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Quantitative EEG (qEEG) delineates complex brain activities. Global field synchronization
(GFS) is one multichannel EEG analysis that measures global functional connectivity
through quantification of synchronization between signals. We hypothesized that
preservation of global functional connectivity of brain activity might be a surrogate
marker for good outcome in sudden cardiac arrest (SCA) survivors. In addition, we
examined the relation of phase coherence and GFS in a mathematical approach. We
retrospectively collected EEG data of SCA survivors in one academic medical center. We
included 75 comatose patients who were resuscitated following in-hospital or out-of-
hospital nontraumatic cardiac arrest between 2013 and 2017 in the intensive care unit
(ICU) of National Taiwan University Hospital (NTUH). Twelve patients (16%) were defined as
good outcome (GO) (CPC 1–2). The mean age in the GO group was low (51.6 ± 15.7 vs.
68.1 ± 12.9, p < 0.001). We analyzed standard EEG power, computed EEG GFS, and
assessed the cerebral performance category (CPC) score 3 months after discharge. The
alpha band showed the highest discrimination ability (area under curve [AUC] = 0.78) to
predict GO using power. The alpha band of GFS showed the highest AUC value (0.8) to
predict GO in GFS. Furthermore, by combining EEG power + GFS, the alpha band showed
the best prediction value (AUC 0.86) in predicting GO. The sensitivity of EEG power + GFS
was 73%, specificity was 93%, PPV was 0.67%, and NPV was 0.94%. In conclusion, by
combining GFS and EEG power analysis, the neurological outcome of the nontraumatic
cardiac arrest survivor can be well-predicted. Furthermore, we proved from a
mathematical point of view that although both amplitude and phase contribute to
obtaining GFS, the interference in phase variation drastically changes the possibility of
generating a good GFS score.

Keywords: electroencephalography, neurological outcome, prognosis, sudden cardiac arrest, phase coherence,
global synchronization

Edited by:
Chien-Hung Yeh,

Beijing Institute of Technology, China

Reviewed by:
Han Hwa Hu,

Taipei Medical University, Taiwan
Seo-Young Lee,

Kangwon National University, South
Korea

*Correspondence:
Men-Tzung Lo

mzlo@ncu.edu.tw
Kuo-Liong Chien

klchien@ntu.edu.tw

†These authors share first authorship

Specialty section:
This article was submitted to

Computational Physiology and
Medicine,

a section of the journal
Frontiers in Physiology

Received: 31 January 2022
Accepted: 14 March 2022
Published: 20 April 2022

Citation:
Ho L-T, Serafico BMF, Hsu C-E,

Chen Z-W, Lin T-Y, Lin C, Lin L-Y,
Lo M-T and Chien K-L (2022)

Preserved Electroencephalogram
Power and Global Synchronization

Predict Better Neurological Outcome
in Sudden Cardiac Arrest Survivors.

Front. Physiol. 13:866844.
doi: 10.3389/fphys.2022.866844

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 8668441

ORIGINAL RESEARCH
published: 20 April 2022

doi: 10.3389/fphys.2022.866844

http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.866844&domain=pdf&date_stamp=2022-04-20
https://www.frontiersin.org/articles/10.3389/fphys.2022.866844/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.866844/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.866844/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.866844/full
http://creativecommons.org/licenses/by/4.0/
mailto:mzlo@ncu.edu.tw
mailto:klchien@ntu.edu.tw
https://doi.org/10.3389/fphys.2022.866844
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.866844


1 INTRODUCTION

The electroencephalogram (EEG) is a commonly available,
reasonably inexpensive, and noninvasive diagnostic technique
that may be used to assess cognitive impairment. Although EEG
recordings do not reveal particular abnormalities in the most
prevalent causes of cognitive impairment, they may be useful
when a diagnosis is in dispute. Currently, monitoring EEG
activity frequently or continuously for SCA (sudden cardiac
arrest) survivors has been suggested as part of a general
guideline in neurological prognostication, which provides
information that helps clinicians provide the best treatments
based on the patient’s likelihood of gaining a neurologically
meaningful recovery (Nolan et al., 2021). SCA indicates the
abrupt loss of heart function, breathing, and consciousness,
usually resulting from the heart’s electrical system. Despite
advances in the treatment of heart diseases, the outcome of
SCA survivors remains poor (Chan et al., 2014; Daya et al.,
2015; Writing Group Memebers, 2016). Hypoxic–ischemic
encephalopathy (HIE) is caused by systemic hypoxemia and/or
reduced cerebral blood flow (CBF). It most often results from
cardiac arrest, vascular catastrophe, poisoning, or head trauma in
adults and birth asphyxia in the neonates. Survivors of SCA may
have variable degrees of hypoxic–ischemic brain injury,
depending on the duration of circulatory arrest, the extent of
resuscitation efforts, and underlying comorbidities. The EEG
activity of SCA survivors may show characteristic patterns,
depending on the severity of the hypoxic–ischemic brain
injury, which may play a part in the prediction of the
neurological outcome. The EEG waveform is a complex
rhythmic activity requiring specific expertise. Some patterns
are very clear and easy to be interpreted by clinicians, such as
suppression, burst suppression, periodic/rhythmic discharge, and
evolving seizure activity. However, some patterns, such as
discontinuous background and unreactive background, may be
misclassified by a less-experienced physician. The computational
processing of EEG, also called quantitative EEG (qEEG), has
demonstrated its power in delineating the complex EEG
waveform resulting from the brain activities. The EEG data
analysis provides novel and effective techniques for
comprehending the dynamic complexity of the EEG time
series. These qEEG analyses extract the signal in frequency-,
space-, and time-domain, where information about the signal can
be used to assess as a biological measure. These parameters can be
utilized for better neurological outcome prediction after cardiac
arrest.

Furthermore, a proposed measurement uses multichannel
EEG to get a measure of global phase alignment as a function
of frequency across all derivations. The interaction comes in the
form of a particular level of synchronization. Synchronization of
multivariate systems refers to the adjustment of one given
property between these systems to reach a common behavior
between them due to the coupling process (Cimenser et al., 2011;
Achermann et al., 2016). Global field synchronization (GFS) is a
scale that assesses phase synchronization across all derivations
and goes from 0 (no predominant phase; least phase
synchronization across derivations) to 1 (maximum phase

synchronization among derivations; perfect phase
synchronization). Given that the EEG signal is not generated
by a single, focal electric source, the presence of a predominant
phase across scalp measurements implies that the intracranial
neuroelectric dynamics have a preferred phase as well and that a
phase spread across scalp measurements was caused by
intracranial electric sources that differed in phase (Koenig
et al., 2001). Koenig et al. (2005) and Ma et al. (2014) looked
into the values of GFS in Alzheimer’s disease (AD) patients
compared to healthy individuals. In AD, as the disease
progresses, connections between brain networks break down
as a result of the shrinking of many brain regions. GFS, in
particular, deals with the synchronization between these brain
networks. The significant decline of the GFS value in patients with
AD compared to healthy individuals holds considerable potential
of serving as an indicator of cognitive impairment in patients with
AD. Furthermore, Smailovic et al. (2018) investigated the
correlation of GFS and other qEEG measures with
conventional cerebrospinal fluid (CSF) biomarkers associated
with AD. GFS in some frequency bands, particularly fast
frequency bands, exhibited significant correlation with CFS. It
decreased in AD as compared to the control group. Their findings
provided evidence that these GFS measures can be potential
markers of AD.

However, the explanation of how and why phase
synchronization affects the level of GFS was not discussed
thoroughly in these past studies. In general, perfect phase
synchronization is damaged when the oscillators are in the
presence of noise, which is unavoidable in experimental or
real systems. These fluctuations differ with different channels
that affect the GFS strength. By investigating these interferences, a
deeper understanding of how GFS works can be evaluated as well
as understanding special features that are not observed in the
synchronization of periodic oscillation. In addition, previous
studies calculated the GFS of the whole signal. We proposed
segmentation of the signal for better filtration of noise, which
lessens the effect of noise on GFS results.

In this study, we planned to perform a retrospective cohort
study to examine whether qEEG and GFS may serve as a reliable
predictor for outcomes after cardiac arrest. We hypothesized that
loss of global functional connectivity of brain activity might be a
surrogate marker for poor outcome in SCA survivors. In addition,
phase synchronization and GFS relation was investigated in a
mathematical approach. Moreover, we looked into the
implementation of new methods in improving GFS strength in
signals with noise interference.

2 METHODS AND MATERIALS

2.1 Subjects and Study Protocol
All patients with nontraumatic cardiac arrest after
cardiopulmonary and cerebral resuscitation (CPCR) were
screened for study inclusion. The patients were treated by
standardized post-resuscitation treatment based on clinical
conditions. Based on the post-resuscitation protocol in our
institute, the feasibility of target temperature management
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(TTM) of all sudden cardiac death patients should be evaluated. If
the post-resuscitation GCS is less than M5, TTM should be
applied, unless the patient has contraindications of TTM such
as very unstable hemodynamic status or severe bleeding
tendency. Due to facility limitation, these patients received a
standard EEG examination in an EEG room. According to the
post-resuscitation protocol, standard EEG would be arranged on
day 3 and day 7 after resuscitation, including patients who
received TTM. If the patient’s consciousness fully recovered
after resuscitation, the EEG will be canceled. For patients with
clinical suspicions of nonconvulsive seizures or status epilepticus
by the neurologist, repeated EEG will be arranged to increase the
yield rate. EEG signals with a signal-to-noise ratio (SNR)
computed as the power within the lowest frequency and the
highest frequency bands of interest (0.15–35 Hz) over the total
power of the rest of the signal less than 12 dB are considered
having poor EEG quality and were excluded from the study. The
neurological outcome was assessed at discharge and 3 months
after discharge based on clinical records. Survivors with a cerebral
performance category (CPC) score of 1–2 were classified as “good
outcome”, and patients with a CPC score of 3–5 or who died
during the hospitalization were classified as “poor outcome”
(Perkins et al., 2015; Geocadin et al., 2019).

We included 75 comatose patients who were resuscitated
following in-hospital or out-of-hospital nontraumatic cardiac
arrest between 2013 and 2017 in the intensive care unit (ICU)
of National Taiwan University Hospital (NTUH). The mean EEG
performing day was day 4 after cardiac arrest. All patients who
had good EEG quality were included for further analysis. A total
of 12 patients (16%) were defined as good outcome. A total of 32
patients were defined as poor neurological outcome, and 31
patients died in the hospital stay. Most of the patients who
underwent the EEG exam were sedation-free. Only 11 patients
had sedatives at the time of the EEG exam. Within these 11
patients, two had good neurological outcome, five had poor
neurological outcome, and four patients died. Patients with
poor neurological outcome and mortality (63 patients, 84%)
were defined as poor outcome.

2.2 Mathematical Model of Global Field
Synchronization
In this section, we established the mathematical relationship
between GFS and phase coherence. It was to prove that GFS is
mainly determined by the phase difference between signals. In
addition, the influence of noise in GFS was explained and
demonstrated. Finally, we proposed an anti-noise algorithm to
solve the problem concerning noise.

We provided a brief description of band-limited signals and
the covariance matrix from complex Fourier transform of
multiple channels in the succeeding sections.

2.2.1 Covariance Matrix Approximation in Calculation
of Global Field Synchronization
An arbitrary band-limited signal x(t), which includes an
amplitude modulation and a frequency modulation term, is
represented as

x(t) � A(t)ej(ωt+φ(t)). (1)
The signal x(t) can be filtered and divided into different

frequency distributions around a center frequency ω restricted by
frequency modulation φ(t). Moreover, the amplitude modulation
A(t) could be time-varied or stably distributed.

Global field synchronization (GFS) is a method developed to
observe the functional connectivity (FC) between different EEG
channels. It locates the synchronization at a specific frequency
band by applying the general signal model to multichannel
signals.

GFS can be calculated as follows: The multichannel α-band
EEG signals’ frequency response is represented as

F a{xiα(t)} � aie
jθi , (2)

where xiα(t) � Ai(t)ej(ωαt+φi(t)) and the phase θi is a random
variable of uniform distribution from −η ~ η.

Fourier transform was then applied to the signal. The Fourier
transform F of x(t) at specific frequency ωa is defined as

F a{x(t)} � ∫A(t)ej(ωαt+φ(t))e−jωαtdt � ∫A(t)ejφi(t)dt � aejθ.

(3)
The signal then yields a complex form made up of real and

imaginary parts for each frequency given as

Re{F a{xiα(t)}} � ai cos(θi)
Imag{F a{xiα(t)}} � ai sin(θi) . (4)

For every particular frequency band, the pair of resulting
complex Fourier coefficients from all channels could be
mapped as points in a two-dimensional diagram. To calculate
the degree of diversion on the real-complex diagram, principal
component analysis (PCA), a best-fit straight-line
approximation, was used.

Matrix Dα, comprising the real and imaginary part of the
frequency response of N channels, is represented as

Dα �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Dα−1
Dα−i
..
.

Dα−K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
s.t. Dα−i � ai · [ cos(θi)sin(θi) ]

T

∀K ∈ z ∃ 0≤ i ≤K.
(5)

Then, principal components can be derived from the
covariance matrix of Dα matrix given as

∑ (Dα) � DT
αDα � ⎡⎣ ∑ a2i cos

2(θi) ∑ a2i sin(θi)cos(θi)∑ a2i sin(θi)cos(θi) ∑ a2i sin
2(θi)

⎤⎦.
(6)

Finally, the GFS score can be calculated using the ratio of
eigenvalue on the real-complex diagram.

λα � eigenvalue(DT
αDα), (7)
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GFSα � |λα1 − λα2|
λα1 + λα2

, where λα1 > λα2. (8)

The GFS score reveals whether the components on the real-
complex diagram can be concludedwith single or two components.
The more dominant the first component of the real-complex
diagram, the more synchronized the different brain areas.

Furthermore, the relationship of GFS with extended number
of channels can also be defined. It is assumed that there are K
channel signals. The calculation of the real-complexmatrixD(Eq.
6) and its covariance matrix Σ is the same as in Eq. 7, and it is
assumed that the phase distribution η between channels is small.

if η< δ,where δ � 0≥ 0
θi � 0, sin(θi) � 0.

Σ could be a defective matrix (Eq. 9), which has only one
eigenvalue. Therefore, the distribution on the real-complex
diagram yields to the single phase and higher GFS score, while
signals of different channels have strong connectivity.

Σ�[ 1 Q
Q 0

] ∈DefectiveMatrix , Q ∈R s.t. Single Eigenvector& GFS ↑ .

(9)
Moreover, we provided mathematical proof for GFS

derivation with the zero-mean process before performing
principal component analysis.

Dα Matrix Would Become Dz

Dz � Dα − μ s.t Dz−i � [ ai cos(θi) − μx ai sin(θi) − μy], (10)
where μx represents the average magnitude of the real part in every
channel and μx represents the averagemagnitude of the imaginary part.

μx �
1
N

∑ ai cos(θi) μy � 1
N

∑ ai sin(θi), (11)
∑(Dz) � [ var(Re{F a{xiα(t)}}) cov(Re{F a{xiα(t)}}, Im{F a{xiα(t)}})

cov(Re{F a{xiα(t)}}, Im{F a{xiα(t)}}) var(Im{F a{xiα(t)}}) ].
(12)

Assuming that the phase distribution η between channels is
small, μx will be approximated as the mean amplitude of each
channel, while the μy will equal to zero.

If η< δ, where δ � 0≥ 0

θi � 0, sin(θi) � 0

μx �
1
N

∑ ai cos(θi) ≈ �a μy � 1
N

∑ ai sin(θi) ≈ 0

. (13)

Eventually, the covariance matrix, following the previous
result, will obtain a high GFS score and eigenvector with only
narrow phase distribution.

∑(Dz) � ⎡⎣ ∑ (ai − �a)2 ∑(ai − �a)(ai sin(θi))∑(ai − �a)(ai sin(θi)) 0
⎤⎦ � [ n · var(a) Q

Q 0
]

∈ DefectiveMatrix, Q ∈ R s.t. Single Eigenvector& GFS ↑
.

(14)
On the other hand, considering the uniform amplitude signals,

the amplitude between channels has a narrow variation, so a1 �
a2 � a3 � . . . . � ai and var(a) ≈ 0.

∑ (Dz) ≈ [ 0 0
0 0

]. (15)

The covariance matrix of Dz will turn out to be a zero matrix.
Meanwhile, the principal component analysis becomes an ill-
posed problem. GFS will fail to evaluate the degree of
synchronization.

2.2.2 Mathematical Analyzation of the Effect of Phase
Coherence to Global Field Synchronization
GFS is defined by the phase synchronization among different
channels across the brain. In this section, an in-depth evaluation
on the relationship of phase coherence, a method to evaluate
interaction between paired-signals, and GFS was discussed. In
addition, the mechanism of synchronization was also analyzed.

A band-limited signal x(t) could be acquired by applying a
band-pass filter to the signal and then Hilbert transform to access
its phase.

Two arbitrary signals and their phases are defined as

x1α(t) � A1(t)ej(ωαt+φ1(t)), (16)
x2α(t) � A2(t)ej(ωαt+φ2(t)), (17)

where ϕ1(t) � ωαt + φ1(t) and ϕ2(t) � ωαt + φ2(t).
Then, the phase coherence is formulized as

Coh1−2 � 1
N

∣∣∣∣∣∑ ej(ϕ1−ϕ2)
∣∣∣∣∣. (18)

From the aforementioned signal model, the phase
coherence assumes that when the paired signals start
interacting, the modulation terms of the two signals, φ1(t)
and φ2(t), start off with a similar pattern. This produces a small
phase difference resulting in increase in coherence. Therefore,
the phase coherence is also used to determine the degree of
synchronization.

Furthermore, the relationship between phase coherence and
global field synchronization (GFS) was presented from a
mathematical viewpoint. The phase coherence emphasizes on
the similarity of frequency modulation function, while GFS
adapts Fourier transform to approximate signal and focus on
the phase, which is integrated from frequency modulation
function by time.

For instance, it is assumed that each channel signal is phase-
locking. The frequency modulation terms in different signals
φi(t) are equal and make the phase coherence high.

qPhase Lockng∴ φi(t) � φj(t) � φ(t)

s.t. Cohi−j � 1
N

∣∣∣∣∣∣∣∣∑ ej(ϕi−ϕj)∣∣∣∣∣∣∣∣ ↑
. (19)

Then, the Fourier transform of different signals at a given
frequency can also be observed.

Χi � F a{Ai(t)ej(ωαt+φi(t))} � AKe
jθi

q φi(t) � φ(t) ∴θi ≈ θ
s.t. AKe

jθi � AKe
jθ GFS ↑

where θ ϵ Random variable |θ|< η, η � 0

. (20)
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In this case, because the frequency modulation function φK(t)
is similar, θK could appear as a uniformly distributed sample with
small variation (η � 0), that is, the multichannel could also obtain
an elongated distribution on a complex domain and share a
higher GFS score.

On the contrary, if the signals in different channels are not in
sync, the frequency modulation term φi(t) would be in various
patterns. Furthermore, the phase θi from Fourier transform
would also have a more random distribution (η>QQ ∈ R).
Then, both phase coherence and GFS may reflect a poor score.

qRandommodulation s.tϕi ≠ ϕj

s.t.Cohi−j � 1
N

∣∣∣∣∣∣∣∣∑ ej(ϕi−ϕj)∣∣∣∣∣∣∣∣ ↓
Χi � F a{Ai(t)ej(ωαt+φi(t))} � AKe

jθi

where θi ϵ Random variable |θi|< η, η>Q
∴ GFS ↓

. (21)

2.2.3 Noise-Resistant Algorithm Application to Global
Field Synchronization
Noise artifact is a critical issue in the domain of EEG signal
processing. In this section, we provided a system to deal with the
noise. Signal xi is represented by

xi � aie
i(ωαt+φi(t)) + n(t). (22)

The Fourier transform of xi is F {xi} � aiejθi + CejΘi . If all
channel signals are phase coherent, then θi is a random variable
within a small variation η. However, the Fourier transform of xi is
sensitive to the background noise phase. Then, Θi, a random
variable generated from noise (i.e, n(t)), will significantly affect
the GFS score.

To prevent interference from white noise, we adapted the
ensemble strategy in the frequency domain to enhance the SNR of
GFS. We could divide k segmentations of each channel as
different epochs to generate the GFS.

si(t) � ∑M
k�1

si,k(t)

si,k � si(t) ×Π(t − kT

T
), T ∈ window length

. (23)

To reconstruct the whole signal’s GFS score from the
segmented part, the segment GFS should be compensated with
a time-delay factor, Ψ. Each GFS signal component si,k(t) can be
represented in the following form:

si,k(t) � F−1{F{aiej(ωα(t+KT)+φi(t)) + ni,k(t)} · Ψ}, Ψ � e−jωαKT,

(24)
si,k(t) � aie

j(ωα(t+KT)+φi(t)) + ni,k(t) · e−jωαKT, (25)
≈ aie

j(ωα(t)+φi(t)) + n̂i,k(t) � xi,k(t) + n̂i,k(t). (26)
The ensemble frequency response at ωα is derived from the

ensemble signal model. The GFS score could be recalculated from
the ensemble frequency response.

F {si(t)} � 1
M

∑M
1

F {xi,k(t)} + 1
M

F{n̂i,k(t)} at ωα. (27)

To demonstrate the advantage of the ensemble-average
method, we need to discuss the performance in the signal part
xi,k(t) and noise part n̂i,k(t) independently.

First, we could read the signal part in a channel. The average of
signal component frequency response could be written as

F {xi(t)} � 1
M

∑M
1

F {xi,k(t)} at ωα � aie
jξi , (28)

F {xi,k(t)} � ∫ ai,ke
j(ωα(t−KT)+φi(t))e−jωαtdt � ai,ke

jθi,k . (29)

The phase of each signal segment θi,k is a random variable with
uniform distribution from –η ~ η. As mentioned in Section 2.2.1,
the value of η depends on the degree of synchronization between
k segments. Signal xi(t) should have a wide sense stationary
process condition to satisfy the operation of the ensemble
average. Moreover, the phase modulation function φi(t) in
xi(t) observes the ergodic process, that is, the phase
modulation function in different segments φi,k(t) resembles
each other and the modulation function φi(t) of all signals.
Eventually, the phase of the Fourier integral will stabilize.

q μx � E(xi(t)) � E(xi,k(t)) � γ , γ ∈ R
& E(φi(t)) � E(φi,k(t))

s.t. θi � θi,k

.

Thus, the ensemble average process would not jeopardize the
phase performance.

The distribution of ξi would be correlated to the phase
distribution θi,k in different channels. ξi is a random variable
with uniform distribution from −η ~ η.

ξ i � f(θi) � f(θi,k).
With that, the incoherence phase (i.e., large probability distribution
of θi) among different channels remains chaotic after segmentation
average. In other words, the low GFS caused by weak phase
coherence should not be enhanced by ensemble average.

After discussing the signal part, we also consider noise
contribution to GFS. The average of each noise segment
frequency response could be written as

F{n̂i,k(t)} � 1
M

∑M
1

F{n̂i,k(t)} at ωα � Ĉie
jϕi , Ci � C��

M
√ . (30)

Noticeably, the operation of ensemble average is able to attenuate
the noise components. As long as the number of segmentations is
enough, the noise influence to the GFS can be attenuated.

2.3 Electroencephalogram Quantification
We used standard EEG for analysis. The electrodes were attached at
19 standard sites on the scalp (international 10/20 system
placements Fp1/2, F3/4, C3/4, P3/4, O1/2, F7/8, T3/4, T5/6, Fz,
Cz, and Pz). We separated the EEG frequency bands into delta (0.5-
4Hz), theta (4-8Hz), alpha (8-12Hz), and beta (12-40Hz). All EEGs
were interpreted by neurologists, and the patterns were defined
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according to the ACNS EEG terminology (Westhall et al., 2016) as
qualitative EEGs. Suppression, burst-suppression, periodic discharges,
rhythmic discharges, and evolving seizure activity are highlymalignant
patterns. Discontinuous background, low-voltage, and unreactive
background are malignant patterns. Continuous background
indicates good outcome, which is defined as continuous normal
voltage (>20 μV) background and preserved reactivity to stimuli.

For quantitative EEG analysis, for each frequency band, we averaged
the value in the frequency domain and obtained the data around the
middle of the recording in the time domain to avoid the artifact caused
by emergency treatment. This value was taken as quantitative EEG.
For each frequency band, 19 points of quantitative EEG were acquired.

We computed GFS by transforming an EEG signal with M
channels into the frequency domain using Fourier transform (FT)
(Eq. 3). Then, the FT of the signal yields a complex formmade up
of real (Eq. 4) and imaginary parts (Eq. 5) for each frequency. For
every particular frequency band, pairs of resulting complex
Fourier coefficients from all channels can be mapped as points
in a two-dimensional diagram. The resulting pairs of all channels
were then quantified using principal component analysis (PCA)
resulting in two eigenvalues per frequency. Using these
eigenvalues (Eq. 8), we compute GFS as the ratio of the
resulting eigenvalues (Eq. 9). For a more thorough step-by-
step explanation, refer to Section 2.2.1.

2.4 Statistical Analysis
The data were expressed as mean ± standard deviation for
continuous variables and percentage for categorical variables. The
baseline characteristics between good vs poor outcome were
compared by using t-test for continuous variables and chi-square
test for categorical variables. Logistic regression analysis was
performed to find the predictors for outcome. The baseline
characteristics including age, gender, out-of-hospital cardiac arrest
(OHCA), shockable rhythm, cardiopulmonary resuscitation (CPR)
duration, use of target temperature management (TTM), use of
extracorporeal membrane oxygenation (EMCO), Acute Physiology
and Chronic Health Evaluation II (APACHE II) score, and
comorbidities such as coronary artery disease (CAD), diabetes
mellitus (DM), hypertension (HTN), chronic kidney disease
(CKD), and atrial fibrillation (AF) were entered as covariates.
Receiver operating characteristic (ROC) analysis was used to
determine the optimal prediction model and evaluate the ability
of GFS to discriminate good from poor outcome with the area under
curve (AUC) as an indicator. Sample size analysis of the area under
ROC curve using Medcalc Version 20.027, with type I error 0.05,
type II error 0.2, area under ROC curve 0.8, and ratio of sample size
in negative/positive groups 5, estimated the sample size was 54, in
which nine were defined as good outcome and 45 were defined as
poor outcome.

3 RESULTS

3.1 Amplitude and Phase Interference to
Global Field Synchronization
In the previous sections, we discussed the covariance matrix (Eq.
7) and approximated the signal model with narrow phase

variation (Eq. 16) to prove that the synchronized phase has a
single eigenvalue and high GFS score, that is, we could assume
that phase coherence is the dominant factor to GFS.

3.1.1 Numerical Global Field Synchronization Results
From Two Dimensions
Aside from the approximated model proof (Eq. 16), we also
performed numerical experiments to demonstrate the general
performance of GFS. We inspected whether amplitude or phase is
the critical interference to GFS. In this simulation, we acquired
GFS values from the general form of the covariance matrix (Eq.
7). The amplitude of different channels, ai, can be determined as
a random variable of Gaussian distribution with different
standard deviation (σ: 0–5). The phase of different channels,
θi, can be set as a random variable of normal distribution with
different range (0 ~ 4).

Numerical simulations from the theoretical proof demonstrate
our assumptions for both GFS derived from the covariance
matrix without zero-mean process (Figure 1A) and with zero-
mean process (Figure 1B). Figure 1A shows that while the GFS
score exhibits no significant difference with the increase in
amplitude variation, increase in phase variation causes drastic
decrease in the resulting score. Moreover, Figure 1B reveals that
in extremely small amplitude distribution, the GFS fails to
evaluate the phase synchronization. Taking everything into
account, the GFS method without the zero-mean process
overcomes the narrow amplitude limitation of GFS. In other
words, if the signals have enough distribution of amplitude, the
zero-mean process has no effect on GFS. Furthermore, although
both derivations have small differences, phase variation is still a
critical issue both to traditional GFS and GFS without the zero-
mean process.

In addition, we also used signals to validate that the GFS is
inclined to be disrupted by phase, instead of amplitude. Based on
the band-limited signal model (Eq. 1), we generated a 20-channel
signal (only showing 10 channels in Figure 2). By manipulating
the modulation function φi(t) in the phase, we could generate a
signal model with different scenarios of synchronization. Each
signal goes through a band-pass filter after phase adjustment.
Then, these signals could derive the GFS score. On the other
hand, we calculated the phase coherence between each channel
(Eq. 21) averaged the total phase coherence and then denoted it
as global phase coherence so that we were able to compare the
relationship between GFS and the global phase coherence toward
amplitude and phase.

In this simulation, we proposed three situations to discuss,
namely, (A) phase synchronization with chaotic amplitude, (B)
constant amplitude with chaotic phase synchronization, and (C)
chaotic amplitude and phase.

In Figure 2, the result indicated that as our previous
assumption, the value of GFS is vulnerable to phase
disturbance but not to amplitude disturbance. Furthermore, as
the phase begins to become chaotic, both GFS and global phase
coherence decreased. In simple words, the GFS, which may have a
similar function as global phase coherence, is able to distinguish
synchronization or not. In addition, both global phase coherence
and GFS can evaluate the degree of synchronization.
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3.2 Sensitivity Performance Comparison of
GFS and Global Phase Coherence
As seen in the previous result, we have already discovered that the
GFS is sensitive to phase distribution, and GFS somehow has a
relationship with the phase coherence. Based on the process in
Section 3.1.1, we also adapted a 20-channel signal model. In this
section, we altered the strength of modulation function φi(t) (Eq. 1)
with the constant amplitude. We assumed φi(t) as a random
variable with normal distribution and used 10 different standard
distributions (σ: 0: 2π), that is, we were going to observe the score of
GFS and global phase coherence during the phase manipulation.

The signals become chaotic when standard distribution of φi(t)
increase, so it could also be regarded as a desynchronization
indicator. The result in Figure 3A revealed that both GFS and
global phase coherence decrease when the strength of standard
distribution of φi(t) (desynchronization indicator) increases.
Therefore, GFS has a similar function with the phase
coherence–based method. Nonetheless, the curve of GFS decays
faster than the curve of global phase coherence to the strength of
desynchronization. On the other hand, GFS was proven as a much
sensitive measurement tool than global phase coherence.

Moreover, in addition to the comparison in sensitivity of both
methods to signal synchronization, we also performed a
comparison of the sensitivity to the length of the signal. In
clinical scenarios, EEG is vulnerable to different kinds of noise,
which may badly affect the resulting GFS scores. Based on our
proposed robustness algorithm, we could divide signals into several
segments and reject the noise events, that is, the longer signals help
us remove the noise events and acquire a genuine GFS score.

In addition, we not only considered the temporal noise event
but also made GFS robust to the poor signal quality condition.We
added different levels of noise into signals to study the robustness
between different signal length and the background noise.
(Figure 3B).

In Figure 3B, we tested 50-s and 10-s signals with the phase
coherence–based method and GFS under different SNR
scenarios. Though both methods decreased as the noise level
increased, changes in signal length do not affect the global phase
coherence score result, while longer signals showed significant
improvement in the GFS score.

3.3 Baseline Characteristics of the Study
Population
The demographics and clinical parameters of all SCA survivors are
shown in Table 1 and Figure 4. The mean age in the good-
outcome group was younger than that in the poor-outcome group
(51.6 ± 15.7 vs 68.1 ± 12.9, p < 0.001). The patients in both the
groups were male-dominant. The patients with initial shockable
rhythm were more in the good-outcome group (75 vs 15%, p <
0.001). The patients in the good-outcome group had a higher
percentage of receiving TTM than that in the poor-outcome group
(83.3 vs 44.4%, p = 0.014). The APACHE II score was higher in the
poor-outcome group (25.4 ± 6.2 vs 19.3 ± 5, p = 0.0019). There was
no statistical difference in the percentage of OHCA, duration of
CPR, and rate of receiving ECMO therapy between the two groups.
There was also no statistical difference in rates of comorbidities
including CAD, DM, HTN, CKD, and AF between the two groups.
Multivariate logistic regression analysis showed that only initial
shockable rhythm was an independent factor for predicting good
outcome (OR 2.15, 95% CI 1.6–46.1, p = 0.012).

3.4 Electroencephalogram Results
3.4.1 Electroencephalogram as a Biomarker to
Differentiate Good and Bad outcome—Qualitative
Electroencephalogram
Qualitative EEG analyses showed that out of 12 patients in the
good-outcome group, only two presented with benign EEG
patterns, and the other 10 EEGs presented with a malignant

FIGURE 1 | Relation of GFS to variations of phase and amplitude. The GFS score could be derived from the theoretical covariance matrix (Eqs. 7–13). Generate
amplitude and phase distribution to compare the GFS performance between amplitude and phase perturbation. (A)GFSwas derived from the covariance matrix without
the zero-mean process (Eqs. 6–8). (B)GFSwas derived from the covariancematrix with the zero-mean process (Eqs 10–13). (C) In the phase locking signals, it is on the
left side of the * that the amplitude variation is dominant to the GFS. Therefore, the GFS fails to evaluate the phase synchronization with extremely small amplitude
distribution. (D) In most of the amplitude distribution, GFS is sensitive to phase but not to the amplitude.
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pattern. All patients in the poor-outcome group had malignant or
highly malignant pattern EEGs. The malignant and highly
malignant pattern showed 100% sensitivity and 17% specificity
to predict the poor outcome, respectively. The positive predictive
value (PPV) was 0.86, and the negative predictive value (NPV)
was 1. On the other hand, benign EEG showed 17% sensitivity
and 100% specificity to predict good outcome. PPV was 1, and
NPV was 0.86 (Table 3).

3.4.2 Electroencephalogram as a Biomarker to
Differentiate Good and Bad outcome—Quantitative
Electroencephalogram
As for the quantitative EEG analyses, the average power of the
four frequency bands of EEG spectral analysis in different
positions of both groups is shown in Figure 5. The good-
outcome group displayed higher power at each position in all
four frequency bands. The values of average power of the four
bands in the two groups are listed in Table 2.

The area under the curve (AUC) value for power in different
frequency bands was also calculated (Figure 6). Among the four
frequency bands, the alpha band showed the highest
discrimination ability (AUC = 0.78) to predict good outcome.
The sensitivity of EEG power was 100%, specificity was 58%, PPV
was 0.32, and NPV was 1 to predict good outcome (Table 3).

3.4.3 Correlation of Global Field Synchronization to
Sudden Cardiac Death Survivor’s Outcome
The results of GFS analysis are listed in Table 4. As shown in
Table 4, the GFS values were significantly higher in the good-
outcome group in all four frequency bands. The AUC value for
each frequency band is shown in Figure 7.

GFS of the alpha band showed the highest AUC value (0.8) to
predict good outcome. Figure 8 shows examples of real data for
both groups. Real data from the good-outcome group exhibit good
phase synchronization, in spite of the randomness of its amplitude,
which results in a high GFS value. This synchronization can be

FIGURE 2 | Different scenarios of synchronization. Three different scenarios of synchronization, such as (A) phase synchronization with chaotic amplitude, (B)
constant amplitude with chaotic phase synchronization, and (C) chaotic amplitude and phase, with the corresponding complex plane that reflects the intensity are
shown. The shape of the points in the diagram implies the intensity of the phase synchronization of the resulting values. An elongated form of the points indicates that the
majority of the signal was dominated by a single phase angle at a specific frequency, thus indicating the presence of phase synchronization. On the other hand, the
unsynchronized phase results in an almost round form.
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FIGURE 3 | (A)Comparison betweenGFS and global phase coherence toward different strengths of frequencymodulation function. The square-marker line shows
the phase coherence curve, while the triangle-marker line represents the GFS curve. The x axis is the strength of frequency modulation value. The higher the x axis value,
the less synchronized the signal model. GFS has a similar function with the phase coherence–based model and is able to recognize the degree of the modulation. (B)
Comparison between GFS and global phase coherence toward different data lengths. The cross-marker line shows the GFS curve with a data length of 50 s, while
the black line represents the GFS curve with a data length of 10 s. The star-marker line shows the global phase coherence curve with 10-s data length while the red-
dotted line represents the global phase coherence curve with 50-s data length. The x axis is the noise level of standard deviation. The higher the x axis value, the higher
the noise level. Both GFS and global phase coherence decayed as the noise level increased. GFS can have better robustness with longer data, while the data length
cannot improve the performance of phase coherence.

TABLE 1 | Patient demographics and clinical parameters.

Variable Outcome p Value

Good
outcome (n = 12)

Poor
outcome (n = 63)

Age 51.6 (15.7) 68.1 (12.9) <0.001
Year (SD)
Male 10 (83.3) 39 (61.9) 0.13
N (%)
OHCA 11 (91.7) 40 (63.5) 0.049
N (%)
Shockable rhythm N (%) 9 (75) 10 (15) <0.001
CPR duration mean (SD) 18.8 (13.7) 18.7 (11.8) 0.98
TTM 10 (83.3) 28 (44.4) 0.014
N (%)
ECMO 0 (0) 4 (6.3) 0.49
N (%)
APACHE II 19.3 (5) 25.4 (6.2) 0.0019
Mean (SD)
CAD 6 (50) 19 (30.2) 0.158
N (%)
DM 1 (8.3) 26 (41.3) 0.026
N (%)
HTN 7 (58.3) 30 (47.6) 0.358
N (%)
CKD 0 (0) 15 (23.8) 0.054
N (%)
AF 0 (0) 11 (17.5) 0.126
N (%)

OHCA: out-hospital cardiac arrest; CPR: cardiac pulmonary resuscitation; TTM: target temperature management; ECMO: extracorporeal membrane oxygenation; APACHE II: Acute
Physiology and Chronic Health Evaluation II; CAD: coronary artery disease; DM: diabetes mellitus; HTN: hypertension; CKD: chronic kidney disease; AF: atrial fibrillation.
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clearly observed in the alpha band plot, while for the poor outcome,
the phase and amplitude synchronization observed was poor. The
randomness of both the phase and amplitude contributes to the
poor GFS result. The sensitivity of GFS was 90%, specificity was
60%, PPV was 0.31, and NPV was 0.97 (Table 3).

By combining EEG power and GFS, the alpha band power +
GFS showed the best prediction value (AUC 0.86) in predicting
good outcome (Figure 9). The sensitivity of EEG power + GFS
was 73%, and specificity was 93% (Table 3).

4 DISCUSSION

In this study, we presented from a mathematical point of view of
why phase coherence plays an important part in GFS.
Furthermore, data simulation supports the mathematical proof

we provided. In addition, we looked into qEEGmeasures and GFS
as potential biomarkers to use to differentiate neurological
outcome predictions in sudden cardiac death survivors. The
results show the possibility of both measures in predicting the
outcome significantly, whether good or bad.

4.1 Outcome Prediction in Comatose
Patients Following Cardiac Arrest
In one previous study by Grmec and Gasparovic (2001), among
the scoring systems including Mainz Emergency Evaluation
System (MEES), Glasgow Coma Scale (GCS), and APACHE II,
GCS performed the best in the prediction of mortality for
nontraumatic coma patients. Schefold et al. (2009) also
considered GCS as a powerful tool in predicting the neurological
outcome of cardiac arrest patients treated with therapeutic

FIGURE 4 | Patient demographics and clinical parameters.

FIGURE 5 | Average power of the four frequency bands of EEG spectral analysis in different positions of both group 1 (good outcome) and group 2 (bad outcome).
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hypothermia. APACHE II (Acute Physiology and Chronic Health
Evaluation II) is a severity-of-disease classification system that
includes a GCS score as part of evaluation. The APACHE II,
although it encompasses the GCS score as part of the evaluation,
was only a modest indicator of illness severity and predictor of
mortality/neurologic morbidity (Donnino et al., 2013). In this study,
the APACHE II score was higher in the poor-outcome group in the
univariate analysis but became insignificant after the adjustment of
other covariates in regression analysis.

In this study, the mean age in the good-outcome group was
significantly less. The patients in the good-outcome group hadmore
initial shockable rhythm, higher percentage of receiving TTM, and
lower APACHE II score. The previous studies showed that TTM
increased the rate of a favorable neurologic outcome and reduced
mortality (Lascarrou et al., 2019). However, the APACHE II score of
patients with poor outcomes in our study was higher than that of
patients with good outcomes. Therefore, more patients in the poor-
outcome group might have contraindications of TTM, and the
multivariate logistic regression analysis showed that only initial
shockable rhythm was an independent factor for predicting good
outcome, rather than TTM or not or APACHE II score.

The prediction of clinical outcomeswill help optimize the treatment
and benefit the patients. In the clinical setting, neurocritical illnesses are
diseases requiring expensive treatment associated with poor outcomes.
Survival with poor neurological outcomes is very resource-demanding.
The treatment plans may be altered by the socioeconomic condition of
the patient or his family. The family and clinician may avoid futile
medical care if poor outcomes can be identified early. On the other
hand, if we can recognize patients who are potential independent
survivors, aggressive treatment is indicated, and the patients will be
beneficial to the treatment.

4.2 Limitation of Qualitative
Electroencephalogram in Neurological
Outcome Prediction
Neurologists interpret EEG according to the ACNS EEG
terminology (Westhall et al., 2016) as qualitative EEGs. In thisT
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FIGURE 6 | Area under curve (AUC) in different frequency bands.
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study, highly malignant and malignant patterns both showed
high sensitivity but low specificity in predicting poor outcome.
Continuous background indicates good outcome, which is
defined as continuous normal voltage (>20 μV) background
and preserved reactivity to stimuli. In this study, benign
patterns showed high specificity but low sensitivity. There is
interrater variability in qualitative EEG interpretation. Westhall
et al. (2015) published a multinational study on the interrater
reliability of EEG interpretation using the 2013 revised ACNS
terminology among comatose patients following cardiac arrest.
There was a high interrater agreement (κ 0.71) for highly
malignant patterns and moderate agreement (κ 0.42) for
malignant patterns. Identifying an unreactive EEG was fair (κ
0.26). Therefore, traditional qualitative evaluation of EEG
should be interpreted with caution. Using quantitative
methods may lower the interrater variation. Duez et al.
(2018) published a quantitative method to evaluate EEG
reactivity. In the study, agreement among experts on
overall EEG reactivity varied from 53 to 83% (κ 0.05–0.64)
and reached 100% (κ1) between two quantitative EEG reactivity
calculators.

4.3 Relationship of Quantitative
Electroencephalogram to the Variability of
Neural Activities in Discrimination Between
Good and Bad Prognosis
Neurophysiological monitoring tests, such as EEG and
somatosensory evoked responses (SSEPs), may play a role in
the prediction of neurological outcome prediction (Rossetti
et al., 2016). EEG is a signal with a complex structure, and
several EEG features have been proven to be correlated with the
degree of neuronal injury (Westhall, 2017). However, EEG
signal evaluation requires specific expertise and can suffer
from interrater variability (Westhall et al., 2015).

Computational processing of the EEG or quantitative EEG
(qEEG) has been utilized for neurological outcome prediction
after cardiac arrest. The parameters derived from qEEG such as
bispectral index (BIS), amplitude-integrated EEG, burst-
suppression ratio, or entropy, have been demonstrated to be
valuable in clinical practice (Leary et al., 2010; Rundgren et al.,
2010; Seder et al., 2010; Noirhomme et al., 2014; Selig et al.,
2014; Stammet et al., 2014). Among the parameters, some
studies showed that BIS had better discriminative power in
predicting the outcome (Leary et al., 2010; Seder et al., 2010;
Selig et al., 2014; Stammet et al., 2014), while other computer-
assisted analyses had high specificity but relatively low
sensitivity for outcome prediction.

In this study, we demonstrated that patients with a good
outcome had higher EEG power in all four frequency bands.
The higher EEG power represents higher variability of
neural activities and might be associated with better brain
function after cardiac arrest. Our result also showed that
among the frequency bands, the power of the alpha band
was the best in predicting the outcome. This result was
correlated with visual analysis findings (Westhall, 2017) and
was compatible with previous studies (Wiley et al., 2018; Kota
et al., 2020).

Alpha waves are neural oscillations in the frequency range of
8–12 Hz, likely originating from the synchronous and coherent
electrical activity of thalamic pacemaker cells in humans (Hughes
and Crunelli, 2005). Alpha waves appear in the EEG during the

TABLE 3 | Sensitivity, specificity, PPV, and NPV values of each parameters to predict good outcome.

Sensitivity Specificity PPV NPV

Qualitative analysis (Benign pattern) 0.17 1 1 0.86
Power 1 0.58 0.32 1
GFS 0.90 0.60 0.31 0.97
Combined power + GFS 0.73 0.93 0.67 0.94

PPV: positive predictive value; NPV: negative predictive value; GFS: global field synchronization.

TABLE 4 | GFS values of two outcome groups.

Frequency Bands (Hz) Neurological outcome p Value

Good
outcome (n = 12)

Poor
outcome (n = 63)

Delta (<4) 0.4647 0.3490 <0.001
Theta (4–8) 0.4141 0.3302 <0.001
Alpha (8–12) 0.3956 0.3216 <0.001
Beta (12–24) 0.4015 0.3324 <0.001

GFS: global field synchronization.

FIGURE 7 | GFS AUC value for each frequency band.
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resting but wakeful state, while beta waves are seen in more alert
status, and delta/theta waves are seen in the sleep state. In this
study, the alpha band showed the best predictive value among all
four frequency bands, which is compatible with the clinical
neurological status of these patients: comatose but going to wake.

4.4 Significance of Phase Coherence to
Global Field Synchronization
Understanding the mathematical perspective of a system
describes how a system works. It uncovers the underlying

essential aspects. Based on the original concept by Koenig
et al. (2001), GFS focuses on the local distribution between
phase and amplitude variation. They explained that channels
are synchronized if they have the same phase, counter phase,
and a much elongated distribution on the sine–cosine plane,
which could indicate a higher degree of synchronization. The
data simulations presented in this study have proven the initial
claim that both parameters, indeed, play a part in the
calculation of GFS. The distribution of amplitude may
determine the tolerance of phase variation with the GFS
method. Wide amplitude variation signals could get a higher

FIGURE 8 | Examples of real data for both groups.

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 86684413

Ho et al. Prediction of SCA Neurological Outcome

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


GFS score with wider phase variation than the narrow
amplitude variation signals. However, regardless of the
amplitude variation, the phase distribution is still the
dominant factor to decide the GFS score. Figure 1 shows
that the narrower the distribution for phase, the higher the
value for GFS, while for amplitude, an increase in amplitude
does not correlate to higher GFS if the distribution of phase is
wide. This claim is true to both traditional GFS and GFS
without the zero-mean process. Hence, although both
amplitude and phase contribute to obtaining GFS,
interference in phase variation drastically changes the
possibility of generating a good GFS score.

In addition, we want to address the critical limitation of the
GFS method. When the different channels in a signal share
uniform amplitude, even though they have a perfect phase-
locking effect, the resulting GFS score would decrease. At
the same time, GFS will not be able to detect a perfect
phase-locking signal with uniform phase and signals with
random phase and amplitude. Fortunately, in clinical
applications, we usually record multichannel EEG signals,
and it is rare for the amplitude of the different electrodes to
have equal magnitude.

Furthermore, in Figure 2, we showed different scenarios of
simulated data and provided the sine–cosine plot for GFS.
Moreover, the values for GFS and phase coherence were also
included. Comparing all scenarios, GFS and phase coherence
were at their highest at constant phase even though the
amplitude varies for every channel. The random phase with
constant amplitude resulted in a much lower value both in
GFS and phase coherence compared to data simulation with
constant phase due to more random phases related to wider
distribution. In addition, we showed that the two measures
declined as the interference gets more chaotic, but GFS
showed more sensitivity than the phase coherence measure
in terms of increased interference. Moreover, longer signal
length has better robustness to attenuate the background
noise affect in the GFS method, resulting in a better GFS
score since we could also reject the spike-like artifact in longer
length, though this scenario does not apply with global phase
coherence.

4.5 Neurological Outcome Predictions With
Global Field Synchronization
GFS is a novel method to analyze the functional synchronization
of brain activity recorded by EEG, which was introduced by
Koenig et al. (2001). GFS can estimate the connectivity of brain
electric activities among different brain regions and is effective in
the diagnosis of some neurologic or psychiatric diseases such as
Alzheimer’s disease (Ma et al., 2014) or obsessive–compulsive
disorder (Ozcoban et al., 2018). To our knowledge, our study is
the first one to utilize GFS as an EEG analysis method for
neurological outcome prediction in cardiac arrest survivors. In
addition, we believe that we are the first to present and explain the
true dynamics between GFS and phase coherence from a
mathematical point of view. Delving deeper into the method
gives new perspective and an in-depth understanding on how it
works. Based on the mathematical review presented in the
Materials and Methods section of this article, we provided
solid proof that GFS is mainly based on phase coherence than
its amplitude. Furthermore, based on the results, among the four
frequency bands, the alpha band showed the best sensitivity and
specificity to predict neurological outcome. By combining EEG
power and GFS, the predictive value is even better. This implies
that the connectivity of brain electric activities is an important
marker of brain function after cardiac arrest.

5 CONCLUSION

There were some limitations to this study. First, this was a
retrospective study with a small study population. However,
according to the power analysis, the size of population was
enough for the evaluation of the diagnostic ability. Second, the
timing of performing EEG was not uniform in all patients. Late or
early EEG might reveal difference results. Third, the EEG in this
study was a standard EEG recording for 5 min rather than
continuous EEG, which represented the brain activity only at
that period of time without a dynamic change.

In conclusion, this is the first study to use GFS to predict
neurological outcome in cardiac arrest survivors and present solid
proof that GFS is, indeed, based on phase coherence. By combining

FIGURE 9 | AUC of (A) Alpha band power, (B) Alpha GFS, and (C) Combination of EEG power and GFS in Alpha band as outcome predictors.
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GFS and EEG power analysis, the neurological outcome of the
nontraumatic cardiac arrest survivor can be well-predicted.
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