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Electrocardiography and photoplethysmography are non-invasive techniques that measure
signals from the cardiovascular system. While the cycles of the two measurements are highly
correlated, the correlation between the waveforms has rarely been studied. Measuring the
photoplethysmogram (PPG) is much easier and more convenient than the electrocardiogram
(ECG). Recent research has shown that PPG can be used to reconstruct the ECG, indicating
that practitioners can gain a deep understanding of the patients’ cardiovascular health using
two physiological signals (PPG and ECG) while measuring only PPG. This study proposes a
subject-based deep learningmodel that reconstructs an ECGusing a PPG and is based on the
bidirectional long short-term memory model. Because the ECG waveform may vary from
subject to subject, thismodel is subject-specific. Themodel was tested using 100 records from
the MIMIC III database. Of these records, 50 had a circulatory disease. The results show that a
long ECG signal could be effectively reconstructed from PPG, which is, to our knowledge, the
first attempt in this field. A length of 228 s of ECG was constructed by the model, which was
trained and validated using 60 s of PPG and ECG signals. To segment the data, a different
approach that segments the data into short time segments of equal length (and that do not rely
on beats and beat detection) was investigated. Segmenting the PPG and ECG time series data
into equal segments of 1-min width gave the optimal results. This resulted in a high Pearson’s
correlation coefficient between the reconstructed 228 s of ECG and referenced ECG of 0.818,
while the root mean square error was only 0.083 mV, and the dynamic time warping distance
was 2.12mV per second on average.
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INTRODUCTION

Cardiovascular disease is a major cause of health loss that could be preventable (Thomas, 2018).
Long-term monitoring of cardiovascular status is of great significance in preventing and treating
cardiovascular diseases. Electrocardiography is widely used in cardiovascular diagnoses and
cardiovascular status monitoring in clinical practice worldwide. The morphological features of
an electrocardiogram (ECG) (e.g., P, Q, R, S, T and the intervals between them) can usually enable the
diagnosis of abnormalities of the heart (Rai et al., 2013; Joshi et al., 2014). However, most
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conventional ECG devices limit subjects’ movements, to prevent
ECG electrodes from detaching. To address the shortcomings of
traditional devices for long term ECG monitoring, wearable ECG
devices have been designed in recent years (Steinberg, 2019;
Marsili, 2020). Meanwhile, another technology that can detect
cardiovascular status without the need for electrodes, called
photoplethysmography, has flourished in the last decade
(Elgendi, 2020). Photoplethysmograms (PPGs, which is the
recommended acronym based on this study (Elgendi, 2012a))
are more comfortable and less expensive to obtain than ECG
signals, and PPG is expected to be an alternative in cardiovascular
status monitoring (Elgendi, 2012b). In fact, recent research has
shown that the ECG features are not consistently correlated with
blood pressure (Bird, 2020), while PPG features are consistently
correlated with blood pressure (Elgendi, 2019; Hosanee, 2020).

ECG reflects the circulatory electrical activity of the heart.
Each heartbeat is triggered by electrical impulses, typically
generated by the sinoatrial node and transmitted throughout
the heart. At specific points during the heart’s electrical beat, the
ECG records the sum of the many weak fields generated by the
electrical activity of many heart cells. The electrical activity of the
heart causes systole and diastole through excitation-contraction
coupling (Bers, 2002). The heart contracts and relaxes
periodically, thus serving as an engine that pumps blood
through the body. For systemic circulation, blood is pumped
from the left ventricle to the main artery and through the arterial
branches to the capillaries of the organs. The blood then passes
through the capillary walls, exchanging substances and gases with
tissue cells, facilitated by tissue fluid. After the exchange, arterial
blood becomes venous blood and flows back to the right atrium
through various veins. PPG uses optical technology to record
changes in blood volume at body peripherals (e.g. fingertips, ears,
and wrists) (Elgendi, 2012b; Hosanee, 2020). This change is a
result of the systemic circulation. As shown in Figure 1, in ECG,
the beginning of systole is marked by the QRS complex, while the
beginning of diastole is marked by the end of the T wave. For
PPG, the beginning of systole is marked by onset, the first wave
(systolic wave) reflecting the systole, and the second wave
(diastolic wave) representing the diastole. Since it takes time
for blood to travel from the heart to the end of the body, the onset
of the PPG is delayed relative to the R peak of the ECG. This delay
is called the pulse arrival time (Liang, 2019). Pulse arrival times
have been removed in Figure 1 to align systole in ECG with that
in PPG. The morphology of PPG is affected by many factors, such
as the mechanical movement of the heart, and the compliance
state of blood vessels during blood transmission. Therefore, PPG
contains a wealth of information regarding the cardiovascular
system. Recently, PPG has been used to evaluate cardiovascular
parameters such as heart rate, oxygen saturation (Shelley, 2007),
blood pressure (Liu, 2019), and cardiac output (Wang et al.,
2009).

Some studies have explored the relationship between ECGs
and PPGs. Heart rate variability measured by PPG is highly
correlated with that measured by an ECG (Weinschenk et al.,
2016). In other words, the periodicity of PPGs is highly correlated
with that of ECGs. Moreover, they are particularly correlated
when arrhythmia occurs (Polanía et al., 2015; Paradkar and

Chowdhury, 2017). In terms of the characteristics of a
heartbeat, some important parameters of an ECG are also
related to a PPG (Banerjee et al., 2014). The PR, QRS, QT and
RR intervals can be estimated from features in the PPG. If a PPG
can be used to synthesize an ECG, we can use both the rich
clinical knowledge of signals detected in an ECG and the
accessibility of PPG signals to better evaluate cardiovascular
status.

The notion of generating ECG signals has been discussed and
investigated in the literature, with great emphasis on
understanding and modeling waveform morphologies
(McSharry et al., 2003; Sayadi et al., 2010). Statistical modeling
is generally used to generate a beat by beat synthetic ECG signal
(usually RR intervals). The ECG beats are then stitched together
consecutively based on beat information. Some researchers have
employed three-lead ECG to reconstruct 12-lead ECG
(Maheshwari et al., 2014) and compressive sensing ECG
reconstruction (Craven et al., 2017). Typically, the
construction of ECG does not depend on another
physiological signal collected at the same time.

To our knowledge, there are two papers that have
reconstructed an ECG from a PPG recorded simultaneously
(Tian et al., 2020; Zhu et al., 2021). One of them is a beat-
based model (Zhu et al., 2021). The study developed a linear
transformation model to reconstruct ECG signals. Discrete cosine
transform (DCT) coefficients for each PPG beat were mapped to
coefficients for the corresponding ECG beat according to their
proposed cardiovascular signaling model. The other work
developed a cross-domain joint dictionary learning (XDJDL)
model to establish a mapping relationship between PPG and
ECG beats (Tian et al., 2020). However, the accuracy of these two
methods depends on the accuracy of extraction algorithms for R
waves in an ECG and systolic peak (or onset) in a PPG, which
makes the algorithm more complex and introduces greater
opportunities for error, thus decreasing the ECG
reconstruction’s accuracy. Moreover, these two studies were

FIGURE 1 | Systole and diastole in ECG and PPG. The “O″” stands for
the onset in PPG.
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conducted when the training set and the test set accounted for
80% and 20% of the data set, respectively. Their long-term
performance on data longer than the training set has not been
verified.

This paper proposes a deep neural network model that
constructs long ECG signal from PPG. Unlike prior works, it
has the advantage of not requiring R-peak detection or a beat-
based ECG segmentation step prior to the analysis. It aims to
mitigate the errors introduced by period division and to evaluate
the performance of the model in generating long ECG signal.

METHODOLOGY

Dataset
The data we used to test themodel was extracted from theMIMIC
III matched subset (Johnson, 2016). The MIMIC III database
contains several physiological signals from intensive care unit
patients. And there are a large number of records in this subset.
We used 100 records (50 subjects with circulatory diseases and 50
subjects without) of different subjects with lead II ECG and PPG
signals. Every record was 5 min in length. Note that both ECG
and PPG were recorded simultaneously. The reason behind the
choice of 100 records is to stay consistent with the number of
recordings used in the literature (Zhu et al., 2021). This will allow
us to have a fair evaluation of all algorithms used.

Proposed Method
The overall structure of the proposed method is shown in
Figure 2.

PREPROCESSING

• Filter: Both ECG and PPG signals are filtered by a fourth-
order Chebyshev II filter. The frequency range of the filter
used in the ECG was 0.5–20 Hz. The frequency range in the
PPG was 0.5–10 Hz.

• Alignment I: The R peak and systolic peak are the main
features in ECGs and PPGs, respectively. For each R peak
in an ECG, the corresponding systolic peak in the PPG is
the one between the current and next R peaks in the ECG.
The Pan-Tompkin method was used to detect the R peaks
in ECG, and a block method was used to detect the systolic
peaks in the PPG (Pan and Tompkins, 1985; Elgendi et al.,
2013). Subsequently, the third systolic peak in the PPG was
aligned to the corresponding R peak in the ECG. Note that
the third beat was used to ensure that the alignment
process was effectively achieved. Sometimes the first
PPG beat is not completely clear, and the beat detector
cannot detect it, and the second PPG beat could have a
correspondence ECG beat that is appearing close to it. This
step generated a pair of aligned ECGs and PPGs. Note that
the alignment process here means the systolic peak of the
PPG beat is exactly aligned with the R peal of the
ECG beat.

• Normalization: After alignment I, the PPG signals are
scaled to [0,1]. Note that the aligned ECG was not
normalized so that we can compare the predicted ECG
with the reference ECG.

• Dataset splitting: To evaluate the long-term performance
of the proposed model, the first 60 s of the aligned signal are
used to train and validate, while others are used to test. Note
that the alignment I step causes the length of the aligned
signals to be less than 300 s and the length of each record to
be inconsistent. To keep the training data length consistent,
we utilized the first 48 s of each record as the training set, the
next 12 s as the validation set, and the next 228 s as the test
set. Note that there are 12 s ignored to achieve the next step,
which discusses the segmentation length, and 12 is found to
be the least common that allows the remaining length
dividable by 1, 2, 3, and 4.

• Segmentation: To make the model faster, a common
approach is to segment long signals into segments and
process the segments. In this research, the ECG signal
was divided according into time segments. The signals in

FIGURE 2 | Flowchart of constructing an electrocardiogram (ECG) signal from a photoplethysmogram (PPG) signal. The bidirectional long short-term memory
(BiLSTM) model is trained and validated for 1 minute to generate 3.8 min ECG signal.
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the training, validation, and test sets were divided into
segments of the same length, n seconds. To find the
optimal segment length, n = 1, 2, 3, 4 was used to test
the model.

Model Choice
Using the deep neural network is a promising way to achieve our
goal, especially recurrent neural networks that can use their
internal memory to process a sequential input. We chose
bidirectional long short-term memory (BiLSTM) model
because it has been successful in solving sequential and time-
series problems, such as handwritten recognition (Sakib et al.,
2020; Wang et al., 2020). In addition, a study using generative
adversarial networks to synthesize ECG showed that the BiLSTM
is a robust model for generating ECG signals (Zhu et al., 2019).
Note, no other physiological signals were used, only ECG and
PPG signals. Between the PPG and ECG, there may be unknown
time delays in important events; long short-term memory
(LSTM) and BiLSTM are suitable for processing time series in
this case. As an extension of the LSTM, the BiLSTMmodels takes
much longer to reach equilibrium than regular LSTMmodels, but
provides better predictions (Siami-Namini et al., 2019).

The model was built based on the TensorFlow package
(Version 2.5.0) in Python (version 3.9). The layers of this
model included the input layer, BiLSTM layer, fully connected
layer. There are further explanations regarding these below.

BiLSTM: BiLSTMs are an extension of traditional LSTMs.
BiLSTM connects two LSTM layers of opposite directions to the
same output, implying that BiLSTMs train two LSTMs instead of
one, on the input sequence, in problems where all time steps are
available. With this form of deep generative learning, the output
layer can simultaneously get information from past (backward)
and future (forward) states (Zhu et al., 2019). In this study, the
number of hidden unites in the BiLSTM layer was 25, and the
output of the BiLSTM layer is a sequence.

Dense layer: The dense layer is a fully connected layer. In neural
networks, a fully connected layer means that all inputs in one layer
are connected to each activation unit in the next layer. In machine-
learning models, the last layer is usually a fully connected layer to
facilitate compiling the data extracted from the previous layer into
the final output. The input of the dense layer is the sequence output
by the BiLSTM layer, while the output of Dense layer is 1.

Regularization was implemented to solve or prevent the ill-posed
problem from overfitting (Bühlmann and van de Geer, 2011). In this
research, both Lasso Regression (L1) and Tikhonov regularization
(L2) were used in the BiLSTM layer. The kernel regularizer
parameter in the BiLSTM layer is L1 = 0.0001, L2 = 0.0001.

The entire model was trained as an option in batch size = 1 and
max epochs = 1000. The learning rate is 0.001.

Stitching the Reconstruction ECG
Segments
The output signal length of the model was n seconds. To evaluate
the long-term performance of the model, we stitched the
reconstructed ECG segments together. The reconstructed ECG

segments were stitched one by one according to the order of the
PPG segments in the test set. Note that the stitching here is
carried out by placing segments adjacent to each other.

Alignment II
The result of stitching is already the reconstructed ECG signal,
and this alignment II is mainly to better evaluate the similarity of
the reconstructed ECG signal with the reference signal. Note that
the alignment II step is based on the cross-correlation.

Performance Evaluation
Three measures are used to evaluate the performance of the
filtered ECG and the reconstructed ECG in the
proposed model.

Pearson’s correlation coefficient (r): This is used to measure
the linear correlation between two variables (Liu, 2016). The value
of r is in the range of [ − 1, 1], where ±1 indicates the strongest
possible agreement and 0 indicates the strongest possible
disagreement. The formula of r is as follows:

r � ∑l
i�1 ECGref i( ) − ECGref( )∑l

i�1 ECGrec i( ) − ECGrec( )�����������������������∑l
i�1 ECGref i( ) − ECGref( )2√ ����������������������∑l

i�1 ECGrec i( ) − ECGrec( )2√
(1)

In this formula, ECGref(i) and ECGrec(i) are the individual
sample points of the reference ECG and reconstruction ECG
indexed with i, respectively. The variable l is the sample size of the
reference ECG. The variables ECGref and ECGrec are the mean of
sample value of reference ECG and reconstruction ECG,
respectively.

Root mean square error (rmse): In machine learning, rmse is
commonly used to measure the difference between the model’s
estimated value and the observed value. The formula of rmse is as
follows:

rmse �

�������������������������
1
l
∑l
i�1

ECGref i( ) − ECGrec i( )( )2
√√

(2)

Dynamic time warping (DTW) distance: DTW can be used to
measure the similarity between two time series, which may vary
in speed. (Efrat et al., 2007) This method calculates an optimal
match between any two given time series. In this paper, the steps
to calculate DTW are as follows:

• Suppose the length of the reference ECG is m. Create an
m×m matrix. An element dij in this matrix is the Euclidean
distance between the ith sample of reference ECG and the
jth sample of reconstruction ECG. The formular for
calculating dij is as follows:

dij �
��������������������������������

i − j( )2 + ECGref i( ) − ECGrec j( )( )2( )√
(3)

• Looking for the optimal path to minimize the sum of d11 to
dmm along this path. This path is defined as the warping
path, and the sum is the DTW distance.
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Similar to rmse, the value range of DTW distance is zero to
infinity, and the smaller the value, the more similar the two time
series are (Efrat et al., 2007).

RESULTS

We tested the model’s accuracy when the data was divided into
one, two, three, and four seconds. Figure 3 shows two examples of
the experimental results from patients with and without
circulatory disease. This figure shows that the ECG
reconstructed using different time length models can match
the reference ECG. For Figure 3IV, the correlation was only
0.79; however, the morphology of the reconstruction ECG looks
highly similar to the reference ECG.

After checking the fitting results of different records, there was
a time delay between the reconstruction ECG and the reference
ECG for some records. This delay lowered the r value; to better
evaluate the model’s performance, we used cross-correlation to
align the reconstruction ECG with the reference ECG.

Cross-correlation can be used to measure the displacement of
one time series relative to another of two similar time series. After
calculating the cross-correlation between the two time series, the
maximum of the cross-correlation function indicated the point at
which the signals were best aligned. In this research, we applied
cross-correlation with a window of 80 milliseconds. Figure 4
shows a comparison of the results with and without alignment by
cross-correlation. It is a segmented result from the 3-s segment-
based model. Figure 4I shows the results that are not aligned
based on cross-correlation, r was 0.713, and rmse was 0.120 mV.
However, with alignment, as shown in Figure 4II, r increased to
0.976 and rmse reduced to 0.035 mV. In this case, it was necessary
to align the reconstructed ECG with the reference ECG.

To better evaluate the similarity between the two signals, we
introduced another similarity measure: DTW distance (d). In
Figure 4, the DTW distance for the signal with alignment is not
very different from that without alignment. The DTW distances of the
results were 5.178 mV and 5.150mV with alignment and without,
respectively. This shows that theDTWdistancemaybe a bettermeasure
than r when testing the similarity in time series with time delay.

FIGURE 3 | Extracts of experimental results in patients with and without circulatory disease. The red and black curves are the reconstruction ECG and reference
ECG, respectively. The abbreviations r, rmse, and d are the Pearson’s correlation coefficient, root mean square error, and dynamic time warping distance, respectively.
(I), (II), (III), and (IV) are the results of a subject with a circulatory disease in segments of one, two, three, and 4 seconds, respectively. (V), (VI), (VII), and (VIII) are the results of
a subject without any circulatory disease in segments of one, two, three, and 4 seconds, respectively. The PPG is the corresponding segment used to generate the
ECG signals.
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The warping path of the DTW can be used as another way to
express the similarity of two time series. Figure 5I shows an example
of the optimal warping path between the reconstruction ECG and
the reference ECG in a 1-s segment-based model. The distance
between the reconstruction ECG and the reference ECG was
1.927 mV. The optimal warping path indicated that after a small
amount of warping, the reconstructed ECG matched the reference
ECG. Figure 5II shows the optimal warping path between the long-
term reconstruction ECG and the reference ECG. The long-term
reconstruction ECG comes from the result of the 1-s segment-based
model after stitching the reconstructed 1-s ECG segments. The
distance between the reconstructed and the reference ECG signals is
533.218 mV. Since the DTWdistance increases along with the signal
length, we divided this distance by the signal time length of 228 s to
facilitate a better comparison of the reconstruction results. The
average distance was 2.380 mV per second, indicating that, on
average, the distance between the two signals per second was
minuscule. The warping path of the 228-s reconstruction ECG
and the reference ECG appears as a straight line. The magnified
portion of the figure shows the warping path of two signals in one
second. This means that after a small time shift, the reconstructed
ECG can be matched to the reference ECG; that is, there is a high
degree of similarity between the two signals.

Table 1 shows the statistical results of the three measures for
different signal length models on the 100 records. By comparing
the results of the training, validation, and test sets in all the models,
the results with alignment decrease more slowly than the results
without alignment. In the result of the stitched ECG, the change in
DTW distance (ds) was mainly due to the inconsistent time length

of each data set. In the average DTW distance (ds), the downward
trend of similarity was consistent with r. After comparing the
results of the test set of the various time length models, the highest
correlation of a single segment was the 1-s segment-based model,
and the highest after stitching was the 4-s segment-based model.
The stitching step causes the correlation to decrease, which is
mainly caused by the inconsistent time delay between the
reconstructed ECG and the reference ECG in each segment. By
comparing the results of the validation set and test set, we found
that the performance of the model degrades on the long training
set, but the correlation is still above 0.8.

DISCUSSION AND LIMITATIONS

We propose a model based on BiLSTM to reconstruct ECG from
PPG. Table 2 shows the comparison between this method and other
studies on subject-specific models. The most significant advantage of
this model is that it does not rely on period information of the PPG
and ECG. There is a difference between the R peak of the ECG and
the systolic peak of the PPG,which is called the pulse arrival time, and
the existence of the pulse arrival time makes the PPG have a lag
relative to the ECG (Liang, 2019). Therefore, the Alignment I step
removed pulse arrival times to align the PPG systolic peak with the
ECG R peak. After Alignment I, the systolic and diastolic periods are
ignored. This Alignment ensures that there is no delay between the
peaks. In clinical settings, due to the various factors, such as noise,
disease, and other issues, it is difficult and sometimes impossible to
extract the periodic information of some PPG and ECG signals.

FIGURE 4 |Comparison of reconstruction ECG and reference ECGwith and without alignment. The abbreviations ra, rmsea, and da are calculated after aligning the
reconstruction ECG and reference ECG, respectively.
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Although some studies have shown that the heart rate variability of
photoplethysmography is correlated to that of electrocardiography
(Polanía et al., 2015; Weinschenk et al., 2016; Paradkar and
Chowdhury, 2017), the RR interval of ECG is not completely
consistent with the peak-to-peak interval of PPG, and there is an
offset (Luo et al., 2012). The time delay between the reconstruction
ECG and the reference ECG may arise from the PPG period
information noise and the inconsistency between the ECG and
PPG periods. The model proposed herein can solve this problem
effectively. As the results show, in the stitched ECG, the performance
of the model increases with the segment length. This means that as
the segment length increases, the proposed model can work with a
small difference between the RR interval and the peak-to-peak
interval. Compared to the performance of the model in some of
the test sets, we paid greater attention to whether the trained model
can be used for long-term construction, i.e., construction of long
signals. This is because the long-term performance of the model is
important if the technology is to be used in wearable devices. To
better evaluate the long-term performance of the model, we did not
use the traditional 80% training set and 20% test set. Instead, 80%

(48s) of the first minute is used for training, and 20% (12 s) is used for
validation. After the model was trained, we used the next 228 s as the
test set. Note that the ratio of the duration of the test set to the training
set is 4.75. For short-term performance, the proposedmodel achieves
0.904 in the 4-s segment-basedmodel (the validation result), which is
the same as the beat-based model in the self-collected dataset. The
proposed model is only trained on 0.8 min data, while the other two
models use more data. Although the performance of the proposed
model degrades in the long-term data operation, the correlation still
reaches 0.818. These results show that the model we used above can
be employed in long-term construction after training.

To evaluate the similarity in the presence of the time delay, we
utilized the metric DTW distance. Usually, the warping path of
the DTW is used as a measure. The distance is the sum of the cost
of DTW along the optimal warping path. However, the DTW
distance increases as the signal length increases. Within one
second, the average distance for 100 records between the
reconstruction ECG of the proposed model and the reference
ECG is only 2.120mV in the 4-s model. The reason behind us
using DTW is that the beat intervals of PPG and ECG are not

FIGURE 5 | The optimal warping path of the reconstruction and reference ECGs using DTW. (I) shows an example of a 1-s segment. (II) shows the result of the
whole 228-s test set for one subject. d is the DTW distance of the 228-s reconstruction and reference ECGs. And �d is d divided by the signal time length of 228 s.
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precisely the same. In this paper, Pearson’s correlation coefficient and
rmse are used to evaluate the linear correlation and the mathematical
difference between the reconstructed result and reference ECG,
respectively. At the same time, DTW provides another
mathematical perspective for evaluating temporal differences, and
comparing the difference between the reconstructed result and the

reference. By using these three evaluation metrics, we can better
evaluate the reconstruction results.

The beat-based model proposed a group model that can work
for different subjects. They put those with circulatory system
diseases into one group and those without circulatory system
diseases into another group. In this study, we did not train

TABLE 1 | The results of the test in different lengths. The abbreviations r, rmse, and d refer to the Pearson’s correlation coefficient (r), root mean square error rmse, and
dynamic time warping distance between the reconstruction ECG and reference ECG, respectively. The rs, rmses and ds represent the values between the reconstruction
ECG and reference ECG after stitching all the segments together. The abbreviations ra, rmsea, rsa, and rmsesa is calculated after aligning the reconstruction ECG and
reference ECG in the cross-correlation. Finally, �d and ds represent d and ds divided by the signal time length, respectively.

Segment
Length
(seconds)

Dataset Number
of Segments

r(ra) Rmse
(mV)

(rmsea
(mV))

rs(rsa) rmses
(mV)

(rmsesa
(mV))

d
(mV)
(�d

(mV))

ds

(mV)
(ds

(mV))

n = 1 Train 48 0.929 ± 0.095 0.048 ± 0.034 0.926 ± 0.047 0.052 ± 0.027 2.087 ± 1.263 95.569 ± 44.683
(0.963 ± 0.039) (0.038 ± 0.024) (0.928 ± 0.046) (0.052 ± 0.026) (2.087 ± 1.263) (1.991 ± 0.931)

Validation 12 0.840 ± 0.175 0.071 ± 0.047 0.838 ± 0.108 0.077 ± 0.037 2.319 ± 1.718 26.177 ± 13.084
(0.945 ± 0.065) (0.045 ± 0.031) (0.893 ± 0.066) (0.063 ± 0.032) (2.319 ± 1.718) (2.181 ± 1.090)

Test 228 0.782 ± 0.222 0.084 ± 0.061 0.774 ± 0.113 0.094 ± 0.046 2.432 ± 1.809 512.876 ± 253.379
(0.940 ± 0.074) (0.048 ± 0.042) (0.805 ± 0.095) (0.088 ± 0.045) (2.432 ± 1.809) (2.249 ± 1.111)

n = 2 Train 24 0.930 ± 0.085 0.048 ± 0.031 0.929 ± 0.054 0.051 ± 0.026 4.109 ± 2.050 95.267 ± 42.718
(0.956 ± 0.037) (0.041 ± 0.022) (0.931 ± 0.052) (0.050 ± 0.026) (2.054 ± 1.025) (1.985 ± 0.890)

Validation 6 0.809 ± 0.151 0.079 ± 0.046 0.806 ± 0.109 0.083 ± 0.040 4.559 ± 2.313 26.316 ± 11.799
(0.932 ± 0.064) (0.050 ± 0.029) (0.874 ± 0.077) (0.068 ± 0.033) (2.280 ± 1.157) (2.193 ± 0.983)

Test 114 0.791 ± 0.193 0.083 ± 0.050 0.788 ± 0.096 0.089 ± 0.039 4.643 ± 2.497 502.629 ± 217.656
(0.924 ± 0.078) (0.052 ± 0.033) (0.817 ± 0.071) (0.084 ± 0.037) (2.322 ± 1.249) (2.205 ± 0.955)

n = 3 Train 16 0.920 ± 0.101 0.050 ± 0.034 0.919 ± 0.077 0.053 ± 0.030 6.323 ± 3.502 98.667 ± 51.403
(0.947 ± 0.067) (0.043 ± 0.026) (0.920 ± 0.077) (0.053 ± 0.030) (2.108 ± 1.167) (2.056 ± 1.071)

Validation 4 0.826 ± 0.154 0.079 ± 0.044 0.826 ± 0.122 0.079 ± 0.040 4.559 ± 2.313 26.316 ± 11.799
(0.917 ± 0.082) (0.054 ± 0.031) (0.891 ± 0.091) (0.063 ± 0.034) (2.298 ± 1.220) (2.243 ± 1.154)

Test 76 0.783 ± 0.199 0.084 ± 0.049 0.788 ± 0.121 0.089 ± 0.038 6.998 ± 3.744 510.932 ± 243.621
(0.911 ± 0.095) (0.055 ± 0.034) (0.813 ± 0.088) (0.084 ± 0.036) (2.333 ± 1.248) (2.241 ± 1.069)

n = 4 Train 12 0.926 ± 0.082 0.049 ± 0.030 0.925 ± 0.054 0.052 ± 0.025 7.970 ± 3.926 93.664 ± 42.493
(0.950 ± 0.043) (0.043 ± 0.023) (0.926 ± 0.052) (0.051 ± 0.025) (1.993 ± 0.982) (1.951 ± 0.885)

Validation 3 0.835 ± 0.140 0.075 ± 0.042 0.834 ± 0.119 0.076 ± 0.039 8.523 ± 4.018 25.015 ± 11.053
(0.920 ± 0.064) (0.053 ± 0.030) (0.904 ± 0.065) (0.059 ± 0.031) (2.131 ± 1.005) (2.085 ± 0.921)

Test 57 0.792 ± 0.186 0.083 ± 0.048 0.790 ± 0.103 0.088 ± 0.037 8.769 ± 4.330 483.404 ± 207.199
(0.910 ± 0.086) (0.055 ± 0.032) (0.818 ± 0.072) (0.083 ± 0.035) (2.192 ± 1.082) (2.120 ± 0.909)

TABLE 2 | Comparison of this paper and other papers in the subject-specific model. The ‘NR’ stands for not reported.

Segmentation
Method

Data Used The Training Segment
Length per Subject

(minutes)

Performance

Test to Training Ratio: 0.25 Test to Training Ratio: 4.75

r rmse (mV) ds (mV) r rmse (mV) ds (mV)

This paper
(subject-specific)

Seconds MIMIC III Johnson,
(2016): 100 subjects

0.8 0.904 0.059 2.085 0.818 0.083 2.120

Beat-based model
Zhu et al. (2021)
(subject-specific)

Beat TBME-RR Karlen et al.
(2013): 42 subjects

6.4 0.984 NR NR NR NR NR

MIMIC III Johnson,
(2016): 103 subjects

4 0.940 NR NR NR NR NR

Self-collected: 2
subjects

24 and 33.6 0.904 NR NR NR NR NR

XDJDL model
Tian et al. (2020)
(subject-specific)

Beat MIMIC III Johnson,
(2016): 33 subjects

12 0.88 NR NR NR NR NR
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based on subject grouping. Electrocardiography and
photoplethysmography reflect the electrophysiological and
mechanical activities of the heart, respectively. The excitation-
contraction coupling suggests that the electrical signals of the heart
trigger the heart to have periodic contractions. If, from a signal-
processing perspective, the heart and blood transmission system
are like a black box, the ECG signal is the input of the black box,
and the PPG signal is the output. For each individual, there may be
differences in their transfer functions due to various factors,
especially in the presence of circulatory diseases. Therefore, in
this study, we only considered subject-specific models.

The limitation of this paper is that the frequency range of the
reconstructed ECG is below 20Hz. However, the frequency range of
abnormal ventricular conduction is above 70Hz (Tereshchenko and
Josephson, 2015). This means that the model cannot reconstruct the
abnormal ventricular conduction in an ECG, a primary reason being
that the commonly used frequency range in PPG is 0.5–20Hz. This
paper focuses on the commonly used frequency range in PPG. In
future work, we will test the performance of this model in the
different frequency ranges. It is worth noting that the purpose of
this study is to develop a subject-specific model. The next step would
be to examine its performance for the intra-subject case against the
inter-subject performance case.

For subjects with different circulatory systemdiseases, the shape of
their ECGsmay deviate from that of the normal ECG in variousways.
Therefore, using the samemodel to reconstruct ECGs from PPGs for
multiple subjects is a challenge. Thus, to use this model effectively,
abnormalities in an ECG need to be extracted from the PPG. At
present, studies have shown that some arrhythmia can be detected by
a PPG (Polanía et al., 2015; Paradkar and Chowdhury, 2017), but
these still depend only on the correlation between the ECG and the
PPG on the beat. Other deep learning algorithms with different
parameter choices need to be investigated in future work. It is also
desirable to carry further evaluations of the differences between the
reconstructed and reference ECG features, such as QRS complex and
ST segment, in future studies.

CONCLUSION

This study proposed a subject-based model to reconstruct an
ECG from photoplethysmography. The model was trained on
short ECG and PPG signals (0.8 min), but it successfully

reconstructed long (3.8 min) ECG signals. For each segment of
the constructed ECG, the average correlation between the
constructed and the reference ECG was 0.94 when the
segments were 1-s long. For the entire test ECG, the average
correlation of the 4-s segment-based model was 0.91. Compared
to other models, this model divides the PPG into segments of
seconds (instead of beats) to generate ECG segments and solve
the inconsistency between ECG and PPG beats in some signals.
The long-term reconstructed ECG is highly similar to the
waveform of the reference ECG. This model is expected to be
used in wearable devices as an effective alternative for a low-cost,
long-term health or fitness monitoring application.
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