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Stress-induced premature senescence can contribute to the accelerated metabolic aging
process in diabetes. Progressive accumulation of senescent cells in the brain, especially
those displaying the harmful inflammatory senescence-associated secretory phenotype
(SASP), may lead to cognitive impairment linked with metabolic disturbances. In this
context, the senescence within the neurovascular unit (NVU) should be studied asmuch as
in the neurons as emerging evidence shows that neurogliovascular communication is
critical for brain health. It is also known that cerebrovascular dysfunction and decreased
cerebral blood flow (CBF) precede the occurrence of neuronal pathologies and overt
cognitive impairment. Various studies have shown that endothelial cells, the major
component of the NVU, acquire a senescent phenotype via various molecular
mediators and pathways upon exposure to high glucose and other conditions
mimicking metabolic disturbances. In addition, senescence in the other cells that are
part of the NVU, like pericytes and vascular smooth cells, was also triggered upon
exposure to diabetic conditions. The senescence within the NVU may compromise
functional and trophic coupling among glial, vascular, and neuronal cells and the
resulting SASP may contribute to the chronic neurovascular inflammation observed in
Alzheimer’s Disease and Related Dementias (ADRD). The link between diabetes-mediated
cerebral microvascular dysfunction, NVU senescence, inflammation, and cognitive
impairment must be widely studied to design therapeutic strategies.
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1 INTRODUCTION

Senescence is a biological process defined by an apoptosis-resistant and irreversible arrested cell cycle
with a distinct pro-inflammatory phenotype affecting neighboring cells (Hayflick and Moorhead,
1961; Rodier and Campisi, 2011; Acosta et al., 2013; Childs et al., 2015; He and Sharpless, 2017).
Accumulation of senescent cells in various tissues is believed to contribute to progressive functional
impairments that come with chronological aging as well as with age-related disorders such as
Alzheimer’s Disease and Related Dementias (ADRD) including Vascular Contributions to Cognitive
Impairment and Dementia (VCID) (Sikora et al., 2021a). Senescent inflammatory phenotype can
also be triggered by metabolic disturbances as seen in diabetes and obesity, major comorbidities for
individuals suffering fromADRD, and led to the concept of premature metabolic aging (Palmer et al.,
2015; Burton and Faragher, 2018). Emerging evidence suggests that the removal of senescent cells by
pharmacological or genetic approaches improves cognitive deficits in animal models of ADRD
(Bussian et al., 2018; Kim and Kim, 2019; Zhang et al., 2019). However, our understanding of the role
of senescence in healthy brain aging, and what tips the scale to pathological senescence is in its
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infancy. The landscape of senescence among brain cells is unclear.
Delineation of the molecular and cellular mechanisms and
functional consequences of senescence may lead to the design
and implementation of effective therapies.

It is established that cerebrovascular dysfunction and
decreased cerebral blood flow (CBF) are early findings
preceding the development of neuronal pathologies such as
amyloid and tau deposition as well as cognitive deficits
(Gorelick et al., 2017). The brain is a metabolically demanding
organ that requires constant blood flow to perform all the
complex functions ranging from cognition to regulation of
cardiovascular homeostasis. As such, it has a dense
microvascular network, and endothelial cells which form the
neurovascular unit (NVU) along with the surrounding glial
cells and pericytes play very critical roles in the delivery of
nutrients, removal of waste, and formation of blood brain
barrier (BBB) (Gorelick et al., 2017; Iadecola, 2017; Sweeney
et al., 2019a; Sweeney et al., 2019b). Endothelial senescence can
trigger a vicious inflammatory cycle and disrupt brain
homeostasis. Thus, in this review, we will first summarize the
current understanding of the senescence process, and its
physiological and pathophysiological consequences in general.
Next, we will review the role of NVU senescence in cognitive
impairment in the context of diabetes.

2 EVOLVING CONCEPT OF CELLULAR
SENESCENCE PHENOTYPES

When the idea of cell senescence was first introduced in 1961 by
Hayflick and Moorhead, it was thought to be a normal process of
aging (Hayflick andMoorhead, 1961). However, in the years since
its discovery, it has been proven that cellular senescence can be
both a typical physiological process and in other instances
deleterious to the homeostasis of the surrounding cellular
environment (Childs et al., 2015; He and Sharpless, 2017;
Rodier and Campisi, 2011; Acosta et al., 2013) (Figure 1).
While senescence can be beneficial in embryonic development,
tissue repair, and tumor suppression, accumulation of senescent

cells and their products can promote chronic inflammation,
tissue damage, and impairment of tissue regeneration (He and
Sharpless, 2017; Rodier and Campisi, 2011; Acosta et al., 2013). It
is now recognized that the senescent phenotype is heterogeneous
and can be categorized as replicative senescence, stress-induced
premature senescence (SIPS), and oncogene-induced senescence
(Figure 1). In the following section, we briefly review replicative
senescence and SIPS as they relate to chronological and metabolic
aging, respectively. We refer the readers to excellent recent review
articles that describe the molecular processes and the detailed
characterization of senescent phenotypes (Gorgoulis et al., 2019;
Sikora et al., 2021b).

2.1 Replicative Senescence
Senescence is when a cell is irreversibly arrested in the cell cycle,
and therefore, it is no longer able to replicate but remains
metabolically active (Palmer et al., 2015; Sikora et al., 2021b).
The primary physiological trigger of senescence is irreparable
DNA damage that is most often linked to the DNA Damage
Response (DDR) (Figure 2). This can also be observed in the
normal processes of cellular aging. After a finite number of
replications known as the “Hayflick limit”, the telomeres, a
portion of non-coding DNA at the end of each chromosome
meant to protect the integrity of DNA strands, shortens to a
critical length (Hayflick and Moorhead, 1961; Liu et al., 2019).
After this point, the ends of the DNA are identified as strand
breaks by internal cellular mechanisms, and DDR is initiated
triggering cell senescence via ataxia telangiectasia mutated
(ATM) and ataxia telangiectasia and RAD3-related (ATR).
These kinases are responsible for the accumulation of the cell
cycle inhibitor protein-53 (p53) (Herbig et al., 2004; Mu et al.,
2011; Burton and Faragher, 2015; Sikora et al., 2021b). Herbig
and colleagues showed that at the critical length of 6–8 kbp, the
telomeres show a collection of H2AX histones that are
phosphorylated to the variant γ-H2AX in human fibroblasts.
This phosphorylation, regarded as a marker of DNA damage, is
mediated by ATM and ATR and represents the fact that these
telomeres are now seen as double-strand breaks (DBS) and
considered to be damaged DNA by the cell (Herbig et al.,

FIGURE 1 | Consequences of cell senescence in health and disease. Different types of stress or physiological conditions can trigger senescence. In embryonic
development and tissue repair, senescence is beneficial and clearance of senescent cells by functional immune cells restores tissue function. In contrast, the
accumulation of senescent cells under stress conditions can be further exacerbated by SASP, and failure of the removal of senescent cells by senescent immune cells
can lead to chronic inflammation and tissue dysfunction. Created with BioRender.com.
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2004). This prevents the cells from continuing to replicate until
the telomeres are entirely gone, and the DNA would no longer be
copied in its entirety. This phenomenon impedes mutations that
would result from incomplete DNA replication and is termed
replicative senescence (Liu et al., 2019). In this context, replicative
senescence can be viewed as a protective phenomenon.

This type of senescence is also thought to be a normal process
of aging due to the strong correlation between age and increased
senescence markers (Gorgoulis et al., 2019; Sikora et al., 2021b). It
is initiated by the p53/p21 pathway where p53 upregulates the
gene p21 which, in turn, inhibits the function of cyclin-dependent
kinases (CDKs) required for the cell to progress through the cell
cycle (Figure 2) (Sikora et al., 2021b). As the telomeres shorten,
the damage becomes persistent, and cells undergo permanent
arrest (Rodier and Campisi, 2011; He and Sharpless, 2017). In this
context, replicative senescence is regarded as a chronological
aging phenomenon.

2.2 Stress-Induced Premature Senescence
Senescence can also be triggered by repeated insults to the cell via
disease pathologies as seen in diabetes and obesity (Palmer et al.,
2015; Burton and Faragher, 2018). This is known as SIPS and is
independent of telomere length, but reliant on constitutive DDR
signaling to activate ATM and ATR (Sikora et al., 2021b). These
same proteins p53, p21, and p16 are also responsible for arresting

the cell cycle in response to pathological DNA damage after
promotion by ATM and ATR. However, SIPS can also be
instigated via p16 independent of the p53/p21 pathway
(Burton and Krizhanovsky, 2014; Burton and Faragher, 2018;
Kim et al., 2022). This can be initiated in response to increased
levels of reactive oxygen species (ROS), cell-cell fusion, and
various other adverse stimuli like UV irradiation (Mu et al.,
2011; Palmer et al., 2015; Sikora et al., 2021b; Wiley and Campisi,
2021). In this context, SIPS is regarded as a premature
aging event.

2.3 Cellular Consequences
2.3.1 Beneficial Effects
The benefit of cellular senescence is that cells with damaged DNA
cease replication, thereby reducing the opportunity for mutations
that could be potentially harmful to the organism, such as cancer
(Burton and Krizhanovsky, 2014; Sikora et al., 2021b; Wiley and
Campisi, 2021). Without the induction of senescence, for
example, after UV irradiation resulting in single-strand DNA
breaks in murine embryo, the organism ultimately succumbed to
the DNA mutations which proved to be fatal (Mu et al., 2011). In
this way, by not simply undergoing apoptosis or some other form
of immediate cell death or removal from the environment, the
organism can maintain not only the integrity of the tissue until
new cells can be produced but also the viability of the organism

FIGURE 2 | (A) Cell cycle arrest. Telomere shortening to the critical length of 6–8 kbp or cellular stress activates ATM and ATR to mediate histone phosphorylation
of H2AX to gamma-H2AX. The accumulation of gamma-H2AX activates p53 and upregulates the gene p21. Inhibition of CDKs by p21 prevents progression of the cell
cycle conditionally. (B) DNA repair and re-entry into the cell cycle. The addition of DNA to telomere ends by telomerase instigates the loss of histone phosphorylation via
unknownmechanisms. The p53/p21 pathways are then deactivated, p21 is degraded, and CDKs are disinhibited allowing the cell to re-enter and progress through
the cell cycle. (C) Persistent cell cycle arrest leads to senescence. The DNA damage is unable to be repaired by the cell leading to the activation of the p16 gene.
Phosphorylation and subsequent degradation of Rb by CDKs are inhibited. Rb activity instigates permanent exit from the cell cycle but not cell death (senescence) via
unknown mechanisms. Created by with BioRender.com.
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(Burton and Krizhanovsky, 2014; He and Sharpless, 2017;
Gorgoulis et al., 2019). Cell senescence is also a favorable
process in wound healing and embryonic development
(Burton and Krizhanovsky, 2014; He and Sharpless, 2017;
Gorgoulis et al., 2019) (Figure 1). This again highlights the
protective potential of cell senescence.

2.3.2 Detrimental Effects
When senescent cells accumulate, they can become damaging.
Cells can undergo phenotypic changes such as flattening,
stochastic gene expression thought to derive from chromatin
remodeling, altered paracrine activity, and increased production
of reactive oxygen species (Burton and Krizhanovsky, 2014;
Burton and Faragher, 2015; He and Sharpless, 2017; Gorgoulis
et al., 2019). Senescence can also lead to cellular metabolic
changes with deleterious consequences. For example, human
hematopoietic stem and progenitor cells as well as human
fibroblasts have been shown to display increased glucose
uptake and glycolysis, and lipid accumulation (Gorgoulis et al.,
2019; Poisa-Beiro et al., 2022). This alteration in lipid handling is
detrimental in that it accumulates within lysosomes as
indigestible lipofuscin, impairing lysosomal function and
autophagic capabilities. In this regard, the relationship between
autophagy and senescence is bidirectional (Rajendran et al., 2019;
Wiley and Campisi, 2021). Impaired autophagy can promote and
exacerbate senescence via the promotion of senescence-associated
secretory phenotype (SASP), which is further discussed below. In
addition to dysregulation of lysosomal function and lipid
metabolism, altered transition metal homeostasis is another
example of metabolic changes in senescent cells (Masaldan
et al., 2018a; Masaldan et al., 2018b). For detailed information,
we refer the readers to a recent review on the interplay between
metabolism and senescence (Wiley and Campisi, 2021). These
changes in cell morphology and metabolism as well as gene
expression prevent the cell from carrying out its intended
processes which could potentially lead to tissue dysfunction
and compromised tissue regeneration as senescent cells amass
over time (Burton and Krizhanovsky, 2014; Burton and Faragher,
2015; He and Sharpless, 2017; Gorgoulis et al., 2019). For
instance, Minamino et al. showed that senescent human aortic
endothelial cells displayed decreased endothelial nitric oxide
synthase (eNOS) activity. With an accumulation of cell
senescence in this area, the vasorelaxation capability of the
arteries can be impaired leading to atherosclerosis (Minamino
and Komuro, 2002).

The most impactful behavior of senescent cells is their
secretory phenotype (Acosta et al., 2013; Tasdemir and Lowe,
2013; Burton and Krizhanovsky, 2014; Burton and Faragher,
2015; Gorgoulis et al., 2019; Sikora et al., 2021b). Senescent
cells can secrete a host of inflammatory cytokines,
chemokines, growth factors, and enzymes known as SASP or
the senescence secretome. SASP is a complex feature of
senescence. While it is common to all senescent phenotypes,
the composition of SASP is very diverse depending on the cause
and cell type (Freund et al., 2010; Rodier and Campisi, 2011;
Wiley and Campisi, 2021). As a result, the regulation and
consequences of SASP are also complex (Acosta et al., 2013;

Tasdemir and Lowe, 2013; Burton and Krizhanovsky, 2014;
Burton and Faragher, 2015; Gorgoulis et al., 2019; Sikora
et al., 2021b).

In a healthy model, the upregulation of these molecules as well
as cell surface proteins like NKG2, an excitatory ligand for natural
killer cells, allows for the localization of the senescent cells by the
immune system and their subsequent clearance. The
upregulation of NKG2, in specific, allows for the recognition
and elimination of the senescent cells by natural killer cells via
granule exocytosis (Burton and Krizhanovsky, 2014; Burton and
Faragher, 2015; Sagiv et al., 2016; Gorgoulis et al., 2019; Sikora
et al., 2021b). Senescent cells can also be eliminated by
monocytes/macrophages, T, and B cells (Sagiv et al., 2016;
Sikora et al., 2021b).

The harmful impact of senescent cells arises when there is a
failure for their removal by immune surveillance. This can
happen as a result of an aged immune system that is no
longer able to accurately identify and remove the cells, or by
the accumulation of senescent cells at a rate too high for the
immune system to clear. Sirtuin1/SIRT1 [(silent mating type
information regulation 2 homolog) 1 (S. cerevisiae)], has been
observed to be decreased in aged immune CD4+CD28− T cells of
humans as well as in agedmice models and has been implicated as
a potential target for slowing this immune aging (Xu et al., 2020).
As a result, SASP leads to persistent sterile inflammation that is
damaging to the neighboring cells and propagates cell senescence
in a paracrine manner (Acosta et al., 2013; Tasdemir and Lowe,
2013; Palmer et al., 2015). Diverse SASP factors promoting
inflammation include transforming growth factor (TGF)-β, IL-
1, IL-6, IL-17, monocyte chemoattractant protein (MCP)-1,
tumor necrosis factor (TNF)-α, insulin-like growth factor
(IGF)-1, and matrix metalloproteases (MMP) among others
(Admasu et al., 2021). Central to this review, studies have
shown upregulation of these factors and adhesion molecules in
endothelial and vascular smooth muscle cells of the cerebral
microvasculature in rodent models perpetuate vascular
inflammation (Ungvari et al., 2013; Fulop et al., 2018; Ungvari
et al., 2018), which is further discussed in the next section.

3 CELLULAR SENESCENCE WITHIN THE
BRAIN AND COGNITIVE IMPAIRMENT

In the context of brain health, our limited understanding of the
role of senescence in healthy brain aging is a barrier to delineating
the complex role of senescence in neurodegenerative diseases.
Aging-related cognitive decline is not entirely an outcome of
neuronal death. Neuronal senescence can contribute to its
pathophysiology (Hof and Morrison, 2004). As discussed
above, when brain cells enter into a “senescent state”
characterized by permanent cell cycle arrest, apoptosis-
resistance, altered gene expression, and inflammatory secretory
phenotype (Tasdemir and Lowe, 2013; Burton and Krizhanovsky,
2014; Gorgoulis et al., 2019; Kim and Kim, 2019), they can
propagate this signal to neighboring cells. There is evidence
that neurons, terminally differentiated cells, can acquire a
senescence-like state (Geng et al., 2010; Jurk et al., 2012;
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Piechota et al., 2016). However, whether neuronal senescence
occurs and leads to neurodegenerative diseases is still under
investigation (Sikora et al., 2021a). Elucidating the functional
and physiological consequences of senescence by cell types in the
brain during aging could uncover new targets for
neurodegeneration and subsequent cognitive decline. Given
that nitrative/oxidative stress is a major inducer of senescence,
and diabetes being an inflammatory disease associated with
exacerbated oxidative/nitrative stress and premature vascular
aging, we will focus on the role of neurovascular unit
senescence in cognitive impairment linked to diabetes. We
refer the readers to an excellent recent review on brain aging
and senescence (Sikora et al., 2021a).

3.1 Diabetes and Cognitive Impairment
Brain health is dependent upon tightly regulated CBF and BBB
integrity by a well-coordinated cell-cell interaction in this
network (Demuth et al., 2017; Schaeffer and Iadecola, 2021).
Epidemiological studies have long established the coexistence of
cognitive deficits, ranging from cognitive dysfunction to
dementia, and diabetes in older adults (Cheng et al., 2012).
Only in recent years, it has become clearer that cognitive
deficits might be a direct complication of diabetes, shifting
from correlation to causation (Biessels et al., 2020; Srikanth
et al., 2020; van Sloten et al., 2020). Cerebrovascular
dysfunction is a common pathology between diabetes and
dementia (Li W. et al., 2018). Endothelial dysfunction and
decreased CBF are early changes that precede the development
of neuropathologies (tau and amyloid deposition) and cognitive
deficits (Gorelick et al., 2017; van Sloten et al., 2020). The
endothelium is an early target in metabolic diseases including
diabetes. Cerebrovascular dysfunction resulting from an
imbalance of endothelium-derived vasoconstrictor and

vasodilator substances can contribute to the early decrease in
CBF, which could trigger oxidative/nitrative stress initiating a
senoinflammatory loop (Figure 3). The human brain has about
400 miles long vascular network, most of which is formed by
capillaries lined with endothelial cells (Begley and Brightman,
2003; Coucha et al., 2013; Kiss et al., 2020). Since high glucose
conditions are known to initiate premature cellular senescence,
and endothelial cells are the first line of barrier exposed to
hyperglycemia as well as being the interface between the brain
and blood (Chen et al., 2002; Biessels and Despa, 2018;
Prattichizzo et al., 2018; Balasubramanian et al., 2021), in the
following section we will first review evidence on senescence in
endothelial cells followed by other cells of the NVU in diabetes.

3.2 Endothelial Senescence in Diabetes and
Metabolic Diseases
The bulk of our knowledge comes from in vitro studies in which
high glucose was used to mimic diabetes using non-CNS vascular
endothelial cells, especially in the widely known human umbilical
vein endothelial cells (HUVECs) which are not ideal endothelial
cells explaining adult disease conditions as opposed to brain
microvascular endothelial cells that are at the center of the NVU.
Evidence has conclusively shown that the high glucose insult
completely changes the phenotype of the endothelial cells (Senthil
et al., 2017; Prattichizzo et al., 2018; Haspula et al., 2019), which is
also pro-apoptotic (Senthil et al., 2017). Widely known
modulators of cellular senescence like SIRT1 and p53 have
been found to play an important role in diabetes-linked
premature vascular senescence. HUVECs exposed to high
glucose conditions express increased levels of Src homology/
collagen (Shc) adaptor protein p66Shc which plays a crucial
role in increased ROS production. SIRT1 overexpression was

FIGURE 3 | Role of cell senescence in metabolic disease-associated cognitive impairment. Metabolic diseases including obesity and diabetes and conditions
linked to them like hyperglycemia, dyslipidemia, and insulin resistance can lead to a senoinflammatory loop. Senescence of pancreatic cells can also lead to diabetes.
This persisting senescence at the cellular level targeting the components of the NGVU gradually leads to chronic inflammation, glymphatic dysfunction, NGVU
remodeling, and demyelination resulting in progressive cognitive impairment. Created with BioRender.com.
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shown to inhibit this harmful increase in p66Shc levels in
HUVECs as well as protection against high glucose–induced
endothelial dysfunction indicated by the increase in
manganese superoxide dismutase (MnSOD) and decrease in
plasminogen activator inhibitor-1 (PAI-1) expression. Also,
SIRT1 levels were found to be decreased in the aorta of
diabetic mice compared to normal controls. SIRT1
overexpression in the aorta of diabetic endothelium-specific
SIRT1 transgenic (SIRT1-Tg) mice led to a decrease in
p66Shc, nitrotyrosine, and 8-OHdG levels compared to
diabetic wild type mice (Zhou et al., 2011). In a follow-up
study, the same authors have observed decreased levels of
senescent markers like p53, p21, and PAI-1 as well as p66Shc
in the aorta of diabetic mice with endothelium-specific SIRT1-Tg,
compared with diabetic wild type mice (Chen et al., 2012). Senthil
et al. have shown that the activation of nuclear factor erythroid
2–related factor 2 (Nrf2)-mediated antioxidant genes prevent
hyperglycemia-induced senescence and apoptosis in HUVECs
(Senthil et al., 2017).

Advanced glycated end products (AGEs) are an outcome of
the chronic hyperglycemia state by a non-enzymatic glycation
process involving glucose and mostly proteins but also lipids in
some cases. They are known to play a role in vascular
complications associated with diabetes (Rhee and Kim, 2018).
HUVECs treated with glycated collagen initiates a premature
senescent phenotype found to be a consequence of a decrease in
NO availability with a concomitant increase in peroxynitrite and
superoxide levels (Chen et al., 2006). Premature senescent cells
were also found to be increased in the aorta of young Zucker
diabetic rats as compared to controls (Tsuboi et al., 2018).
Treatment with ebselen (peroxynitrite scavenger), NOHA
(intermediate eNOS Substrate), and SOD mimetic MnTBAP
reversed the premature senescence in GC-treated HUVECs
indicating a link between the premature senescence and the
reduced NO and increased peroxynitrite/superoxide levels
(Chen et al., 2006). The same group reported increased
senescent cells and impaired endothelial dysfunction in the
aorta of diabetic rats which were reversed with ebselen
treatment (Brodsky et al., 2004). A recent genetic profiling
study has shown cellular senescence as one of the major
signaling pathways that is significantly affected in the neurons
of the brains of type 2 diabetic patients in which endothelial cells
showed the robust formation of AGEs (Bury et al., 2021).

The increase in the p53 transcription factor is known to play a
major role in the upregulation of cellular senescence (Gorgoulis
et al., 2019; Sikora et al., 2021b). Endothelial p53 is increased in
diabetic mice which was associated with impaired vasodilatation
and p53 knockout reversed this harmful outcome (Yokoyama
et al., 2019). Inhibition of dipeptidyl-peptidase 4 (DPP-4) in
diabetic fatty rats reduced senescence along with an increase in
the levels of glucagon-like peptide 1 (GLP-1), an antidiabetic
hormone, providing additional evidence for increased senescence
in diabetes. In parallel, GLP-1 treatment was shown to be
inhibiting stress-induced senescence in HUVECs, thus
validating their anti-senescence activity (Oeseburg et al., 2010).

Endothelial progenitor cells (EPCs) are considered to be a
biomarker/cellular surrogate for endothelial health/function

and play a possible role in the management of
cerebrovascular diseases (Lapergue et al., 2007). EPCs
exposed to high glucose conditions in vitro led to an
increased senescent phenotype which was reversed by
treatment with a p38 MAPK inhibitor (Kuki et al., 2006).
Atherogenic dyslipidemia is an important characteristic of
diabetes mellitus and an outcome of factors like the increase
in small dense low-density lipoprotein particles (Poznyak
et al., 2020). Rosso et al. have shown in an interesting study
that circulating EPCs from normal donors exhibited
senescent characteristics when cultured in the presence of
oxidized small and dense low-density lipoprotein (ox-
dmLDL) from diabetic donors and the Akt/p53/p21
signaling pathway was found to play the main role in this
transition (Rosso et al., 2006). We refer the readers to an
excellent recent review article that discusses the metabolic
roots and bidirectional interaction of senescence with
metabolic diseases (Wiley and Campisi, 2021).

Evidence for senescence in brain endothelial cells is relatively
limited. While it is not under diabetic conditions, a few studies
suggested microvascular/endothelial senescence. A recent study
showed greater expression of genes associated with senescence in
the microvessels isolated from postmortem brains of AD patients
(Bryant et al., 2020). Another study reported the role of
endothelial SASP in contributing to cerebrovascular disease
pathology through an in vitro study investigating the
molecular basis for the onset of cerebral cavernous
malformations (CCMs), a widely studied rare genetic disease
but with no etiology to metabolic factors. Vannier et al. reported
the loss of CCM1 and CCM2 in endothelial cells (HUVECs)
triggers them to transition to a senescence-associated secretory
phenotype via activation of Rho-associated coiled-coil containing
protein kinase 2 (ROCK2). The authors had also proposed that
the SASP changes the tissue microenvironment by increasing
extracellular matrix degradation (Vannier et al., 2021). Kiss and
colleagues identified senescent cerebromicrovascular endothelial
cells in the agedmouse brain using complex analyses of single-cell
RNA sequencing data (Kiss et al., 2020). These reports highlight
the need for additional studies to investigate the role and
mechanisms by which cerebral endothelial senescence
contributes to neurovascular inflammation in aging and
disease states.

Evidence for senescence in brain endothelial cells in diabetes
or diabetes-like conditions is even more limited. Retinal
microvasculature and endothelial cells are considered a
window to brain microvasculature. Oxidative and nitrative
stress has been shown to accelerate the aging of the retinal
vasculature in diabetes (Lamoke et al., 2015). Another study
reported that NADPH oxidase 2 (NOX2)-induced increases in
arginase 1 (A1) activity promotes premature senescence of retinal
endothelial cells in streptozotocin-induced diabetes (Rojas et al.,
2017). A follow-up study showed that genetic or pharmacological
blockade of A1 prevents retinal endothelial senescence in diabetic
mice (Shosha et al., 2018). Moreover, SASP cytokines are found to
be elevated in vitreous samples from patients with proliferative
diabetic retinopathy (Oubaha et al., 2016). Given the alarming
increase in the incidence of diabetes and the critical role of brain
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endothelial cells in brain health, there is a need to further
investigate brain endothelial cell senescence across the
cerebrovascular bed in diabetes.

3.3 Mural Cell Senescence in Diabetes and
Metabolic Diseases
The majority of research on metabolic disease-induced vascular
diseases is focused on the endothelial component. As discussed
above, even brain endothelial cell senescence in diabetes is poorly
understood but it is imperative to reiterate that the overall NVU
health plays a major role in the pathophysiology of cognitive
impairment in the context of metabolic disease. Pericytes and
vascular smooth cells (VSMCs) are the other major cells of the
cerebrovascular wall that will be discussed next.

Pericytes are embedded in the basement membrane and
coordinate signals between NVU cells (Sweeney et al., 2016;
Brown et al., 2019) to regulate CBF, BBB development and
integrity, angiogenesis, and waste clearance from the brain. While
pericytes were discovered in the 19th century, they were considered
the support cells, and the critical roles they play in the development
and progression of cognitive impairment as well as other
neurodegenerative diseases are being recognized only in recent
years as elegantly reviewed in these recent papers (Lendahl et al.,
2019; Ding et al., 2020; Uemura et al., 2020; Bennett and Kim, 2021).
Technological advances significantly contributed to these
developments (Berthiaume and Shih, 2019). An interesting paper
to highlight is the single-cell analysis of BBB response to pericyte loss
which provided novel and intriguing information on the complexity
of endothelial cell responses to pericyte deficiency (Mae et al., 2021).

While a majority of the studies report pericyte dysfunction in
cognitive impairment and neurodegenerative diseases, pericyte
senescence, let alone in diabetes and metabolic diseases, is not
well understood. One study reported that senescent pericytes
contribute to impaired barrier function in an in vitro model of
BBB (Yamazaki et al., 2016). There are no direct studies on how
diabetes impacts senescence in pericytes. However, Liu et al. have
shown that increased ROS and AGEs production concomitant
with pericyte dysfunction in cerebral blood vessels from old
diabetic rats and cultured pericytes grown in high glucose
conditions (Liu et al., 2021). We have shown reduced pericyte
coverage of microvascular endothelial cells in the brains of
diabetic rats, which also displayed cognitive deficits (Prakash
et al., 2012; Prakash et al., 2013).

Aging research has shown how vascular smooth muscle cell
senescence plays a very important role in the context of
cardiovascular dysfunction due to their contribution to vascular
calcification. Vascular calcification, in which there is a pathological
deposition ofminerals, leads to vessel stiffening. At a cellular level, this
is an outcome of the change in VSMCphenotype from a healthy state
to a unique senescent as well as pro-calcification phenotype (Burton
et al., 2010), and hyperglycemia has been shown to play a role in this
transition (Chen et al., 2006). The increase in ROS andmitochondrial
dysfunction, which are hallmarks of the SASP, has been shown in the
cerebral VSMCs grown in high glucose conditions (Guo et al., 2020).
Also, a direct link between VSMC premature senescence and diabetic
condition has been shown in which rutin, a flavonoid drug, was

found to decrease the atherosclerotic burden along with the VSMC
senescence burden in a mouse model of diabetic atherosclerosis. It
was further confirmed by the same group that this was due to
decreased oxidative stress-induced senescence in VSMCs in vitro (Li
Y. et al., 2018). An important study has shown that a decrease in
SIRT1 levels in VSMCs due to hyperglycemic conditions in vitro is
linked to a parallel increase in senescent markers as well as the switch
to a pro-calcification phenotype indicated by increased RUNX2
levels. Pharmacological activation of SIRT1 has reversed the
harmful senescent/pro-calcification phenotype in the VSMCs
indicated by a decrease in RUNX2 expression (Bartoli-Leonard
et al., 2019). Collectively, these past reports provide evidence for
increased senescence in mural cells in diabetes.

3.4 Glial Senescence in Diabetes and
Metabolic Diseases
About 50% of the cells in the brain are glial cells: astrocytes, microglia,
and oligodendrocytes. All the three cell types play very important
roles in brain function. Astrocytes support neurons by providing
nutrients like lactate and growth factors, contributing to the BBB
stability and integrity, communicating signals in neurovascular
coupling, and doing more. Microglia, on the other hand, are the
resident immune cells of the brain. Oligodendrocytes, which arise
from oligodendrocyte progenitor cells (OPCs), are the myelin-
producing cells of the CNS. Two seminal studies have reported
that glial cells undergo senescence, and this is associated with the
development of cognitive impairment in two different models of
dementia (Bussian et al., 2018; Zhang et al., 2019). Furthermore, their
removal by genetic and pharmacological approaches prevents
cognitive deficits. Bussian and colleagues reported the
accumulation of senescent astrocytes and microglia in the brains
ofMAPTP301SPS19mice (Bussian et al., 2018). When these cells were
cleared using the INK-ATTAC transgene approach or with a first-
generation senolytic, neurovascular pathologies and cognitive deficits
were alleviated. Zhang and colleagues reported senescence in OPCs
but not in other glial cells including mature oligodendrocytes, in the
brains of patients with AD as well as in the APP/PS1 transgenic
mouse model (Zhang et al., 2019). They also showed that
pharmacological removal of these cells prevents cognitive
impairment. While these studies and others clearly show
senescence in glial cells and suggest removal of senescent cells by
senotherapeutics is promising, there are no studies specifically
conducted in models of diabetes. We refer the readers to excellent
articles for a detailed review of glial senescence in neurodegenerative
diseases (Cohen and Torres, 2019; Han et al., 2020; Ungerleider et al.,
2021).

4 CONCLUDING REMARKS

The field of senescence has evolved significantly since its discovery
about 60 years ago. It is not just a matter of aging. The vast
heterogeneity of senescence phenotype and SASP diversity is now
being recognized. The International Cell Senescence Association
recently published recommendations to define key molecular and
cellular features of senescence to drive the field forward (Gorgoulis
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et al., 2019). Senotherapeutics have emerged as a strategy to promote
healthy aging and prevent age-related disease. These include
senolytics to remove senescent cells, senomorphics to block SASP
factors, and senoinflammation to enhance immune system-mediated
clearance of senescent cells (Kim andKim, 2019). As discussed above,
diabetes promotes premature metabolic aging. Our understanding of
the role of neurovascular unit senescence in the increased risk of
cognitive complications in diabetes is poor. Asmodern tools are being
incorporated into senescence research in the context of the new
guidelines, we emphasize the need for further research to investigate
the role of neurogliovascular unit senescence in models of diabetes
and metabolic diseases.
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