or McRN), the Multi-layer MI and correlation
are based on the strength distributions in each layer and can be
constructed as the association between P(s(κ)[α]) and P(s(κ)[β])
(cf. Hasselman and Bosman, 2020):

Iα,β � ∑
s κ( ) α[ ]

∑
s κ( ) β[ ]

P s κ( ) α[ ], s κ( ) β[ ]( )log P s κ( ) α[ ], s κ( ) β[ ]( )
P s κ( ) α[ ]( ), P s κ( ) β[ ]( )

(9)

TABLE 1 | Global recurrence network measures.

Mood Physical Self Esteem Mental Unrest Sleep Day

Recurrence Threshold ε 0.889 0.389 0.283 0.443 1.237 1.331
Edge Density ρ̂(ε) 1.662 1.791 2.323 1.753 2.052 6.524
Global Clustering Ĉ(ε) 0.17 0.18 0.22 0.19 0.17 0.27
Network Transitivity T̂ (ε) 0.49 0.48 0.58 0.55 0.49 0.63
Average Path Length L̂(ε) 74.2 60.6 42.1 61.0 103.5 11.0
Global Efficiency Ê(ε) 245.857 752.248 484.290 353.830 1,577.394 92.836

FIGURE 4 | The first 50 vertices of a weighted, directed cumulative
Recurrence Network (cRN) based on the lower triangle of the recurrence
matrix of the Mood subsystem.
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FIGURE 5 | The Multiplex network with each cRN as a layer. The edge weights and color represent the magnitude Inter-layer Mutual Information.

FIGURE 6 | Multiplex cumulative Recurrence Networks for different phases of the experiment: (A) Baseline; (B) Start double blind; (C) Start reduction; (D) Post
reduction; (E)Critical transition; (F) Post reduction (additional). Each vertex represents a cumulative Recurrence Network (see Figure 5). The edges represent Inter-layer
Mutual information (blue) and Edge Overlap (red). The second part of the post reduction phase after the critical transition is not shown here.
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Another measure that can be used to represent the weights in
the MRN is the Edge Overlap ω. It represents the proportion of
edges that are shared between any two vertices across all layer-
pairs in the multiplex network (Eroglu et al., 2018):

ω � ∑i∑j>i∑αA
α[ ]
ij

M∑i∑j>i 1 − δ0,∑α
A α[ ]
ij

( ), (10)

Where δij is the Kronecker delta. The edge overlap measure
estimates similarity and coherence between network layers and its
average 〈ω〉, is a global network measure of coherence between
the different layers which, together with the averaged Inter-layer
MI, can be used to detect transitions between dynamic regimes in
the multivariate time series (see e.g., Eroglu et al., 2018).

Once the MRN is constructed, it is possible to calculate any of
the aforementioned network measures. The local measures now
provide information about the properties of the layer relative to
the other layers in the MRN. In order to get a time course of these
layer association measures a windowed analysis can be conducted
on the MRN.

The MRN allows for the study of structural similarities
between the network layers. In the present context this refers
to subsets of the different ESM variables in the multivariate data
set, which were considered the dimensions of a subsystem phase
space. The MRN structure is expected to change near tipping
points due to the reconfiguration of the available degrees of
freedom in phase space and the creation of new associations
between different dimensions of the phase space. Note that all the
time series are in principle still accessible, that is, there was no
aggregation of observations. For the MRN, it is possible to
evaluate which layers might be responsible for structural
changes, but it is also possible to evaluate the role of
individual variables within the RN by evaluating the
contribution of each dimension to the recurring phases of the
system (see Heino et al., 2021 for an example).

Analysis Strategy
Cramer et al. (2016) used a window of 30 days to calculate the
autocorrelation function and variance as an EWS, which were
both expected to increase around the critical transition. The
windowed function was calculated from a detrended, overall
mental state variable, which the authors describe as “the total
mental state score based on a moving window over time”. For
data analysis the authors present a Gaussian Graphical Model
(GGM) fitted to different epochs in the experiment, prior to the
transition. The GGM consisted of five nodes, three of which
represented different aspects of the mental state variable
consisting of sets of time series selected from the multivariate
data set. The time series were detrended and aggregated to yield a
mean series representing: positive affect (“content”, “cheerful”,
“enthusiastic”); mental unrest (“restless”, “agitated”,
“indecisive”); negative affect (‘irritated”, “lonely”, “anxious”,
“guilty”). The other two nodes consisted of a single observed
time series worry and suspicious. It is likely the authors chose
these specific variables from the set of about 70 available variables
based on theoretical and practical considerations, but they do not

explain why and how the time series were aggregated and
subsequently analyzed in a moving window. Time series
aggregation should be done with care, especially if the series
are correlated (Wigley et al., 1984) or otherwise temporally
aligned (Petitjean et al., 2011).

Irrespective of the validity of time series aggregation, or the
specifics of the method used, the effect of time series aggregation
is data reduction, and data smoothing. The use of moving
windows is warranted because the aim is to detect changes in
the correlational structure and variance of the time series,
however, sliding window statistics will introduce smoothing in
addition to the averaging of the time series. Finally, detrending is
a basic method for dealing with non-stationary time series, but it
does not guarantee a stationary series if there are multiple stable
levels, nonlinear trends, discontinuous changes or heterogeneity
of variance. Such phenomena will almost certainly occur in ESM
data due to the bounded nature of self-ratings on a an ordinal
scale combined with the long observation time: The projection
function of the internal state onto the ordinal scale will likely not
be constant over 200 + days. Olthof et al. (2020) also analyzed the
Cramer et al. (2016) data set and indeed found evidence for long-
range dependence, non-stationarity of the autocorrelation
function and divergence (nonlinear prediction error) in many
of the time series in the data set.

The first analysis will try establish whether the major
transition in the state variable can indeed be considered a
critical transition. To do so, the data-segmentation approach
from the original paper will be followed, by creating McRN for
each of the phases of the experiment. The difference being that
theMcRNwill include all relevant variables This method does not
meet the goals set in the introduction, as it can only be performed
after the entire series has been observed. It does provide an
opportunity to compare the two methods. The second analysis
will concern a windowed analysis of the time evolution of the
different measures that quantify structural similarities between
the layers of the multiplex network and evaluate whether they
could serve as Geometric Resilience Loss Indicators.

Data Preparation
The original data set contains over 80 variables, several of which
concern date and time information, or, concerned answers to
questions that were only triggered in certain contexts. There were
42 variables containing densely sampled self-ratings, for the
analyses in this paper 32 variables were used. Selection of
variables was based on a support criterion: Only variables with
less than 5% missing values were considered and in addition, the
differenced series had to contain less than 33% zeroes (indicative
of sufficient dynamics) to be included in the analysis. An
exception was made for a set of variables that contained more
than 5% missing due to the fact they were prompted only in the
morning (about the quality of sleep the previous night) and in the
evening (about the experience of the day). These variables were
included because of their theoretical relevance (e.g., their
potential dual role as symptom and cause (cf. Cramer et al.,
2016)) and because the aggregation level was at the level of a day
which is what the questions assessed (e.g., “I found this a nice
day” rated in the evening). The 32 variables were grouped into
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subsets that can conceptually be considered to be subsystems:
Mood, Physical, Self Esteem, Mental Unrest, Sleep and Today.
Because some of the variables of interest were observed several
times each day, while others only less frequently or only once per
day each variable was aggregated so the sampling frequency was
1/day. The rating scales that were used could also vary between
variables, therefore, all variables were rescaled to a range of
one–7. Some variables were also recoded, for example, the
questions asking to rate the experience of a positive mood
(e.g., “I feel strong”) were reversed such that higher ratings
represent a less positive mood. Any missing values were
imputed using multivariate imputation by chained equations
based on each subset of variables (using R package mice,
Buuren and Groothuis-Oudshoorn, 2011). Table 2 lists which
variables were grouped with each subset.

The output and figures displayed in this paper were created
with R-package casnet (v. 0.2.1, Hasselman, 2022), there are
however many more ways to conduct the recurrence-based
analyses discussed here (e.g. in Python, Matlab, or stand-alone
software). A comparison of software packages for performing
RQA can be found here: https://github.com/JuliaDynamics/
RecurrenceAnalysis.jl/wiki/Comparison-of-software-packages-
for-RQA.

RESULTS

Comparison to Previous Analysis: Data
Segmentation
In the case of a critical phase transition, an increase in temporal
autocorrelations and variance is expected near tipping points
(Weinans et al., 2021). Some of these phenomena are known to be
quantified by RQA measures, a windowed RQA analysis is for
example able to detect control parameter changes of the logistic
map from periodic-chaos, but also chaos-chaos transitions (cf.
Marwan et al., 2009). Especially the expected changes in the
geometric structure of the phase space trajectory is expected to be
quantified by the RN measures, this occurs when previously
inaccessible degrees of freedom become available to the
system, while availability of others may be constrained. Note
that these assumptions only hold if it is indeed the case that the
phase transition is of the critical type and not e.g. a noise induced
transition.

Figure 6 is conceptually similar to Figure 1B in the paper by
Cramer et al. (2016), which shows the 5-node GGM symptom

network fitted to data from different phases of the experiment
(data-segmentation). The purpose of constructing a GGM for
the different phases of the experiment prior to the major shift in
depressive symptoms was to evaluate whether the graph
structure would represent the hypothesized increase in
correlation between different symptoms. Cramer et al. (2016)
indeed found this at the level of the aggregated dimensions
mental unrest, positive affect, negative affect, and vertices based
on single time series worry and suspicious. The graphs displayed
in Figure 6 are Multiplex cumulative Recurrence Networks
based on six ε-cRN, constructed from distance matrices that
represent a phase space composed of subsets of the multivariate
data (see the matrices in Figure 7). The Inter-layer MI (blue)
and Edge Overlap (red) are shown as edge weights (the edges
with lower weights are more transparent to make structural
differences more visually apparent). Table 3 displays the
average Inter-layer MI (which is the same as the average
Edge Strength Density), the average Inter-layer Correlation,
the average Edge Overlap and the Global Efficiency of the
McRN for the different phases of the experiment. For each
measure, it is the case that the McRN of the epoch marked as
critical transition has the highest value relative to other phases
of the experiment.

In addition to the fact that the analysis strategy by Cramer
et al. (2016) can only be conducted post data collection, another
problem is that it is not possible to “de-aggregate” their mental-
unrest and affect dimensions to study which variables might be
driving the evolution towards the regime shift. The same holds for
the windowed analysis of the autocorrelation and variance, based
on the summed, detrended score of the five mental states and a
window of 30 days. At the level of the multiplex network, one can
examine the vertex properties of each individual layer, for
example centrality. An example is displayed in Figure 8: The
upper triangle of the matrix is a representation of the weighted
matrix of the McRN based on Inter-layer MI shown in Figure 6
for the period “post reduction (planned),” the lower triangle
displays an weighted matrix based on the Edge Overlap for the
same period.

Geometric Resilience Loss Indicators
Cramer et al. (2016) evidenced critical slowing down by means of
a windowed analysis of the variance and the autocorrelation
function in a window of 30 days. An increase in the lag-1
autocorrelation and variance was observed with the
autocorrelation reaching a peak just before the critical

TABLE 2 | Variables used to construct Recurrence Networks.

Subset Variable name

Mood mood_relaxeda, mood_down, mood_irritat, mood_satisfia, mood_lonely, mood_enthusa

mood_suspic, mood_cheerfa, mood_guilty, mood_doubt, mood_stronga

Physical phy_hungry, phy_pain, phy_headache, phy_physacta

SelfEsteem se_selflikea, se_selfdoub, se_handlea

Patience pat_restl, pat_agitate, pat_worry, pat_concenta

Sleep mor_asleep, mor_nrwakeup, mor_lieawake, mor_qualsleepa, phy_tired, phy_sleepy
Day evn_ordinary, evn_nicedaya, evn_inflmood, mor_feellikea

aVariable was recoded.
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transition. The variance steadily increased during the observation
period. A window of 30 days would not be a practical time period
for detecting EWS in a clinical setting. Moreover, a closer
inspection of the state variable suggests that there are more
sudden changes in symptom severity than the one which
caused a temporary halt on the measurement of some of the
variables starting at day 127.

Figure 9 displays sliding window analyses (7 days window) of
three layer-similarity measures: Edge Overlap, Strength-based
Inter-layer Mutual Information, strength based Inter-layer
Correlation. The red and green areas represent a period of
14 days before a major change in the state variable (an
increase or decrease in symptom severity respectively)
occurred. Visual inspection shows that major shifts in
symptom severity are often preceded by clear peaks in the
Edge Overlap. The Inter-layer MI is similar to the Edge
Overlap, but less clear, for the correlation between the
strength distributions of the layers it is difficult to assess clear

peaks. There are also shifts in symptom severity without any, or,
less pronounced peaks preceding it.

The average Edge Overlap (as well as Inter-layer MI and R)
can be considered a global network measure of coherence
between the layers of the multiplex. In the present context of
EWS, the fact a peak is observed before transitions is similar to the
hypothesized increase in autocorrelation associated with critical
slowing down, which can also be evidenced by performing a PCA
onmultivariate time series data and observing that most variables
load on the principle component with the highest eigenvalue (cf.
Weinans et al., 2021). Figure 10 show the average of local
network measures across all 7 days windows, for each
subsystem separately. Several observations can be made, it
appears that the layers “Day” and “Self Esteem” often play a
central role in the multiplex network, as indicated by their
relatively high mean values for Clustering, Closeness and
Efficiency. In the context of recurrence networks, Clustering
(and Strength Density) are indicative of the geometric

FIGURE 7 |Weighted, directed matrices for constructing cumulative Recurrence Networks of selected variables of the multivariate dataset. The weights represent
recurrence times. The direction is implemented by only considering the recurrent points in the lower triangle, and calculating measures based on the out-degree.

TABLE 3 | The Average Edge Strength Density, Global Efficiency, Average Inter-layer MI and Average Edge Overlap of the Multiplex Recurrence Network based on Different
Phases in the Experiment.

Edge Strength Efficiency MI R Edge Overlap

〈ρs(ε)〉 Ê(ε) 〈Iα,β〉 〈Rα,β〉 〈ω〉

baseline [N = 28] 0.24 0.18 0.24 0.06 0.06
start double blind [N = 14] 0.19 0.11 0.19 0.02 0.06
start reduction [N = 56] 0.03 0.02 0.03 0.30 0.07
post reduction 1 [N = 29] 0.09 0.07 0.09 0.06 0.05
critical transition [N = 10] 0.31 0.28 0.31 0.15 0.10
post reduction 2 [N = 15] 0.24 0.22 0.24 0.18 0.04
post reduction (additional) [N = 91] 0.01 0.01 0.01 0.25 0.06

Note: Values were calculated on different number of data points [N].
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alignment of the state vectors which can occur close to dynamic
invariant structures in phase space (Zou et al., 2019). Closeness
Centrality and Efficiency represent measures of the shortest path
lengths between vertices where the Efficiency measure is less
affected by disconnected networks.

DISCUSSION

The goal of the present paper was to examine the potential of
recurrence based analyses as a method for use in a clinical context
in which process monitoring of physical and mental states is used
to detect early warning signals of imminent shifts in a state
variable, for example, the severity of depressive symptoms. The
analysis strategy focused on analyzing only those data points that
would be available to a clinician in real time, using sliding window
analyses with a window size that would be acceptable in setting in
which a patient receives an intervention (7 days).

The analyses reveal that layer similarity measures of a
Multiplex network of which the layers consist of
cumulative (directed and weighted) recurrence networks
display peaks within a 7–14 days window before a major
shift occurred in the state variable. Local network measures
were examined and revealed two subsystems, “Day” and “Self
Esteem,” which played a central role in the Multiplex network.
The peaks in the layer similarity measures are most clearly
visible in the Edge Overlap and Inter-layer Mutual

Information. However, not every transition is preceded by
a peak, and not every peak indicates a transition is imminent
within 7–14 days. For comparison, see Figure 11 which
approximately mimics the original analysis by (Wichers
et al., 2016) evidencing Critical Slowing Down in the
windowed autocorrelation and variance of the Mood subset
of variables. There are several reasons why the measures in
Figure 11 are not suitable for the goals set for the present
study. First, a 30 days window was used which is not practical
for most clinical settings. Second, the autocorrelation has its
highest peak at exactly the moment of the transition (day 127).
Third, the windowed variance actually increases after the
transition, and reaches its highest peak after the
experiment was re-started. Fourth, there are no apparent
associations between peaks in these measures and other
major transitions in the state variable.

An advantage of the current analysis strategy over the
original study is that there is no aggregation of the
multivariate time series for the purpose of dimension
reduction. That is, it is possible to go back to the individual
dimensions to further investigate the profiles of recurring
phases (coordinates in phase space) and construct a
transition matrix (see Heino et al., 2021). Figure 12
displays the profiles of states in the “Day” subsystem, sorted
from most-to-least frequently recurring. The most frequently
recurring phase can be characterized as a mundane experience
of the day (high on ordinary day, neutral to positive on
prospective and reflective evaluation of the day)1. The
second phase is different due to the response to “I found
this a nice day,” which is now in the direction of strong
disagreement. The other phases are characterized by higher
disagreement with “looking forward” to the day. This provides
a detailed window into phase space dynamics that would have
obviously been lost if the six series of the Day subsystem were
aggregated into 1 time series. Based on the sequences of phases
it is possible to construct a transition matrix and the
corresponding directed graph is displayed in Figure 13. The
transition network can reveal insights into the existence of
certain paths that frequently lead to certain phases. In
Figure 13 it is clear that Phase 1 and Phase 2 are highly
connected, but Phase 1 is the default state, to which the system
most frequently returns.

Limitations and Future Directions
As can be seen in Figure 9 it is often the case a peak in the daily
measurements precedes a shift in the weekly observed symptom
severity, but not in every case and not for every measure
examined. There are several explanations, for example, the
symptom severity scale was observed less frequently and
fluctuations occurring within a week were not observed by
design. A solution could be to consider a (set of) daily
measured variables to represent the state variable, but there

FIGURE 8 | An example of a distance matrix from which a Multiplex
Recurrence Network can be constructed. The upper triangle is based on the
Inter-layer Mutual Information, the lower triangle represents the Average Edge
Overlap between network layers. The values were transformed to the
unit scale, using the maxima and minima observed during the post reduction
period.

1The questions were: “I found this an ordinary day,” “I found this a nice day”
(recoded), “Filling in this questionnaire influenced my mood,” “I am looking
forward to this day” (recoded).
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are also benefits to using a diagnostic scale (e.g., norms exist).
Perhaps a more dynamic test could be developed and normed,
one which allows for daily assessment of symptoms (e.g., by
creating several parallel tests).

Another limitation of the method as presented in this paper is
the lack of a reference for determining whether a peak is a
potential EWS or merely a random fluctuation. There are
several ways to at least check whether the observed peaks are
“real”, for example, by repeating the analysis several times on
surrogate data (e.g., Jacob et al., 2018) or perform a block-
randomization on the windowed time course (e.g., Vink et al.,
2018). Another way to construct a randomization test could be by
randomly re-wiring the network layers and re-construct the
Multiplex network and evaluate and compare the layer
similarities to the observed measures.

A related issue concerns the fact that EWS are naive to the
direction of change, that is, to be of clinical use it would be helpful to
know whether an EWS implies the current state is deteriorating
(higher symptom severity) or not. There have been theoretical
advances to finding the direction of least resilience in multivariate
time series data (Weinans et al., 2019) or based on formal models

(Cui et al., 2021). Recently Schreuder et al. (2022) used a technique
based on two variables obtained from windowed principal
component analysis (the variance explained by the first
component and the skewness of the scores projected onto this
component) to identify the direction of the critical transition in
the same data set used in the present paper. In the same study, the
method was confirmed to predict the direction of transition in a
larger sample of 34 individuals. Further study is needed to evaluate
whether the technique can be used in a clinical setting according to
the goals set for the purpose of the current paper. The EWS
phenomenon evidenced by Schreuder et al. (2022) (uni-
dimensional behavior of system dimensions before a critical
transition), is very similar to the phenomena indicated by the
geometric recurrence network measures used in the present
study: Layers in the McRN become structurally more similar (MI
or correlation between degree distributions, edges connecting to the
same vertices) and the local centrality measures indicate geometric
alignment of the phase space vectors.

To summarize, recurrence network analysis of multivariate
time series data has been shown to have great potential for use
in clinical practice, specifically in the context of real-time

FIGURE 9 | The time course of the Multiplex Recurrence Network measures calculated in a 7 days sliding window: average Edge Overlap, strength-based Inter-
layer Mutual Information, strength based Inter-layer degree correlation R. All values are transformed to the unit scale. The grey line represents the major shifts in the global
state variable, the depression symptom scale SCL-R-90 which wasmeasured weekly. The colored regions represent a seven or 14 day period before anmajor change in
symptom severity.

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 85912713

Hasselman Multivariate Geometric Resilience Loss Indicators

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


FIGURE 10 |Mean Local vertex characteristics over all 7-days windows (N = 232) for each layer in the Multiplex cRN. The figure displays the results based on the
MRN with inter-layer MI as edge weights.

FIGURE 11 | Variance and Autocorrelation of the variables in the Mood subsystem calculated in a sliding window of 30 days. The grey line represents the
depression symptom scale SCL-R-90. See text for details.
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process monitoring of individual patients. The current
example has been a proof of principle, more thorough study
and development is required into the relationship between

transitions and the behavior of the (multiplex) recurrence
measures.
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FIGURE 12 | Profiles of recurring phases of the Day subsystem.

FIGURE 13 | Transition Network of the phases of the subsystem Day.
Edges with a transition probability below 0.10 are not displayed.
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