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Age-related chronic diseases are among the most common causes of mortality and
account for a majority of global disease burden. Preventative lifestyle behaviors, such as
regular exercise, play a critical role in attenuating chronic disease burden. However, the
exact mechanism behind exercise as a form of preventative medicine remains poorly
defined. Interestingly, many of the physiological responses to exercise are comparable to
aging. This paper explores an overarching hypothesis that exercise protects against aging/
age-related chronic disease because the physiological stress of exercise mimics aging.
Acute exercise transiently disrupts cardiovascular, musculoskeletal, and brain function and
triggers a substantial inflammatory response in a manner that mimics aging/age-related
chronic disease. Data indicate that select acute exercise responses may be similar in
magnitude to changes seen with +10–50 years of aging. The initial insult of the age-
mimicking effects of exercise induces beneficial adaptations that serve to attenuate
disruption to successive “aging” stimuli (i.e., exercise). Ultimately, these exercise-
induced adaptations reduce the subsequent physiological stress incurred from aging
and protect against age-related chronic disease. To further examine this hypothesis, future
work should more intricately describe the physiological signature of different types/
intensities of acute exercise in order to better predict the subsequent adaptation and
chronic disease prevention with exercise training in healthy and at-risk populations.
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INTRODUCTION

Age-related chronic diseases (e.g., cardiovascular disease, chronic kidney disease, Alzheimer’s Dementia,
Type II Diabetes, etc.) are among the most common causes of mortality and account for a majority of
global disease burden (Yach et al., 2004; Kennedy et al., 2014; Murphy et al., 2018). Preventive lifestyle
strategies such as exercise have emerged as potent, cost-effective means of reducing chronic disease risk
(Sallis, 2009; Sepanlou et al., 2011; Bauer et al., 2014). Exercise has a critical role in disease prevention
(Booth et al., 2012; Pedersen and Saltin, 2015; Sallis, 2015; Bennie et al., 2020) and has been proposed by
the American College of Sports Medicine as a form of “medicine” (Church and Blair, 2009; Sallis, 2009,
2015). The protective effects of exercise on chronic disease risk are ultimately accumulated over time
through physiological adaptations to the stress of exercise.
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Acute exercise causes widespread physiological disruptions
that require a complex, integrated response from the major
physiological systems (autonomic, cardiovascular, metabolic,
musculoskeletal, etc.) to meet the substantial requirements of
human locomotion (Hawley et al., 2014, 2018). Repeated
exposure to the physiological disruptions incurred by acute
exercise (through exercise training) stimulate physiological
adaptations that act to attenuate stress during subsequent
exercise bouts (Małkiewicz et al., 2019). These exercise
adaptations provide the foundation through which individuals
can adapt and improve their ability to perform physical work
(e.g., increase muscular power, endurance, aerobic capacity, etc.)
and also prevent development of age-related chronic disease
(Hawley et al., 2014, 2018). Thus, physiologic adaptations to
exercise are the latent mechanisms through which exercise acts as
medicine and reduces chronic disease risk. Despite seminal work
that has identified several key mechanisms underlying the
protective effects of exercise, there has yet to be an
overarching hypothesis that explains broadly why or how it is
that exercise protects against age-related chronic disease. We
posit that exercise prevents age-related chronic disease because it
acutely elicits physiological responses that mimic physiological
changes seen with aging, the greatest contributing risk factor to all
chronic disease (Bauer et al., 2014; Kennedy et al., 2014). Thus, we
propose the hypothesis that exercise is “medicine” that protects
against age-related chronic diseases because exercise can
effectively simulate “aging.” This paper is not intended to
comprehensively review the physiological adaptations to
exercise or their specific benefits on health/disease (see prior
reviews; (Hawley et al., 2014, 2018; Green et al., 2017; Tanaka,
2019; McGee and Hargreaves, 2020), rather, we will examine this
hypothesis by comparing age-related physiological changes with
those induced during acute exercise and integrate these responses
within the context and implications of stress-induced adaptation.
This is not a systematic review, rather, we conducted a literature
search of original data and reviews (when appropriate) examining
the physiological effects of acute exercise on the brain (cognitive,
brain-blood-barrier), cardiovascular, neuroendocrine,
inflammation/oxidative stress, metabolic, and musculoskeletal
systems and then aligned those observations with literature
describing changes seen with aging and age-related chronic
disease.

EFFECTS OF AGING AND EXERCISE ON
THE BRAIN

Aging is accompanied by natural reductions across multiple
domains of cognitive function (memory, reasoning abilities,
executive function, and processing speed) (Carlson et al., 1995;
Hayden andWelsh-Bohmer, 2012; Salthouse, 2012; Harada et al.,
2013). Increasing age is also associated with inflammation and
oxidative stress that damages the cerebral microvasculature and
decreases blood-brain-barrier integrity (Verheggen et al., 2020).
Ultimately, reductions in higher-order cognitive processing
(memory/executive function) and blood-brain-barrier
permeability are implicated in the underlying pathology and

presentation of dementia and Alzheimer’s disease (Salthouse,
2012; Harada et al., 2013; Gamba et al., 2015; Kirova et al., 2015).

Acute exercise imposes substantial stress on brain function
and blood-brain-barrier integrity that parallel changes observed
with age and cognitive disease. Acute exercise (particularly high
intensity exercise) can impair higher order cognitive processing
(e.g., executive function) through reallocation of mental resources
(Audiffren et al., 2009) in an exercise intensity-dependent fashion
(Lambourne and Tomporowski, 2010; Wohlwend et al., 2017).
Exercise also acutely disrupts blood-brain-barrier integrity, with
increased blood-brain-barrier permeability immediately
following intense exercise (Sharma et al., 1991; Roh et al.,
2017). This acute disruption in blood-brain-barrier integrity
may be related to the effects of exercise on 1) oxidative-
nitrosative stress (the origins of which are discussed further in
subsequent sections) at the blood-brain-barrier interface that
damages cells, reorganizes cytoskeletons, and increases
inflammation (Sharma et al., 1991; Roh et al., 2017), 2)
vasoactive effects of serotonin (Sharma et al., 1991), and 3)
changes in cerebral blood flow patterns during exercise (e.g.
increased pulsatile hemodynamics) (Armentano et al., 1991;
Ogoh et al., 2005; Alwatban et al., 2020) which are linked with
blood-brain-barrier damage and disruption (Jufri et al., 2015;
Garcia-Polite et al., 2017; de Montgolfier et al., 2019).

EFFECTS OF AGING AND EXERCISE ON
THE CARDIOVASCULAR SYSTEM

Aging is associated with an increase in mean blood pressure,
resulting from a steady rise in systolic blood pressure and a slight
decline in diastolic blood pressure (Franklin et al., 1997). Age-
related increases in blood pressure may stem from, and
simultaneously promote, large artery stiffening (Henskens
et al., 2008; Najjar et al., 2008; Kaess et al., 2012; Mitchell,
2014; Tarumi et al., 2014; Zhou et al., 2018), which amplifies
the magnitude of forward traveling energy waves and increases
pulsatile blood pressure and flow (Mitchell, 2014; Tarumi et al.,
2014; Lefferts et al., 2020). Age-related increases in large artery
stiffness may be due, in part, to endothelial dysfunction wrought
by oxidative stress and subsequent reductions in nitric oxide
bioavailability (Donato et al., 2015; LaRocca et al., 2017).
Ultimately, age-related vascular dysfunction increases cardiac
work (i.e., afterload) and results in left ventricular
hypertrophic remodeling (Lovic et al., 2017; Yildiz et al., 2020)
and diastolic dysfunction (Strait and Lakatta, 2012; Abdellatif
et al., 2018). Cumulatively, age-related vascular and cardiac
dysfunction are intrinsically linked with the risk and
development of cardiovascular disease (Lakatta and Levy,
2003; Abdellatif et al., 2018).

The cardiovascular response during acute exercise is markedly
similar to the detrimental, chronic changes in cardiovascular
function seen with aging. Exercise produces a substantial blood
pressure response [systolic pressures >190 mmHg in young
adults (Sabbahi et al., 2018)] and increase in heart rate that
stiffens the large arteries (Armentano et al., 1991; Studinger et al.,
2003; Townsend et al., 2015). Increases in large artery stiffness
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during exercise (Studinger et al., 2003; Sharman et al., 2005;
Pomella et al., 2018) are accompanied by increased forward wave
energy (Jiang et al., 1995; Heckmann et al., 2000; Stock et al.,
2021) and decreased wave reflection (Stock et al., 2021),
ultimately contributing to greater pulsatile hemodynamics
(Armentano et al., 1991; Ogoh et al., 2005; Alwatban et al.,
2020). Additionally, exercise-induced acute increases in blood
pressure may transiently impair endothelial function through a
combination of mechanical distension/dilation of the artery,
reductions in nitric oxide bioavailability, and endothelin-1
release during exercise (Millgård and Lind, 1998; Jurva et al.,
2006; Gonzales et al., 2011; Morishima et al., 2020). This acute
vascular response during exercise is further accompanied by a
substantial (2–5-fold) increase in cardiac work (Channer and
Jones, 1989; Rowland et al., 2002; Vega et al., 2017) that over time
can stimulate ventricular remodeling in a similar manner
to aging.

EFFECTS OF AGING AND EXERCISE ON
NEUROENDOCRINE SYSTEM

Aging impacts various neuro/endocrine regulatory systems
throughout the body. Serum cortisol increases 20–50% throughout
the adult lifespan (Chahal and Drake, 2007; Feller et al., 2014) owing
to hormonal changes in the hypothalamic-pituitary-adrenal axis
(Corazza et al., 2014). Aging is also associated with autonomic
nervous system dysfunction manifesting as increased sympathetic
and decreased parasympathetic nervous system activity (Pfeifer et al.,
1983; Jandackova et al., 2016). Higher cortisol levels over time are
associated with increased cardiometabolic disease risk and may
compromise immune function in older adults (Corazza et al.,
2014; Feller et al., 2014), whereas shifts in autonomic balance
favoring sympathetic activity is an independent risk factor for
cardiovascular disease (de Jonge et al., 2010; de Lucia et al., 2018).
Both of these neuroendocrine responses to aging are mimicked by
acute exercise. Cortisol levels increase during acute exercise in an
intensity-dependent manner (Brandenberger and Follenius, 1975;
Kanaley et al., 2001). Similarly, sympathetic nerve activity increases in
exercising muscle and cardiac autonomic balance shifts to favor
sympathetic over parasympathetic activity (Rowell, 1997; Michael
et al., 2017).

EFFECTS OF AGING AND EXERCISE ON
INFLAMMATION AND OXIDATIVE STRESS

There is a well-established relationship between age and chronic
low-level systemic inflammation (Ferrucci et al., 2010; Liberale
et al., 2020). Circulating inflammatory markers increase with age
in-part owing to increased chronic activation of the immune
system (Liberale et al., 2020). Chronic inflammation with aging
increases production of reactive oxygen (ROS)/nitrogen species
(RNS) (Sergiev et al., 2015; Davalli et al., 2016). Higher levels of
ROS/RNS promote cellular oxidative damage (cell membrane
breakdown, protein modification, DNA damage) (Davalli et al.,
2016) which can be further exaggerated by additional oxidative

stress independent of ROS/RNS (Kudryavtseva et al., 2016).
Ultimately, elevated markers of oxidative stress and systemic
inflammation are strongly associated with increased risk of
neurodegenerative, cardiovascular, and kidney disease, cancer,
and dementia (Verbon et al., 2012; Marseglia et al., 2014;
Kudryavtseva et al., 2016; Coen et al., 2018; Ferrucci and
Fabbri, 2018; Senoner and Dichtl, 2019; Liberale et al., 2020).

Circulating inflammatory markers and oxidative stress also
increase with acute exercise (Peake et al., 2005; Tsao et al., 2021).
Acute exercise has been shown to increase pro-inflammatory
cytokines such as interleukin (IL)-6 (Fischer, 2006), IL-7
(Małkiewicz et al., 2019), IL-10, C-reactive protein, and tumor
necrosis-factor alpha (TNF-α) (Bernecker et al., 2013; Cerqueira
et al., 2019; Fonseca et al., 2021) and initiate an inflammatory
cascade (Powers and Jackson, 2008; McDonagh et al., 2014; Luca
and Luca, 2019; Powers et al., 2020; Aragón-Vela et al., 2021).
Additionally, exercise increases skeletal muscle ROS/RNS
production via 1) electron leakage during oxidative
phosphorylation within the mitochondria and NAD(P)H
oxidase, 2) nitric oxide synthase activity within the skeletal
muscle, 3) catecholamine and prostanoid release, and 4)
ischemia/reperfusion-induced changes in xanthine oxidase
activity, which ultimately contributes to oxidative stress, and
subsequent cellular damage (Fisher-Wellman and Bloomer,
2009; McDonagh et al., 2014; Bouzid et al., 2015; Davalli et al.,
2016; Powers et al., 2016; Petriz et al., 2017). As such, acute
exercise can act as a pro-inflammatory stimulus that increases
oxidative stress and damage in a manner similar to aging.

EFFECTS OF AGING AND EXERCISE ON
METABOLISM

Advancing age is accompanied by alterations in both the metabolic
pathways of energy production and mitochondrial function. Aging
results in a steady rise in blood glucose concentration (Ko et al., 2006),
driven in part by insulin resistance, exaggerated hepatic glucose
production, and increasing cortisol levels (Satrústegui et al., 1986;
Magnusson et al., 1992; Ko et al., 2006; Rizza, 2010). Similarly, aging
and insulin resistance promote unrestrained lipolysis, which could
contribute to systemic inflammation by increasing circulating free
fatty acids (Reaven et al., 1989; Wende et al., 2012). Mitochondrial
function is also impaired with aging, resulting in 1) increased
sensitivity to ROS, 2) impaired oxidative metabolism, and 3)
compromised mitochondrial membrane integrity (Shigenaga et al.,
1994; Balaban et al., 2005). Mitochondrial dysfunction increases
generation of oxidative byproducts (e.g. ROS/RNS) within the
electron transport chain (Bratic and Larsson, 2013; Quinlan et al.,
2013; Davalli et al., 2016) and thus accelerates age-related cellular
damage (Genova and Lenaz, 2015). Taken together, these aspects of
metabolic andmitochondrial dysfunction are associated with obesity,
type II diabetes mellitus, obesity, fatty liver disease, cancer, sarcopenia
and Alzheimer’s disease (Kim et al., 2001; Wende et al., 2012;
Girousse et al., 2018; Yoo et al., 2019; Spitler and Davies, 2020;
Paliwal et al., 2021).

Acute exercise also perturbs metabolic pathways, increases
mitochondrial ROS production, and alters mitochondrial
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membrane permeability (Tonkonogi and Sahlin, 2002; Powers and
Jackson, 2008). Acute exercise stimulates adipose tissue lipolysis,
with low/moderate exercise eliciting a 2 to 5-fold increase in
circulating free fatty acids for use in substrate metabolism (Havel
et al., 1963; Ahlborg et al., 1974; Wolfe et al., 1990; Romijn et al.,
1993; Ranallo and Rhodes, 1998; Burguera et al., 2000). Moreover,
acute exercise also increases liver gluconeogenesis and hepatic
glucose output via catecholamine release and sympathetic activity
(Dibe et al., 2020) which aligns with changes in glucose production
with aging.

EFFECTS OF AGING AND EXERCISE ON
THE MUSCULOSKELETAL SYSTEM

Skeletal integrity begins to decrease around 35–40 years of age, with
postmenopausal women experiencing bone loss at a rate of
approximately 1–2% annually (Riggs et al., 2008; Curtis et al.,
2015) owing to disproportionate increases in bone breakdown
versus buildup. Similarly, aging is also often accompanied by 1)
muscle atrophy from imbalances between muscle protein synthesis
and degradation in response to anabolic stimuli (Reynolds et al.,
2002; Koopman and van Loon, 2009; Wall et al., 2015) and 2)
reduced muscular force production (Zizzo, 2021). Age-related shifts
in protein synthesis/degradation and reductions in force production
may stem from free radical accumulation/oxidative stress and
inflammation that activate proteolytic pathways, damage the
muscle, and impair mitochondrial function (Guo et al., 2013;
McDonagh et al., 2014; Fernando et al., 2019; Zizzo, 2021).
Taken together, these musculoskeletal changes contribute to
dyna-/sarco-penia and osteoporosis which have a profound
impact on health and longevity with aging (Tagliaferri et al.,
2015; Prawiradilaga et al., 2020).

Though exercise has long been known to stimulate bone
mineralization and promote increased bone density, the initial
response following any mechanical stimulus such as exercise is
the resorption/breakdown of bone (Feng and McDonald, 2011).
Similarly, exercise may acutely suppress muscle protein synthesis
and increase protein degradation (Tipton and Wolfe, 1998; Kumar
et al., 2009). Muscle force production also decreases following a bout
of acute exercise (Howatson and van Someren, 2008) owing to, 1)
inflammatory damage via increased mitochondrial reactive oxygen/
nitrogen species within the working muscle (Powers and Jackson,
2008), and 2) structural damage (i.e., filament disintegration/
misalignment, z-band streaming, excitation-coupling failure)
incurred within the straining muscle (Fridén and Lieber, 1992).
These effects of acute exercise ultimately contribute to initial
reductions in voluntary force production following exercise
(Howatson and van Someren, 2008).

IMPLICATIONS OF ADAPTATIONS TO
EXERCISE AS AN “AGING STIMULUS”

As outlined above, there is substantial evidence that the acute
physiological response to exercise mimics physiological responses
that occur with aging and age-related chronic disease (Figure 1).

As such, acute exercise could be conceptualized as a transient
bout of “aging.” The body naturally adapts to any stress (such as
exercise) that disrupts homeostasis (Figure 2A). Proper
adaptation to transient stimuli reduces stress during
subsequent stressors (e.g., the next bout of exercise; see
diminishing size of exercise-induced dysfunction in Figures
2A,B). For example, 1) exercise-induced increases in
inflammation are attenuated following exercise training
(Orlander et al., 1977; Fonseca et al., 2021), 2) increases in
cardiac work are attenuated (e.g., lower heart rate) at a given
workload following exercise training (Orlander et al., 1977), and
3) exercise training enhances antioxidant defense against
exercise-induced oxidative stress (Bouzid et al., 2015). Parallels
between the physiological stress of acute exercise and age-related
chronic disease support the notion that repeated exposure to an
exercise stimulus and the subsequent adaptations would protect
against the physiological stress of aging and age-related chronic
disease (Figure 2B).

If exercise is viewed as an aging mimetic, then more intense
exercise should elicit a larger “aging” stressor and subsequent
adaptation and protection against age-related chronic disease.
Indeed, observational data suggest a dose-response

FIGURE 1 | Parallels between the stress of aging/chronic disease and
acute physical exercise. SNS, sympathetic nervous system; PNS,
parasympathetic nervous system.
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relationship between exercise and physiological/health
benefits, such that larger doses of exercise generally elicit
greater protection (Ekelund et al., 2019; Shi et al., 2020;
Aune et al., 2021). The protection afforded by exercise and
the stress-adaptation cycle are maximized when the stress is
transient and adequate recovery is allowed for adaptation
(Figure 2C) (Booth and Laye, 2009). In the case of exercise,
some data indicate extreme exercise volumes (e.g., marathons,
ultramarathons) may be accompanied by pathological changes
and a loss of health benefits, although this remains an area of
debate (Eijsvogels et al., 2018; O’Keefe et al., 2020). Indeed, the
line between physiological and pathological adaptations
become blurred with high volumes of exercise being linked
with risk of arrhythmias (Claessen et al., 2011; Andersen et al.,
2013), cardiac dysfunction (O’Keefe et al., 2012; Rajanayagam
and Alsabri, 2021), and myocardial injury (Neilan et al., 2006).
Our hypothesis links to these observations since exposure to 1)
extreme aging stimuli or 2) too frequent of exposure to an
aging stimulus (preventing adequate recovery and adaptation)
could contribute to negative (i.e., pathological) adaptations,
accelerate physiological “aging,” and attenuate health benefits
(Eijsvogels et al., 2018; O’Keefe et al., 2020). As such, the
notion that exercise mimics aging provides insight into how
exercise can both protect against age-related chronic disease
and potentially give way to pathological changes under
extreme exercise volumes.

ALTERNATIVE PERSPECTIVES AND
LIMITATIONS

We openly acknowledge that the actual cellular/molecular
mechanisms driving acute and training responses to exercise
may differ from those contributing to physiological changes
with aging/age-related chronic disease (e.g., exercise and the
cardiovascular demands required to meet metabolic output for
musculoskeletal movement are fundamentally different
mechanisms than those governing increases in blood pressure
with aging such as degradation of elastin, microvascular
rarefaction, endothelial dysfunction etc.). Many examples
demonstrate the phenomenon of cross-tolerance, in which,
despite diverse mechanisms, one stressor [e.g., exercise,
environment (heat stress)] can confer protective benefits
across other different stressors (Bond et al., 1999; Heled et al.,
2012; Corbett et al., 2014; White et al., 2014; Wang et al., 2021).
Consistent with this concept, our hypothesis is that the stimulus
(e.g., an increase in blood pressure) for adaptation is similar
between acute exercise and aging/age-related chronic disease and
thus exercise adaptations may be mutually beneficial for both
reducing the stress of subsequent exercise stimuli and aging/
chronic disease pathways that involve that particular signal (e.g.,
blood pressure and cardio-/cerebro-vascular/cognitive disease).

Data indicate that lower intensity exercise/physical activity
(e.g., walking) can confer mortality benefits in the absence of
detectable physiological adaptations (Wasfy and Baggish, 2016).
This raises the possibility that acute low intensity exercise 1)
offers protection without adequately disrupting homeostasis and
subsequent physiologic adaptations (contrary to our hypothesis),
or 2) benefits age-related chronic disease burden through
accumulation of diffuse, modest physiological adaptations that
reflect a more modest exercise stimulus. Indeed, activities of daily
living often viewed as “low” intensity (e.g., walking) are actually
considered moderate intensity among older/deconditions
populations (Sundquist et al., 2004; McPhee et al., 2016) and
result in modest increases in energy expenditure (Maciejczyk
et al., 2016), ventilation (Fusi et al., 2005), and cardiovascular
stress (Renzi et al., 2010; Sugawara et al., 2015; Carter et al., 2018).
Thus, even low-intensity exercise/physical activity may elicit
similar directional physiological changes as “aging” and
moderate-to-vigorous intensity exercise (as discussed above),
albeit of smaller magnitude. This supports the idea that lower
intensity activity patterns may need to be continued for longer
periods of time to accumulate physiological benefits and reduce
chronic disease risk (Carnethon, 2009). In the context of our
hypothesis low-intensity exercise/physical activity likely elicits a
smaller homeostatic disruption that represents a smaller “aging”
stimulus, and thus more modest adaptations and benefits (in line
with the dose-response literature). It is not surprising to see more
sizeable benefits wrought from moderate and vigorous exercise
intensities since these intensities can acutely elicit physiological
responses comparable in magnitude to +10–50 years of aging (see
Table 1) (Franklin et al., 1997; Hilbert et al., 2003; Ogoh et al.,
2005; Ferrucci et al., 2012; Keith et al., 2013; Alwatban et al., 2020;
Lefferts et al., 2020), and that exercise-trained older adults can be

FIGURE 2 | Theoretical effects of physical exercise as an aging stimulus
on age-/chronic disease-related physiological dysfunction. Age-related
dysfunction (e.g., cardiovascular, metabolic, muscular) generally increases
steeply around middle-age into older age, and results in an increase in
chronic disease risk. An acute bout of exercise (A) acts as an aging stimulus
and elicits responses during exercise that mimic that of age-related
dysfunction (e.g., increased large artery stiffness, inflammation, etc.).
Cessation of exercise (i.e., removal of the acute aging stimulus) and proper
recovery between exercise bouts/stimuli (B) permits adaptations (C) that
serve to reduce the physiological stress during successive exercise (i.e., aging)
bouts. Since acute exercise elicits physiological responses that parallel aging,
exercise adaptations essentially prepare the body to endure less physiological
stress and dysfunction when exposed to the effects of aging over time. As
such, regular exposure to transient aging stimuli (i.e., regular physical exercise)
elicits physiological adaptations that attenuate age-/chronic disease-related
dysfunction (D), and thus attenuates many of the detrimental physiological
effects of age and protects against chronic disease development.
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phenotypically similar to adults 40 years younger (Bhella et al.,
2014; Fragala et al., 2019).

In this paper we presented an amalgam of acute exercise
literature, including aerobic and resistance exercise across a
spectrum of exercise intensities. It is currently unclear whether
one specific type of exercise is a better “aging-mimetic” and thus
more protective against age-related disease. This gap in
understanding reflects methodological limitations [challenges
of assessing outcomes during discontinuous exercise
(resistance/high-intensity exercise)], and greater attention paid
to continuous aerobic over discontinuous aerobic/resistance
exercise in the literature. We posit that the exact exercise type
is less important than the response it elicits since 1)
epidemiological evidence indicates both aerobic and resistance
exercise are associated with reduced disease risk (Ross et al., 2016;
Bennie et al., 2020) and 2) all forms of exercise disrupt
homeostasis (e.g., running, resistance, and high-intensity
interval exercise can induce inflammation, increase blood
pressure, increase artery stiffness, load bones, damage muscles
etc.), and thus may contribute to beneficial adaptations that
attenuate physiological aging and reduce disease risk.

The acute effects of exercise are highly variable and may
depend, in part, on age. Data indicate that the given response
to acute exercise may be preserved (Hogan et al., 2013; Lavin
et al., 2020a, 2020b; Luttrell et al., 2020; Rosenberg et al., 2020;
MacNeil et al., 2021), exaggerated (Fleg et al., 1985; Fragala et al.,
2019; Rosenberg et al., 2020), or blunted (Nordin et al., 2014;
Jakovljevic, 2018; Fragala et al., 2019; Rosenberg et al., 2020) with
aging, and that these conflicting responses could occur

simultaneously depending on the physiological systems in
question. This variable effects of age on acute exercise
responses may alter the physiological stimulus that elicits
adaptations to repeated exercise in older adults. It is possible
that either 1) the attenuated physiological response to exercise
(e.g., blunted stimulus), or 2) reduced plasticity/sensitivity (Slivka
et al., 2008; Greig et al., 2011; Haran et al., 2012) to a similar or
exaggerated exercise response could render exercise somewhat
less potent or less beneficial among older adults. Indeed, it
appears that greater exercise stimuli is required to elicit
measurable physiological adaptations among older adults
(Fujimoto et al., 2010). Despite reductions in plasticity and
altered exercise responses among older adults, exercise training
can elicit physiological adaptations in aged individuals (improved
muscular, metabolic, cardiovascular function) (Fujimoto et al.,
2010; Carrick-Ranson et al., 2014; Vigorito and Giallauria, 2014;
Fragala et al., 2019; Green et al., 2021; Grevendonk et al., 2021)
that may even be similar to benefits in young adults (Stratton
et al., 1994) and ultimately increase cardiorespiratory fitness
(Stratton et al., 1994; Woo et al., 2006; Fujimoto et al., 2010).
Taken together, data are clear that despite potentially different
acute responses and degree of adaptation to exercise, the
cumulative effects of exercise are beneficial in older adults and
contribute to reduced disease/mortality risk (Bijnen et al., 1998;
Sundquist et al., 2004; Carrick-Ranson et al., 2014; Osawa et al.,
2021). It should be underscored that the benefits of exercise are
wrought over a lifetime of repeated exposure and thus engaging in
regular exercise throughout life elicits greater physiological
adaptations and health benefits than exercise initiated only

TABLE 1 | Comparison of magnitude of acute exercise response with observed changes in the context of aging from select available literature.

Variable Type of
exercise

Acute exercise
response

Aging References

Cerebral pulsatility
(MCA PI)

Moderate AE +0.30au +0.08/10 years from 45–85 years (totaling +0.30au
across 40 years)a

Alwatban et al. (2020)
Lefferts et al. (2020)

Pulse pressure Mild AE +10 mmHg +22 mmHgb from 30–84 years Ogoh et al. (2005)
Moderate AE +24 mmHg +35 mmHgc from 30–84 years Keith et al. (2013)
Heavy AE +37 mmHg Franklin et al. (1997)
Light AE +21 mmHg

Mean arterial pressure Moderate AE +7 mmHg +7 mmHgb from 30–64 years Ogoh et al. (2005)
Heavy AE +18 mmHg +12 mmHgc from 30–64 years Keith et al. (2013)
Light AE +14 mmHg Franklin et al. (1997)

Aortic stiffness (cfPWV) Light AE +1.1–1.5 m/s +1.1–2.0 m/s per +10 years from 40–70 years Keith et al. (2013)
Reference Values for Arterial Stiffness’
Collaboration (2010)

Cortisol Vigorous AE +70–300% peakΔ +20–50% Kanaley et al. (2001)
Van Cauter et al. (1996)

Inflammation (IL-6) Vigorous AE +0.20 pg/ml +0.16 pg/ml per +10 years from 45–64 years Tsao et al. (2021)
Hager et al. (1994)

Strength Peak torqued −15–20% −10–15% every 10 years from 45–84 years Hilbert et al. (2003)
Ferrucci et al. (2012)

MCA PI, middle cerebral artery pulsatility index; cfPWV, carotid-femoral pulse wave velocity; IL, interleukin.
asecondary regression analysis calculated from Lefferts et al., 2020 data.
bfor adults with systolic blood pressure between 120–139 mmHg.
cfor adults with systolic blood pressure >160 mmHg.
dpeak torque achieved followingmuscle damaging leg exercise. Data approximated from the following references (Hager et al., 1994; Van Cauter et al., 1996; Franklin et al., 1997; Kanaley
et al., 2001; Hilbert et al., 2003; Ogoh et al., 2005; Reference Values for Arterial Stiffness’ Collaboration, 2010 (Boutouyrie, corresponding author); Ferrucci et al., 2012; Keith et al., 2013;
Alwatban et al., 2020; Lefferts et al., 2020; Tsao et al., 2021).
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later in life (Russ and Kent-Braun, 2004; Fujimoto et al., 2010;
Seals et al., 2019; Lavin et al., 2020a).

FUTURE DIRECTIONS, APPLICATIONS,
AND CONCLUSION

Future work should seek to leverage technological advances and
innovative methods to further explore acute cellular/physiological
responses during exercise. The following recommendations are
suggested to fill knowledge gaps surrounding the idea of exercise
as an aging mimetic and the protective effects of exercise on age-
related chronic disease risk: 1) examine mechanisms behind the
beneficial effects of low-intensity exercise on age-related chronic
disease, which remains under explored owing to more optimal
signal-to-noise ratio observed with moderate-to-vigorous intensity
exercise; 2) better identify and understand the phenotypic
“signature” and physiological disruption caused by discontinuous
exercise types (e.g., resistance, high-intensity interval) compared to
continuous aerobic exercise; and 3) better understand the role of
individual characteristics (age, sex, health status) in governing acute
exercise responses and subsequent exercise-induced adaptation.
Additionally, research often interrogates acute exercise to gain
insight into training-induced adaptations under the guise that
responses following acute exercise should be positive and
contribute to beneficial long-term adaptations (Dawson et al.,
2018; Voss et al., 2020). In reality, it is important to recognize
that exercise is a potent disruption of homeostasis that mimics
responses seen with aging and age-related chronic disease

(i.e., exercise is disruptive and not necessarily immediately
beneficial for physiological systems). It is this insult to
homeostasis that primes adaptations to protect against chronic,
age-related changes and reduce disease risk over time
(Figure 2D). If research shifts to focus on the homeostatic
disruption incurred during exercise, we may better understand
the stimulus for adaptation and thus the mechanisms that govern
adaptations to exercise and prevent age-related chronic disease.

Ultimately, we posit that regular exercise protects against
aging and age-related chronic disease because each bout of
exercise is, at its essence, an aging mimetic. The resilience and
plasticity of the human body permit adaptations to these repeated
exercise-induced “aging” stimuli and ultimately prepares the
body’s defenses against the stress of aging and age-related
chronic disease.
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